coreboot-kgpe-d16/src/device/pci_device.c
Kyösti Mälkki bf62b2ddb0 AMD fam10: Drop PCI_BUS_SEGN_BITS
All boards in tree use 0.  Looks like this is all work that was
never completed and tested.

We also have static setting sysconf.segbit=0 which would conflict
with PCI_BUS_SEGN_BITS>0.

Having PCI_BUS_SEGN_BITS>0 would also require PCI MMCONF support
to cover over 255 buses.

Change-Id: I060efc44d1560541473b01690c2e8192863c1eb5
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/8554
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
2015-03-09 19:33:08 +01:00

1486 lines
42 KiB
C

/*
* This file is part of the coreboot project.
*
* It was originally based on the Linux kernel (drivers/pci/pci.c).
*
* Modifications are:
* Copyright (C) 2003-2004 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2003-2006 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
* Copyright (C) 2005-2009 coresystems GmbH
* (Written by Stefan Reinauer <stepan@coresystems.de> for coresystems GmbH)
* Copyright (C) 2014 Sage Electronic Engineering, LLC.
*/
/*
* PCI Bus Services, see include/linux/pci.h for further explanation.
*
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
* David Mosberger-Tang
*
* Copyright 1997 -- 1999 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
*/
#include <arch/acpi.h>
#include <arch/io.h>
#include <bootmode.h>
#include <console/console.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <delay.h>
#include <device/cardbus.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pcix.h>
#include <device/pciexp.h>
#include <device/hypertransport.h>
#include <pc80/i8259.h>
#include <kconfig.h>
#include <vendorcode/google/chromeos/chromeos.h>
u8 pci_moving_config8(struct device *dev, unsigned int reg)
{
u8 value, ones, zeroes;
value = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0xff);
ones = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0x00);
zeroes = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, value);
return ones ^ zeroes;
}
u16 pci_moving_config16(struct device *dev, unsigned int reg)
{
u16 value, ones, zeroes;
value = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0xffff);
ones = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0x0000);
zeroes = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, value);
return ones ^ zeroes;
}
u32 pci_moving_config32(struct device *dev, unsigned int reg)
{
u32 value, ones, zeroes;
value = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0xffffffff);
ones = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0x00000000);
zeroes = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, value);
return ones ^ zeroes;
}
/**
* Given a device, a capability type, and a last position, return the next
* matching capability. Always start at the head of the list.
*
* @param dev Pointer to the device structure.
* @param cap PCI_CAP_LIST_ID of the PCI capability we're looking for.
* @param last Location of the PCI capability register to start from.
* @return The next matching capability.
*/
unsigned pci_find_next_capability(struct device *dev, unsigned cap,
unsigned last)
{
unsigned pos = 0;
u16 status;
unsigned reps = 48;
status = pci_read_config16(dev, PCI_STATUS);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
switch (dev->hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
case PCI_HEADER_TYPE_CARDBUS:
pos = PCI_CB_CAPABILITY_LIST;
break;
default:
return 0;
}
pos = pci_read_config8(dev, pos);
while (reps-- && (pos >= 0x40)) { /* Loop through the linked list. */
int this_cap;
pos &= ~3;
this_cap = pci_read_config8(dev, pos + PCI_CAP_LIST_ID);
printk(BIOS_SPEW, "Capability: type 0x%02x @ 0x%02x\n",
this_cap, pos);
if (this_cap == 0xff)
break;
if (!last && (this_cap == cap))
return pos;
if (last == pos)
last = 0;
pos = pci_read_config8(dev, pos + PCI_CAP_LIST_NEXT);
}
return 0;
}
/**
* Given a device, and a capability type, return the next matching
* capability. Always start at the head of the list.
*
* @param dev Pointer to the device structure.
* @param cap PCI_CAP_LIST_ID of the PCI capability we're looking for.
* @return The next matching capability.
*/
unsigned pci_find_capability(device_t dev, unsigned cap)
{
return pci_find_next_capability(dev, cap, 0);
}
/**
* Given a device and register, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
* @return TODO
*/
struct resource *pci_get_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value, attr;
resource_t moving, limit;
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Initialize attr to the bits that do not move. */
attr = value & ~moving;
/* If it is a 64bit resource look at the high half as well. */
if (((attr & PCI_BASE_ADDRESS_SPACE_IO) == 0) &&
((attr & PCI_BASE_ADDRESS_MEM_LIMIT_MASK) ==
PCI_BASE_ADDRESS_MEM_LIMIT_64)) {
/* Find the high bits that move. */
moving |=
((resource_t) pci_moving_config32(dev, index + 4)) << 32;
}
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
limit = 0;
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = limit = moving | (resource->size - 1);
}
/*
* Some broken hardware has read-only registers that do not
* really size correctly.
*
* Example: the Acer M7229 has BARs 1-4 normally read-only,
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
* by writing 0xffffffff to it, it will read back as 0x1f1 -- which
* is a violation of the spec.
*
* We catch this case and ignore it by observing which bits move.
*
* This also catches the common case of unimplemented registers
* that always read back as 0.
*/
if (moving == 0) {
if (value != 0) {
printk(BIOS_DEBUG, "%s register %02lx(%08lx), "
"read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
} else if (attr & PCI_BASE_ADDRESS_SPACE_IO) {
/* An I/O mapped base address. */
attr &= PCI_BASE_ADDRESS_IO_ATTR_MASK;
resource->flags |= IORESOURCE_IO;
/* I don't want to deal with 32bit I/O resources. */
resource->limit = 0xffff;
} else {
/* A Memory mapped base address. */
attr &= PCI_BASE_ADDRESS_MEM_ATTR_MASK;
resource->flags |= IORESOURCE_MEM;
if (attr & PCI_BASE_ADDRESS_MEM_PREFETCH)
resource->flags |= IORESOURCE_PREFETCH;
attr &= PCI_BASE_ADDRESS_MEM_LIMIT_MASK;
if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_32) {
/* 32bit limit. */
resource->limit = 0xffffffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_1M) {
/* 1MB limit. */
resource->limit = 0x000fffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_64) {
/* 64bit limit. */
resource->limit = 0xffffffffffffffffULL;
resource->flags |= IORESOURCE_PCI64;
} else {
/* Invalid value. */
printk(BIOS_ERR, "Broken BAR with value %lx\n", attr);
printk(BIOS_ERR, " on dev %s at index %02lx\n",
dev_path(dev), index);
resource->flags = 0;
}
}
/* Don't let the limit exceed which bits can move. */
if (resource->limit > limit)
resource->limit = limit;
return resource;
}
/**
* Given a device and an index, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
*/
static void pci_get_rom_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value;
resource_t moving;
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Clear the Enable bit. */
moving = moving & ~PCI_ROM_ADDRESS_ENABLE;
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = moving | (resource->size - 1);
resource->flags |= IORESOURCE_MEM | IORESOURCE_READONLY;
} else {
if (value != 0) {
printk(BIOS_DEBUG, "%s register %02lx(%08lx), "
"read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
}
compact_resources(dev);
}
/**
* Read the base address registers for a given device.
*
* @param dev Pointer to the dev structure.
* @param howmany How many registers to read (6 for device, 2 for bridge).
*/
static void pci_read_bases(struct device *dev, unsigned int howmany)
{
unsigned long index;
for (index = PCI_BASE_ADDRESS_0;
(index < PCI_BASE_ADDRESS_0 + (howmany << 2));) {
struct resource *resource;
resource = pci_get_resource(dev, index);
index += (resource->flags & IORESOURCE_PCI64) ? 8 : 4;
}
compact_resources(dev);
}
static void pci_record_bridge_resource(struct device *dev, resource_t moving,
unsigned index, unsigned long type)
{
struct resource *resource;
unsigned long gran;
resource_t step;
resource = NULL;
if (!moving)
return;
/* Initialize the constraints on the current bus. */
resource = new_resource(dev, index);
resource->size = 0;
gran = 0;
step = 1;
while ((moving & step) == 0) {
gran += 1;
step <<= 1;
}
resource->gran = gran;
resource->align = gran;
resource->limit = moving | (step - 1);
resource->flags = type | IORESOURCE_PCI_BRIDGE |
IORESOURCE_BRIDGE;
}
static void pci_bridge_read_bases(struct device *dev)
{
resource_t moving_base, moving_limit, moving;
/* See if the bridge I/O resources are implemented. */
moving_base = ((u32) pci_moving_config8(dev, PCI_IO_BASE)) << 8;
moving_base |=
((u32) pci_moving_config16(dev, PCI_IO_BASE_UPPER16)) << 16;
moving_limit = ((u32) pci_moving_config8(dev, PCI_IO_LIMIT)) << 8;
moving_limit |=
((u32) pci_moving_config16(dev, PCI_IO_LIMIT_UPPER16)) << 16;
moving = moving_base & moving_limit;
/* Initialize the I/O space constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_IO_BASE, IORESOURCE_IO);
/* See if the bridge prefmem resources are implemented. */
moving_base =
((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_BASE)) << 16;
moving_base |=
((resource_t) pci_moving_config32(dev, PCI_PREF_BASE_UPPER32)) << 32;
moving_limit =
((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_LIMIT)) << 16;
moving_limit |=
((resource_t) pci_moving_config32(dev, PCI_PREF_LIMIT_UPPER32)) << 32;
moving = moving_base & moving_limit;
/* Initialize the prefetchable memory constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_PREF_MEMORY_BASE,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
/* See if the bridge mem resources are implemented. */
moving_base = ((u32) pci_moving_config16(dev, PCI_MEMORY_BASE)) << 16;
moving_limit = ((u32) pci_moving_config16(dev, PCI_MEMORY_LIMIT)) << 16;
moving = moving_base & moving_limit;
/* Initialize the memory resources on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_MEMORY_BASE,
IORESOURCE_MEM);
compact_resources(dev);
}
void pci_dev_read_resources(struct device *dev)
{
pci_read_bases(dev, 6);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS);
}
void pci_bus_read_resources(struct device *dev)
{
pci_bridge_read_bases(dev);
pci_read_bases(dev, 2);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS1);
}
void pci_domain_read_resources(struct device *dev)
{
struct resource *res;
/* Initialize the system-wide I/O space constraints. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(0, 0));
res->limit = 0xffffUL;
res->flags = IORESOURCE_IO | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED;
/* Initialize the system-wide memory resources constraints. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(1, 0));
res->limit = 0xffffffffULL;
res->flags = IORESOURCE_MEM | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED;
}
static void pci_set_resource(struct device *dev, struct resource *resource)
{
resource_t base, end;
/* Make certain the resource has actually been assigned a value. */
if (!(resource->flags & IORESOURCE_ASSIGNED)) {
printk(BIOS_ERR, "ERROR: %s %02lx %s size: 0x%010llx not "
"assigned\n", dev_path(dev), resource->index,
resource_type(resource), resource->size);
return;
}
/* If this resource is fixed don't worry about it. */
if (resource->flags & IORESOURCE_FIXED)
return;
/* If I have already stored this resource don't worry about it. */
if (resource->flags & IORESOURCE_STORED)
return;
/* If the resource is subtractive don't worry about it. */
if (resource->flags & IORESOURCE_SUBTRACTIVE)
return;
/* Only handle PCI memory and I/O resources for now. */
if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
return;
/* Enable the resources in the command register. */
if (resource->size) {
if (resource->flags & IORESOURCE_MEM)
dev->command |= PCI_COMMAND_MEMORY;
if (resource->flags & IORESOURCE_IO)
dev->command |= PCI_COMMAND_IO;
if (resource->flags & IORESOURCE_PCI_BRIDGE)
dev->command |= PCI_COMMAND_MASTER;
}
/* Get the base address. */
base = resource->base;
/* Get the end. */
end = resource_end(resource);
/* Now store the resource. */
resource->flags |= IORESOURCE_STORED;
/*
* PCI bridges have no enable bit. They are disabled if the base of
* the range is greater than the limit. If the size is zero, disable
* by setting the base = limit and end = limit - 2^gran.
*/
if (resource->size == 0 && (resource->flags & IORESOURCE_PCI_BRIDGE)) {
base = resource->limit;
end = resource->limit - (1 << resource->gran);
resource->base = base;
}
if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
unsigned long base_lo, base_hi;
/*
* Some chipsets allow us to set/clear the I/O bit
* (e.g. VIA 82C686A). So set it to be safe.
*/
base_lo = base & 0xffffffff;
base_hi = (base >> 32) & 0xffffffff;
if (resource->flags & IORESOURCE_IO)
base_lo |= PCI_BASE_ADDRESS_SPACE_IO;
pci_write_config32(dev, resource->index, base_lo);
if (resource->flags & IORESOURCE_PCI64)
pci_write_config32(dev, resource->index + 4, base_hi);
} else if (resource->index == PCI_IO_BASE) {
/* Set the I/O ranges. */
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
pci_write_config16(dev, PCI_IO_BASE_UPPER16, base >> 16);
pci_write_config8(dev, PCI_IO_LIMIT, end >> 8);
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, end >> 16);
} else if (resource->index == PCI_MEMORY_BASE) {
/* Set the memory range. */
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
pci_write_config16(dev, PCI_MEMORY_LIMIT, end >> 16);
} else if (resource->index == PCI_PREF_MEMORY_BASE) {
/* Set the prefetchable memory range. */
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, base >> 32);
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, end >> 16);
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, end >> 32);
} else {
/* Don't let me think I stored the resource. */
resource->flags &= ~IORESOURCE_STORED;
printk(BIOS_ERR, "ERROR: invalid resource->index %lx\n",
resource->index);
}
report_resource_stored(dev, resource, "");
}
void pci_dev_set_resources(struct device *dev)
{
struct resource *res;
struct bus *bus;
u8 line;
for (res = dev->resource_list; res; res = res->next)
pci_set_resource(dev, res);
for (bus = dev->link_list; bus; bus = bus->next) {
if (bus->children)
assign_resources(bus);
}
/* Set a default latency timer. */
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
/* Set a default secondary latency timer. */
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE)
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
/* Zero the IRQ settings. */
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (line)
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
/* Set the cache line size, so far 64 bytes is good for everyone. */
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
}
void pci_dev_enable_resources(struct device *dev)
{
const struct pci_operations *ops;
u16 command;
/* Set the subsystem vendor and device ID for mainboard devices. */
ops = ops_pci(dev);
if (dev->on_mainboard && ops && ops->set_subsystem) {
if (CONFIG_SUBSYSTEM_VENDOR_ID)
dev->subsystem_vendor = CONFIG_SUBSYSTEM_VENDOR_ID;
if (CONFIG_SUBSYSTEM_DEVICE_ID)
dev->subsystem_device = CONFIG_SUBSYSTEM_DEVICE_ID;
printk(BIOS_DEBUG, "%s subsystem <- %04x/%04x\n",
dev_path(dev), dev->subsystem_vendor,
dev->subsystem_device);
ops->set_subsystem(dev, dev->subsystem_vendor,
dev->subsystem_device);
}
command = pci_read_config16(dev, PCI_COMMAND);
command |= dev->command;
/* v3 has
* command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); // Error check.
*/
printk(BIOS_DEBUG, "%s cmd <- %02x\n", dev_path(dev), command);
pci_write_config16(dev, PCI_COMMAND, command);
}
void pci_bus_enable_resources(struct device *dev)
{
u16 ctrl;
/*
* Enable I/O in command register if there is VGA card
* connected with (even it does not claim I/O resource).
*/
if (dev->link_list->bridge_ctrl & PCI_BRIDGE_CTL_VGA)
dev->command |= PCI_COMMAND_IO;
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
ctrl |= dev->link_list->bridge_ctrl;
ctrl |= (PCI_BRIDGE_CTL_PARITY + PCI_BRIDGE_CTL_SERR); /* Error check. */
printk(BIOS_DEBUG, "%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
pci_dev_enable_resources(dev);
}
void pci_bus_reset(struct bus *bus)
{
u16 ctl;
ctl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
ctl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
mdelay(10);
ctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
delay(1);
}
void pci_dev_set_subsystem(struct device *dev, unsigned vendor, unsigned device)
{
pci_write_config32(dev, PCI_SUBSYSTEM_VENDOR_ID,
((device & 0xffff) << 16) | (vendor & 0xffff));
}
#if CONFIG_VGA_ROM_RUN
static int should_run_oprom(struct device *dev)
{
static int should_run = -1;
if (should_run >= 0)
return should_run;
/* Don't run VGA option ROMs, unless we have to print
* something on the screen before the kernel is loaded.
*/
should_run = !IS_ENABLED(CONFIG_BOOTMODE_STRAPS) ||
developer_mode_enabled() || recovery_mode_enabled();
#if CONFIG_CHROMEOS
if (!should_run)
should_run = vboot_wants_oprom();
#endif
if (!should_run)
printk(BIOS_DEBUG, "Not running VGA Option ROM\n");
return should_run;
}
static int should_load_oprom(struct device *dev)
{
/* If S3_VGA_ROM_RUN is disabled, skip running VGA option
* ROMs when coming out of an S3 resume.
*/
if (!IS_ENABLED(CONFIG_S3_VGA_ROM_RUN) && acpi_is_wakeup_s3() &&
((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA))
return 0;
if (IS_ENABLED(CONFIG_ALWAYS_LOAD_OPROM))
return 1;
if (should_run_oprom(dev))
return 1;
return 0;
}
#endif /* CONFIG_VGA_ROM_RUN */
/** Default handler: only runs the relevant PCI BIOS. */
void pci_dev_init(struct device *dev)
{
#if CONFIG_VGA_ROM_RUN
struct rom_header *rom, *ram;
/* Only execute VGA ROMs. */
if (((dev->class >> 8) != PCI_CLASS_DISPLAY_VGA))
return;
if (!should_load_oprom(dev))
return;
rom = pci_rom_probe(dev);
if (rom == NULL)
return;
ram = pci_rom_load(dev, rom);
if (ram == NULL)
return;
if (!should_run_oprom(dev))
return;
run_bios(dev, (unsigned long)ram);
gfx_set_init_done(1);
printk(BIOS_DEBUG, "VGA Option ROM was run\n");
#endif /* CONFIG_VGA_ROM_RUN */
}
/** Default device operation for PCI devices */
static struct pci_operations pci_dev_ops_pci = {
.set_subsystem = pci_dev_set_subsystem,
};
struct device_operations default_pci_ops_dev = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = pci_dev_init,
.scan_bus = 0,
.enable = 0,
.ops_pci = &pci_dev_ops_pci,
};
/** Default device operations for PCI bridges */
static struct pci_operations pci_bus_ops_pci = {
.set_subsystem = 0,
};
struct device_operations default_pci_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.init = 0,
.scan_bus = pci_scan_bridge,
.enable = 0,
.reset_bus = pci_bus_reset,
.ops_pci = &pci_bus_ops_pci,
};
/**
* Detect the type of downstream bridge.
*
* This function is a heuristic to detect which type of bus is downstream
* of a PCI-to-PCI bridge. This functions by looking for various capability
* blocks to figure out the type of downstream bridge. PCI-X, PCI-E, and
* Hypertransport all seem to have appropriate capabilities.
*
* When only a PCI-Express capability is found the type is examined to see
* which type of bridge we have.
*
* @param dev Pointer to the device structure of the bridge.
* @return Appropriate bridge operations.
*/
static struct device_operations *get_pci_bridge_ops(device_t dev)
{
#if CONFIG_PCIX_PLUGIN_SUPPORT
unsigned int pcixpos;
pcixpos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (pcixpos) {
printk(BIOS_DEBUG, "%s subordinate bus PCI-X\n", dev_path(dev));
return &default_pcix_ops_bus;
}
#endif
#if CONFIG_HYPERTRANSPORT_PLUGIN_SUPPORT
unsigned int htpos = 0;
while ((htpos = pci_find_next_capability(dev, PCI_CAP_ID_HT, htpos))) {
u16 flags;
flags = pci_read_config16(dev, htpos + PCI_CAP_FLAGS);
if ((flags >> 13) == 1) {
/* Host or Secondary Interface */
printk(BIOS_DEBUG, "%s subordinate bus HT\n",
dev_path(dev));
return &default_ht_ops_bus;
}
}
#endif
#if CONFIG_PCIEXP_PLUGIN_SUPPORT
unsigned int pciexpos;
pciexpos = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (pciexpos) {
u16 flags;
flags = pci_read_config16(dev, pciexpos + PCI_EXP_FLAGS);
switch ((flags & PCI_EXP_FLAGS_TYPE) >> 4) {
case PCI_EXP_TYPE_ROOT_PORT:
case PCI_EXP_TYPE_UPSTREAM:
case PCI_EXP_TYPE_DOWNSTREAM:
printk(BIOS_DEBUG, "%s subordinate bus PCI Express\n",
dev_path(dev));
return &default_pciexp_ops_bus;
case PCI_EXP_TYPE_PCI_BRIDGE:
printk(BIOS_DEBUG, "%s subordinate PCI\n",
dev_path(dev));
return &default_pci_ops_bus;
default:
break;
}
}
#endif
return &default_pci_ops_bus;
}
/**
* Check if a device id matches a PCI driver entry.
*
* The driver entry can either point at a zero terminated array of acceptable
* device IDs, or include a single device ID.
*
* @param driver pointer to the PCI driver entry being checked
* @param device_id PCI device ID of the device being matched
*/
static int device_id_match(struct pci_driver *driver, unsigned short device_id)
{
if (driver->devices) {
unsigned short check_id;
const unsigned short *device_list = driver->devices;
while ((check_id = *device_list++) != 0)
if (check_id == device_id)
return 1;
}
return (driver->device == device_id);
}
/**
* Set up PCI device operation.
*
* Check if it already has a driver. If not, use find_device_operations(),
* or set to a default based on type.
*
* @param dev Pointer to the device whose pci_ops you want to set.
* @see pci_drivers
*/
static void set_pci_ops(struct device *dev)
{
struct pci_driver *driver;
if (dev->ops)
return;
/*
* Look through the list of setup drivers and find one for
* this PCI device.
*/
for (driver = &pci_drivers[0]; driver != &epci_drivers[0]; driver++) {
if ((driver->vendor == dev->vendor) &&
device_id_match(driver, dev->device)) {
dev->ops = (struct device_operations *)driver->ops;
printk(BIOS_SPEW, "%s [%04x/%04x] %sops\n",
dev_path(dev), driver->vendor, driver->device,
(driver->ops->scan_bus ? "bus " : ""));
return;
}
}
/* If I don't have a specific driver use the default operations. */
switch (dev->hdr_type & 0x7f) { /* Header type */
case PCI_HEADER_TYPE_NORMAL:
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = &default_pci_ops_dev;
break;
case PCI_HEADER_TYPE_BRIDGE:
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = get_pci_bridge_ops(dev);
break;
#if CONFIG_CARDBUS_PLUGIN_SUPPORT
case PCI_HEADER_TYPE_CARDBUS:
dev->ops = &default_cardbus_ops_bus;
break;
#endif
default:
bad:
if (dev->enabled) {
printk(BIOS_ERR, "%s [%04x/%04x/%06x] has unknown "
"header type %02x, ignoring.\n", dev_path(dev),
dev->vendor, dev->device,
dev->class >> 8, dev->hdr_type);
}
}
}
/**
* See if we have already allocated a device structure for a given devfn.
*
* Given a linked list of PCI device structures and a devfn number, find the
* device structure correspond to the devfn, if present. This function also
* removes the device structure from the linked list.
*
* @param list The device structure list.
* @param devfn A device/function number.
* @return Pointer to the device structure found or NULL if we have not
* allocated a device for this devfn yet.
*/
static struct device *pci_scan_get_dev(struct device **list, unsigned int devfn)
{
struct device *dev;
dev = 0;
for (; *list; list = &(*list)->sibling) {
if ((*list)->path.type != DEVICE_PATH_PCI) {
printk(BIOS_ERR, "child %s not a PCI device\n",
dev_path(*list));
continue;
}
if ((*list)->path.pci.devfn == devfn) {
/* Unlink from the list. */
dev = *list;
*list = (*list)->sibling;
dev->sibling = NULL;
break;
}
}
/*
* Just like alloc_dev() add the device to the list of devices on the
* bus. When the list of devices was formed we removed all of the
* parents children, and now we are interleaving static and dynamic
* devices in order on the bus.
*/
if (dev) {
struct device *child;
/* Find the last child of our parent. */
for (child = dev->bus->children; child && child->sibling;)
child = child->sibling;
/* Place the device on the list of children of its parent. */
if (child)
child->sibling = dev;
else
dev->bus->children = dev;
}
return dev;
}
/**
* Scan a PCI bus.
*
* Determine the existence of a given PCI device. Allocate a new struct device
* if dev==NULL was passed in and the device exists in hardware.
*
* @param dev Pointer to the dev structure.
* @param bus Pointer to the bus structure.
* @param devfn A device/function number to look at.
* @return The device structure for the device (if found), NULL otherwise.
*/
device_t pci_probe_dev(device_t dev, struct bus *bus, unsigned devfn)
{
u32 id, class;
u8 hdr_type;
/* Detect if a device is present. */
if (!dev) {
struct device dummy;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/*
* Have we found something? Some broken boards return 0 if a
* slot is empty, but the expected answer is 0xffffffff.
*/
if (id == 0xffffffff)
return NULL;
if ((id == 0x00000000) || (id == 0x0000ffff) ||
(id == 0xffff0000)) {
printk(BIOS_SPEW, "%s, bad id 0x%x\n",
dev_path(&dummy), id);
return NULL;
}
dev = alloc_dev(bus, &dummy.path);
} else {
/*
* Enable/disable the device. Once we have found the device-
* specific operations this operations we will disable the
* device with those as well.
*
* This is geared toward devices that have subfunctions
* that do not show up by default.
*
* If a device is a stuff option on the motherboard
* it may be absent and enable_dev() must cope.
*/
/* Run the magic enable sequence for the device. */
if (dev->chip_ops && dev->chip_ops->enable_dev)
dev->chip_ops->enable_dev(dev);
/* Now read the vendor and device ID. */
id = pci_read_config32(dev, PCI_VENDOR_ID);
/*
* If the device does not have a PCI ID disable it. Possibly
* this is because we have already disabled the device. But
* this also handles optional devices that may not always
* show up.
*/
/* If the chain is fully enumerated quit */
if ((id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000)) {
if (dev->enabled) {
printk(BIOS_INFO, "PCI: Static device %s not "
"found, disabling it.\n", dev_path(dev));
dev->enabled = 0;
}
return dev;
}
}
/* Read the rest of the PCI configuration information. */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
/* Store the interesting information in the device structure. */
dev->vendor = id & 0xffff;
dev->device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* Class code, the upper 3 bytes of PCI_CLASS_REVISION. */
dev->class = class >> 8;
/* Architectural/System devices always need to be bus masters. */
if ((dev->class >> 16) == PCI_BASE_CLASS_SYSTEM)
dev->command |= PCI_COMMAND_MASTER;
/*
* Look at the vendor and device ID, or at least the header type and
* class and figure out which set of configuration methods to use.
* Unless we already have some PCI ops.
*/
set_pci_ops(dev);
/* Now run the magic enable/disable sequence for the device. */
if (dev->ops && dev->ops->enable)
dev->ops->enable(dev);
/* Display the device. */
printk(BIOS_DEBUG, "%s [%04x/%04x] %s%s\n", dev_path(dev),
dev->vendor, dev->device, dev->enabled ? "enabled" : "disabled",
dev->ops ? "" : " No operations");
return dev;
}
/**
* Test for match between romstage and ramstage device instance.
*
* @param dev Pointer to the device structure.
* @param sdev Simple device model identifier, created with PCI_DEV().
* @return Non-zero if bus:dev.fn of device matches.
*/
unsigned int pci_match_simple_dev(device_t dev, pci_devfn_t sdev)
{
return dev->bus->secondary == PCI_DEV2SEGBUS(sdev) &&
dev->path.pci.devfn == PCI_DEV2DEVFN(sdev);
}
/**
* Scan a PCI bus.
*
* Determine the existence of devices and bridges on a PCI bus. If there are
* bridges on the bus, recursively scan the buses behind the bridges.
*
* This function is the default scan_bus() method for the root device
* 'dev_root'.
*
* @param bus Pointer to the bus structure.
* @param min_devfn Minimum devfn to look at in the scan, usually 0x00.
* @param max_devfn Maximum devfn to look at in the scan, usually 0xff.
* @param max Current bus number.
* @return The maximum bus number found, after scanning all subordinate busses.
*/
unsigned int pci_scan_bus(struct bus *bus, unsigned min_devfn,
unsigned max_devfn, unsigned int max)
{
unsigned int devfn;
struct device *old_devices;
struct device *child;
printk(BIOS_DEBUG, "PCI: pci_scan_bus for bus %02x\n", bus->secondary);
/* Maximum sane devfn is 0xFF. */
if (max_devfn > 0xff) {
printk(BIOS_ERR, "PCI: pci_scan_bus limits devfn %x - "
"devfn %x\n", min_devfn, max_devfn);
printk(BIOS_ERR, "PCI: pci_scan_bus upper limit too big. "
"Using 0xff.\n");
max_devfn=0xff;
}
old_devices = bus->children;
bus->children = NULL;
post_code(0x24);
/*
* Probe all devices/functions on this bus with some optimization for
* non-existence and single function devices.
*/
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
struct device *dev;
/* First thing setup the device structure. */
dev = pci_scan_get_dev(&old_devices, devfn);
/* See if a device is present and setup the device structure. */
dev = pci_probe_dev(dev, bus, devfn);
/*
* If this is not a multi function device, or the device is
* not present don't waste time probing another function.
* Skip to next device.
*/
if ((PCI_FUNC(devfn) == 0x00) && (!dev
|| (dev->enabled && ((dev->hdr_type & 0x80) != 0x80)))) {
devfn += 0x07;
}
}
post_code(0x25);
/*
* Warn if any leftover static devices are are found.
* There's probably a problem in devicetree.cb.
*/
if (old_devices) {
device_t left;
printk(BIOS_WARNING, "PCI: Left over static devices:\n");
for (left = old_devices; left; left = left->sibling)
printk(BIOS_WARNING, "%s\n", dev_path(left));
printk(BIOS_WARNING, "PCI: Check your devicetree.cb.\n");
}
/*
* For all children that implement scan_bus() (i.e. bridges)
* scan the bus behind that child.
*/
for (child = bus->children; child; child = child->sibling)
max = scan_bus(child, max);
/*
* We've scanned the bus and so we know all about what's on the other
* side of any bridges that may be on this bus plus any devices.
* Return how far we've got finding sub-buses.
*/
printk(BIOS_DEBUG, "PCI: pci_scan_bus returning with max=%03x\n", max);
post_code(0x55);
return max;
}
/**
* Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
* @param max The highest bus number assigned up to now.
* @param do_scan_bus TODO
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int do_pci_scan_bridge(struct device *dev, unsigned int max,
unsigned int (*do_scan_bus) (struct bus * bus,
unsigned min_devfn,
unsigned max_devfn,
unsigned int max))
{
struct bus *bus;
u32 buses;
u16 cr;
printk(BIOS_SPEW, "%s for %s\n", __func__, dev_path(dev));
if (dev->link_list == NULL) {
struct bus *link;
link = malloc(sizeof(*link));
if (link == NULL)
die("Couldn't allocate a link!\n");
memset(link, 0, sizeof(*link));
link->dev = dev;
dev->link_list = link;
}
bus = dev->link_list;
/*
* Set up the primary, secondary and subordinate bus numbers. We have
* no idea how many buses are behind this bridge yet, so we set the
* subordinate bus number to 0xff for the moment.
*/
bus->secondary = ++max;
bus->subordinate = 0xff;
/* Clear all status bits and turn off memory, I/O and master enables. */
cr = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, 0x0000);
pci_write_config16(dev, PCI_STATUS, 0xffff);
/*
* Read the existing primary/secondary/subordinate bus
* number configuration.
*/
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
/*
* Configure the bus numbers for this bridge: the configuration
* transactions will not be propagated by the bridge if it is not
* correctly configured.
*/
buses &= 0xff000000;
buses |= (((unsigned int)(dev->bus->secondary) << 0) |
((unsigned int)(bus->secondary) << 8) |
((unsigned int)(bus->subordinate) << 16));
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
/* Now we can scan all subordinate buses (those behind the bridge). */
max = do_scan_bus(bus, 0x00, 0xff, max);
/*
* We know the number of buses behind this bridge. Set the subordinate
* bus number to its real value.
*/
bus->subordinate = max;
buses = (buses & 0xff00ffff) | ((unsigned int)(bus->subordinate) << 16);
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
pci_write_config16(dev, PCI_COMMAND, cr);
printk(BIOS_SPEW, "%s returns max %d\n", __func__, max);
return max;
}
/**
* Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
* @param max The highest bus number assigned up to now.
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int pci_scan_bridge(struct device *dev, unsigned int max)
{
return do_pci_scan_bridge(dev, max, pci_scan_bus);
}
/**
* Scan a PCI domain.
*
* This function is the default scan_bus() method for PCI domains.
*
* @param dev Pointer to the domain.
* @param max The highest bus number assigned up to now.
* @return The maximum bus number found, after scanning all subordinate busses.
*/
unsigned int pci_domain_scan_bus(device_t dev, unsigned int max)
{
max = pci_scan_bus(dev->link_list, PCI_DEVFN(0, 0), 0xff, max);
return max;
}
/**
* Take an INT_PIN number (0, 1 - 4) and convert
* it to a string ("NO PIN", "PIN A" - "PIN D")
*
* @param pin PCI Interrupt Pin number (0, 1 - 4)
* @return A string corresponding to the pin number or "Invalid"
*/
const char *pin_to_str(int pin)
{
const char *str[5] = {
"NO PIN",
"PIN A",
"PIN B",
"PIN C",
"PIN D",
};
if (pin >= 0 && pin <= 4)
return str[pin];
else
return "Invalid PIN, not 0 - 4";
}
/**
* Get the PCI INT_PIN swizzle for a device defined as:
* pin_parent = (pin_child + devn_child) % 4 + 1
* where PIN A = 1 ... PIN_D = 4
*
* Given a PCI device structure 'dev', find the interrupt pin
* that will be triggered on its parent bridge device when
* generating an interrupt. For example: Device 1:3.2 may
* use INT_PIN A but will trigger PIN D on its parent bridge
* device. In this case, this function will return 4 (PIN D).
*
* @param dev A PCI device structure to swizzle interrupt pins for
* @param *parent_bridge The PCI device structure for the bridge
* device 'dev' is attached to
* @return The interrupt pin number (1 - 4) that 'dev' will
* trigger when generating an interrupt
*/
static int swizzle_irq_pins(device_t dev, device_t *parent_bridge)
{
device_t parent; /* Our current device's parent device */
device_t child; /* The child device of the parent */
uint8_t parent_bus = 0; /* Parent Bus number */
uint16_t parent_devfn = 0; /* Parent Device and Function number */
uint16_t child_devfn = 0; /* Child Device and Function number */
uint8_t swizzled_pin = 0; /* Pin swizzled across a bridge */
/* Start with PIN A = 0 ... D = 3 */
swizzled_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN) - 1;
/* While our current device has parent devices */
child = dev;
for (parent = child->bus->dev; parent; parent = parent->bus->dev) {
parent_bus = parent->bus->secondary;
parent_devfn = parent->path.pci.devfn;
child_devfn = child->path.pci.devfn;
/* Swizzle the INT_PIN for any bridges not on root bus */
swizzled_pin = (PCI_SLOT(child_devfn) + swizzled_pin) % 4;
printk(BIOS_SPEW, "\tWith INT_PIN swizzled to %s\n"
"\tAttached to bridge device %01X:%02Xh.%02Xh\n",
pin_to_str(swizzled_pin + 1), parent_bus,
PCI_SLOT(parent_devfn), PCI_FUNC(parent_devfn));
/* Continue until we find the root bus */
if (parent_bus > 0) {
/*
* We will go on to the next parent so this parent
* becomes the child
*/
child = parent;
continue;
} else {
/*
* Found the root bridge device,
* fill in the structure and exit
*/
*parent_bridge = parent;
break;
}
}
/* End with PIN A = 1 ... D = 4 */
return swizzled_pin + 1;
}
/**
* Given a device structure 'dev', find its interrupt pin
* and its parent bridge 'parent_bdg' device structure.
* If it is behind a bridge, it will return the interrupt
* pin number (1 - 4) of the parent bridge that the device
* interrupt pin has been swizzled to, otherwise it will
* return the interrupt pin that is programmed into the
* PCI config space of the target device. If 'dev' is
* behind a bridge, it will fill in 'parent_bdg' with the
* device structure of the bridge it is behind, otherwise
* it will copy 'dev' into 'parent_bdg'.
*
* @param dev A PCI device structure to get interrupt pins for.
* @param *parent_bdg The PCI device structure for the bridge
* device 'dev' is attached to.
* @return The interrupt pin number (1 - 4) that 'dev' will
* trigger when generating an interrupt.
* Errors: -1 is returned if the device is not enabled
* -2 is returned if a parent bridge could not be found.
*/
int get_pci_irq_pins(device_t dev, device_t *parent_bdg)
{
uint8_t bus = 0; /* The bus this device is on */
uint16_t devfn = 0; /* This device's device and function numbers */
uint8_t int_pin = 0; /* Interrupt pin used by the device */
uint8_t target_pin = 0; /* Interrupt pin we want to assign an IRQ to */
/* Make sure this device is enabled */
if (!(dev->enabled && (dev->path.type == DEVICE_PATH_PCI)))
return -1;
bus = dev->bus->secondary;
devfn = dev->path.pci.devfn;
/* Get and validate the interrupt pin used. Only 1-4 are allowed */
int_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (int_pin < 1 || int_pin > 4)
return -1;
printk(BIOS_SPEW, "PCI IRQ: Found device %01X:%02X.%02X using %s\n",
bus, PCI_SLOT(devfn), PCI_FUNC(devfn), pin_to_str(int_pin));
/* If this device is on a bridge, swizzle its INT_PIN */
if (bus) {
/* Swizzle its INT_PINs */
target_pin = swizzle_irq_pins(dev, parent_bdg);
/* Make sure the swizzle returned valid structures */
if (parent_bdg == NULL) {
printk(BIOS_WARNING,
"Warning: Could not find parent bridge for this device!\n");
return -2;
}
} else { /* Device is not behind a bridge */
target_pin = int_pin; /* Return its own interrupt pin */
*parent_bdg = dev; /* Return its own structure */
}
/* Target pin is the interrupt pin we want to assign an IRQ to */
return target_pin;
}
#if CONFIG_PC80_SYSTEM
/**
* Assign IRQ numbers.
*
* This function assigns IRQs for all functions contained within the indicated
* device address. If the device does not exist or does not require interrupts
* then this function has no effect.
*
* This function should be called for each PCI slot in your system.
*
* @param bus Pointer to the bus structure.
* @param slot TODO
* @param pIntAtoD An array of IRQ #s that are assigned to PINTA through PINTD
* of this slot. The particular IRQ #s that are passed in depend on the
* routing inside your southbridge and on your board.
*/
void pci_assign_irqs(unsigned bus, unsigned slot,
const unsigned char pIntAtoD[4])
{
unsigned int funct;
device_t pdev;
u8 line, irq;
/* Each slot may contain up to eight functions. */
for (funct = 0; funct < 8; funct++) {
pdev = dev_find_slot(bus, (slot << 3) + funct);
if (!pdev)
continue;
line = pci_read_config8(pdev, PCI_INTERRUPT_PIN);
/* PCI spec says all values except 1..4 are reserved. */
if ((line < 1) || (line > 4))
continue;
irq = pIntAtoD[line - 1];
printk(BIOS_DEBUG, "Assigning IRQ %d to %d:%x.%d\n",
irq, bus, slot, funct);
pci_write_config8(pdev, PCI_INTERRUPT_LINE,
pIntAtoD[line - 1]);
#ifdef PARANOID_IRQ_ASSIGNMENTS
irq = pci_read_config8(pdev, PCI_INTERRUPT_LINE);
printk(BIOS_DEBUG, " Readback = %d\n", irq);
#endif
#if CONFIG_PC80_SYSTEM
/* Change to level triggered. */
i8259_configure_irq_trigger(pIntAtoD[line - 1],
IRQ_LEVEL_TRIGGERED);
#endif
}
}
#endif