coreboot-kgpe-d16/src/soc/rockchip/common/edp.c
Lin Huang b9a7877568 rockchip/*: refactor edp driver
rk3288 and rk3399 use same edp IP, move soc specific setting to
soc/display, and move edp driver to common, so rk3399 can reuse
this driver.

BUG=chrome-os-partner:52460
BRANCH=none
TEST= test on jerry and mighty, edp panel can work

Change-Id: Ie3f3e8468b2323994af8a002413bf93b3edc8026
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: 64bb4b2c7ed373d9730c9aa0b0896a32164fc7ee
Original-Change-Id: Ie5c15a81849a02d1c0457e36ed00fbe2d47961fb
Original-Signed-off-by: Lin Huang <hl@rock-chips.com>
Original-Reviewed-on: https://chromium-review.googlesource.com/340504
Original-Commit-Ready: Vadim Bendebury <vbendeb@chromium.org>
Original-Tested-by: Vadim Bendebury <vbendeb@chromium.org>
Original-Reviewed-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/14725
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2016-05-09 08:48:35 +02:00

1016 lines
24 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright 2014 Rockchip Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/io.h>
#include <assert.h>
#include <console/console.h>
#include <delay.h>
#include <device/device.h>
#include <edid.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <soc/addressmap.h>
#include <soc/display.h>
#include <soc/edp.h>
#include <timer.h>
#define edp_debug(x...) do {if (0) printk(BIOS_DEBUG, x); } while (0)
static struct rk_edp rk_edp;
#define MAX_CR_LOOP 5
#define MAX_EQ_LOOP 5
#define DP_LINK_STATUS_SIZE 6
static const char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static const char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
#define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
#define DP_PRE_EMPHASIS_MAX DP_TRAIN_PRE_EMPHASIS_9_5
static void rk_edp_init_refclk(struct rk_edp *edp)
{
write32(&edp->regs->analog_ctl_2, SEL_24M);
write32(&edp->regs->pll_reg_1, REF_CLK_24M);
/*initial value*/
write32(&edp->regs->pll_reg_2, LDO_OUTPUT_V_SEL_145 | KVCO_DEFALUT |
CHG_PUMP_CUR_SEL_5US | V2L_CUR_SEL_1MA);
write32(&edp->regs->pll_reg_3, LOCK_DET_CNT_SEL_256 |
LOOP_FILTER_RESET | PALL_SSC_RESET | LOCK_DET_BYPASS |
PLL_LOCK_DET_MODE | PLL_LOCK_DET_FORCE);
write32(&edp->regs->pll_reg_5, REGULATOR_V_SEL_950MV | STANDBY_CUR_SEL |
CHG_PUMP_INOUT_CTRL_1200MV | CHG_PUMP_INPUT_CTRL_OP);
write32(&edp->regs->ssc_reg, SSC_OFFSET | SSC_MODE | SSC_DEPTH);
write32(&edp->regs->tx_common, TX_SWING_PRE_EMP_MODE |
PRE_DRIVER_PW_CTRL1 | LP_MODE_CLK_REGULATOR |
RESISTOR_MSB_CTRL | RESISTOR_CTRL);
write32(&edp->regs->dp_aux, DP_AUX_COMMON_MODE |
DP_AUX_EN | AUX_TERM_50OHM);
write32(&edp->regs->dp_bias, DP_BG_OUT_SEL | DP_DB_CUR_CTRL |
DP_BG_SEL | DP_RESISTOR_TUNE_BG);
write32(&edp->regs->dp_reserv2,
CH1_CH3_SWING_EMP_CTRL | CH0_CH2_SWING_EMP_CTRL);
}
static void rk_edp_init_interrupt(struct rk_edp *edp)
{
/* Set interrupt pin assertion polarity as high */
write32(&edp->regs->int_ctl, INT_POL);
/* Clear pending registers */
write32(&edp->regs->common_int_sta_1, 0xff);
write32(&edp->regs->common_int_sta_2, 0x4f);
write32(&edp->regs->common_int_sta_3, 0xff);
write32(&edp->regs->common_int_sta_4, 0x27);
write32(&edp->regs->dp_int_sta, 0x7f);
/* 0:mask,1: unmask */
write32(&edp->regs->common_int_mask_1, 0x00);
write32(&edp->regs->common_int_mask_2, 0x00);
write32(&edp->regs->common_int_mask_3, 0x00);
write32(&edp->regs->common_int_mask_4, 0x00);
write32(&edp->regs->int_sta_mask, 0x00);
}
static void rk_edp_enable_sw_function(struct rk_edp *edp)
{
clrbits_le32(&edp->regs->func_en_1, SW_FUNC_EN_N);
}
static int rk_edp_get_pll_lock_status(struct rk_edp *edp)
{
u32 val;
val = read32(&edp->regs->dp_debug_ctl);
return (val & PLL_LOCK) ? DP_PLL_LOCKED : DP_PLL_UNLOCKED;
}
static void rk_edp_init_analog_func(struct rk_edp *edp)
{
struct stopwatch sw;
write32(&edp->regs->dp_pd, 0x00);
write32(&edp->regs->common_int_sta_1, PLL_LOCK_CHG);
clrbits_le32(&edp->regs->dp_debug_ctl, F_PLL_LOCK | PLL_LOCK_CTRL);
stopwatch_init_msecs_expire(&sw, PLL_LOCK_TIMEOUT);
while (rk_edp_get_pll_lock_status(edp) == DP_PLL_UNLOCKED) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "%s: PLL is not locked\n", __func__);
return;
}
}
/* Enable Serdes FIFO function and Link symbol clock domain module */
clrbits_le32(&edp->regs->func_en_2, SERDES_FIFO_FUNC_EN_N |
LS_CLK_DOMAIN_FUNC_EN_N | AUX_FUNC_EN_N |
SSC_FUNC_EN_N);
}
static void rk_edp_init_aux(struct rk_edp *edp)
{
/* Clear inerrupts related to AUX channel */
write32(&edp->regs->dp_int_sta, AUX_FUNC_EN_N);
/* Disable AUX channel module */
setbits_le32(&edp->regs->func_en_2, AUX_FUNC_EN_N);
/* Receive AUX Channel DEFER commands equal to DEFFER_COUNT*64 */
write32(&edp->regs->aux_ch_defer_dtl, DEFER_CTRL_EN | DEFER_COUNT(1));
/* Enable AUX channel module */
clrbits_le32(&edp->regs->func_en_2, AUX_FUNC_EN_N);
}
static int rk_edp_aux_enable(struct rk_edp *edp)
{
struct stopwatch sw;
setbits_le32(&edp->regs->aux_ch_ctl_2, AUX_EN);
stopwatch_init_msecs_expire(&sw, 20);
do {
if (!(read32(&edp->regs->aux_ch_ctl_2) & AUX_EN))
return 0;
} while (!stopwatch_expired(&sw));
return -1;
}
static int rk_edp_is_aux_reply(struct rk_edp *edp)
{
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, 10);
while (!(read32(&edp->regs->dp_int_sta) & RPLY_RECEIV)) {
if (stopwatch_expired(&sw))
return -1;
}
write32(&edp->regs->dp_int_sta, RPLY_RECEIV);
return 0;
}
static int rk_edp_start_aux_transaction(struct rk_edp *edp)
{
int val;
/* Enable AUX CH operation */
if (rk_edp_aux_enable(edp)) {
edp_debug("AUX CH enable timeout!\n");
return -1;
}
/* Is AUX CH command reply received? */
if (rk_edp_is_aux_reply(edp)) {
edp_debug("AUX CH command reply failed!\n");
return -1;
}
/* Clear interrupt source for AUX CH access error */
val = read32(&edp->regs->dp_int_sta);
if (val & AUX_ERR) {
write32(&edp->regs->dp_int_sta, AUX_ERR);
return -1;
}
/* Check AUX CH error access status */
val = read32(&edp->regs->dp_int_sta);
if ((val & AUX_STATUS_MASK) != 0) {
edp_debug("AUX CH error happens: %d\n\n",
val & AUX_STATUS_MASK);
return -1;
}
return 0;
}
static int rk_edp_dpcd_transfer(struct rk_edp *edp,
unsigned int val_addr, u8 *data,
unsigned int length,
enum dpcd_request request)
{
int val;
int i, try_times;
int retval = 0;
u32 len = 0;
while (length) {
len = MIN(length, 16);
for (try_times = 0; try_times < 10; try_times++) {
/* Clear AUX CH data buffer */
val = BUF_CLR;
write32(&edp->regs->buf_data_ctl, val);
/* Select DPCD device address */
val = AUX_ADDR_7_0(val_addr);
write32(&edp->regs->aux_addr_7_0, val);
val = AUX_ADDR_15_8(val_addr);
write32(&edp->regs->aux_addr_15_8, val);
val = AUX_ADDR_19_16(val_addr);
write32(&edp->regs->aux_addr_19_16, val);
/*
* Set DisplayPort transaction and read 1 byte
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
if (request == DPCD_WRITE) {
val = AUX_LENGTH(len) |
AUX_TX_COMM_DP_TRANSACTION |
AUX_TX_COMM_WRITE;
for (i = 0; i < len; i++)
write32(&edp->regs->buf_data[i],
*data++);
} else
val = AUX_LENGTH(len) |
AUX_TX_COMM_DP_TRANSACTION |
AUX_TX_COMM_READ;
write32(&edp->regs->aux_ch_ctl_1, val);
/* Start AUX transaction */
retval = rk_edp_start_aux_transaction(edp);
if (retval == 0)
break;
else
printk(BIOS_WARNING, "read dpcd Aux Transaction fail!\n");
}
if (retval)
return -1;
if (request == DPCD_READ) {
for (i = 0; i < len; i++)
*data++ = (u8)read32(&edp->regs->buf_data[i]);
}
length -= len;
val_addr += 16;
}
return 0;
}
static int rk_edp_dpcd_read(struct rk_edp *edp, u32 addr,
u8 *values, size_t size)
{
return rk_edp_dpcd_transfer(edp, addr, values, size, DPCD_READ);
}
static int rk_edp_dpcd_write(struct rk_edp *edp, u32 addr,
u8 *values, size_t size)
{
return rk_edp_dpcd_transfer(edp, addr, values, size, DPCD_WRITE);
}
static int rk_edp_link_power_up(struct rk_edp *edp)
{
u8 value;
int err;
/* DP_SET_POWER register is only available on DPCD v1.1 and later */
if (edp->link_train.revision < 0x11)
return 0;
err = rk_edp_dpcd_read(edp, DPCD_LINK_POWER_STATE, &value, 1);
if (err < 0)
return err;
value &= ~DP_SET_POWER_MASK;
value |= DP_SET_POWER_D0;
err = rk_edp_dpcd_write(edp, DPCD_LINK_POWER_STATE, &value, 1);
if (err < 0)
return err;
/*
* According to the DP 1.1 specification, a "Sink Device must exit the
* power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
* Control Field" (register 0x600).
*/
mdelay(1);
return 0;
}
static int rk_edp_link_configure(struct rk_edp *edp)
{
u8 values[2];
values[0] = edp->link_train.link_rate;
values[1] = edp->link_train.lane_count;
return rk_edp_dpcd_write(edp, DPCD_LINK_BW_SET, values, sizeof(values));
}
static void rk_edp_set_link_training(struct rk_edp *edp,
const u8 *training_values)
{
int i;
for (i = 0; i < edp->link_train.lane_count; i++)
write32(&edp->regs->ln_link_trn_ctl[i], training_values[i]);
}
static u8 edp_link_status(const u8 *link_status, int r)
{
return link_status[r - DPCD_LANE0_1_STATUS];
}
static int rk_edp_dpcd_read_link_status(struct rk_edp *edp, u8 *link_status)
{
return rk_edp_dpcd_read(edp, DPCD_LANE0_1_STATUS, link_status,
DP_LINK_STATUS_SIZE);
}
static u8 edp_get_lane_status(const u8 *link_status, int lane)
{
int i = DPCD_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
u8 l = edp_link_status(link_status, i);
return (l >> s) & 0xf;
}
static int rk_edp_clock_recovery_ok(const u8 *link_status, int lane_count)
{
int lane;
u8 lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = edp_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return 0;
}
return 1;
}
static int rk_edp_channel_eq_ok(const u8 *link_status, int lane_count)
{
u8 lane_align;
u8 lane_status;
int lane;
lane_align = edp_link_status(link_status,
DPCD_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return 0;
for (lane = 0; lane < lane_count; lane++) {
lane_status = edp_get_lane_status(link_status, lane);
if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
return 0;
}
return 1;
}
static u8
rk_edp_get_adjust_request_voltage(const u8 *link_status, int lane)
{
int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
u8 l = edp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static u8 rk_edp_get_adjust_request_pre_emphasis(const u8 *link_status,
int lane)
{
int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
u8 l = edp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
static void edp_get_adjust_train(const u8 *link_status, int lane_count,
u8 train_set[])
{
u8 v = 0;
u8 p = 0;
int lane;
for (lane = 0; lane < lane_count; lane++) {
u8 this_v =
rk_edp_get_adjust_request_voltage(link_status, lane);
u8 this_p =
rk_edp_get_adjust_request_pre_emphasis(link_status,
lane);
printk(BIOS_DEBUG, "requested signal parameters: lane %d "
"voltage %s pre_emph %s\n", lane,
voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= DP_VOLTAGE_MAX)
v |= DP_TRAIN_MAX_SWING_REACHED;
if (p >= DP_PRE_EMPHASIS_MAX)
p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
printk(BIOS_DEBUG, "using signal parameters: voltage %s pre_emph %s\n",
voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK)
>> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK)
>> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
for (lane = 0; lane < 4; lane++)
train_set[lane] = v | p;
}
static int rk_edp_link_train_cr(struct rk_edp *edp)
{
int clock_recovery;
u8 voltage, tries = 0;
u8 status[DP_LINK_STATUS_SIZE];
int i;
u8 value;
value = DP_TRAINING_PATTERN_1;
write32(&edp->regs->dp_training_ptn_set, value);
rk_edp_dpcd_write(edp, DPCD_TRAINING_PATTERN_SET, &value, 1);
memset(edp->train_set, 0, 4);
/* clock recovery loop */
clock_recovery = 0;
tries = 0;
voltage = 0xff;
while (1) {
rk_edp_set_link_training(edp, edp->train_set);
rk_edp_dpcd_write(edp, DPCD_TRAINING_LANE0_SET,
edp->train_set,
edp->link_train.lane_count);
mdelay(1);
if (rk_edp_dpcd_read_link_status(edp, status) < 0) {
printk(BIOS_ERR, "displayport link status failed\n");
break;
}
if (rk_edp_clock_recovery_ok(status,
edp->link_train.lane_count)) {
clock_recovery = 1;
break;
}
for (i = 0; i < edp->link_train.lane_count; i++) {
if ((edp->train_set[i] &
DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
}
if (i == edp->link_train.lane_count) {
printk(BIOS_ERR, "clock recovery reached max voltage\n");
break;
}
if ((edp->train_set[0] &
DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == MAX_CR_LOOP) {
printk(BIOS_ERR, "clock recovery tried 5 times\n");
break;
}
} else
tries = 0;
voltage = edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new train_set as requested by sink */
edp_get_adjust_train(status, edp->link_train.lane_count,
edp->train_set);
}
if (!clock_recovery) {
printk(BIOS_ERR, "clock recovery failed\n");
return -1;
} else {
printk(BIOS_DEBUG, "clock recovery at voltage %d pre-emphasis %d\n",
edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT);
return 0;
}
}
static int rk_edp_link_train_ce(struct rk_edp *edp)
{
int channel_eq;
u8 value, tries = 0;
u8 status[DP_LINK_STATUS_SIZE];
value = DP_TRAINING_PATTERN_2;
write32(&edp->regs->dp_training_ptn_set, value);
rk_edp_dpcd_write(edp, DPCD_TRAINING_PATTERN_SET, &value, 1);
/* channel equalization loop */
channel_eq = 0;
for (tries = 0; tries < 5; tries++) {
rk_edp_set_link_training(edp, edp->train_set);
rk_edp_dpcd_write(edp, DPCD_TRAINING_LANE0_SET,
edp->train_set,
edp->link_train.lane_count);
udelay(400);
if (rk_edp_dpcd_read_link_status(edp, status) < 0) {
printk(BIOS_ERR, "displayport link status failed\n");
return -1;
}
if (rk_edp_channel_eq_ok(status,
edp->link_train.lane_count)) {
channel_eq = 1;
break;
}
edp_get_adjust_train(status,
edp->link_train.lane_count,
edp->train_set);
}
if (!channel_eq) {
printk(BIOS_ERR, "channel eq failed\n");
return -1;
} else {
printk(BIOS_DEBUG, "channel eq at voltage %d pre-emphasis %d\n",
edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK)
>> DP_TRAIN_PRE_EMPHASIS_SHIFT);
return 0;
}
}
static int rk_edp_init_training(struct rk_edp *edp)
{
u8 values[3];
int err;
err = rk_edp_dpcd_read(edp, DPCD_DPCD_REV, values, sizeof(values));
if (err < 0)
return err;
edp->link_train.revision = values[0];
edp->link_train.link_rate = values[1];
edp->link_train.lane_count = values[2] & DP_MAX_LANE_COUNT_MASK;
edp_debug("max link rate:%d.%dGps max number of lanes:%d\n",
edp->link_train.link_rate * 27 / 100,
edp->link_train.link_rate * 27 % 100,
edp->link_train.lane_count);
if ((edp->link_train.link_rate != LINK_RATE_1_62GBPS) &&
(edp->link_train.link_rate != LINK_RATE_2_70GBPS)) {
edp_debug("Rx Max Link Rate is abnormal :%x\n",
edp->link_train.link_rate);
return -1;
}
if (edp->link_train.lane_count == 0) {
edp_debug("Rx Max Lane count is abnormal :%x\n",
edp->link_train.lane_count);
return -1;
}
rk_edp_link_power_up(edp);
rk_edp_link_configure(edp);
return 0;
}
static int rk_edp_hw_link_training(struct rk_edp *edp)
{
u32 val;
struct stopwatch sw;
/* Set link rate and count as you want to establish*/
write32(&edp->regs->link_bw_set, edp->link_train.link_rate);
write32(&edp->regs->lane_count_set, edp->link_train.lane_count);
if (rk_edp_link_train_cr(edp))
return -1;
if (rk_edp_link_train_ce(edp))
return -1;
write32(&edp->regs->dp_hw_link_training, HW_LT_EN);
stopwatch_init_msecs_expire(&sw, 10);
do {
val = read32(&edp->regs->dp_hw_link_training);
if (!(val & HW_LT_EN))
break;
} while (!stopwatch_expired(&sw));
if (val & HW_LT_ERR_CODE_MASK) {
printk(BIOS_ERR, "edp hw link training error: %d\n",
val >> HW_LT_ERR_CODE_SHIFT);
return -1;
}
return 0;
}
static int rk_edp_select_i2c_device(struct rk_edp *edp,
unsigned int device_addr,
unsigned int val_addr)
{
u32 val;
int retval;
/* Set EDID device address */
val = device_addr;
write32(&edp->regs->aux_addr_7_0, val);
write32(&edp->regs->aux_addr_15_8, 0x0);
write32(&edp->regs->aux_addr_19_16, 0x0);
/* Set offset from base address of EDID device */
write32(&edp->regs->buf_data[0], val_addr);
/*
* Set I2C transaction and write address
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
val = AUX_TX_COMM_I2C_TRANSACTION | AUX_TX_COMM_MOT |
AUX_TX_COMM_WRITE;
write32(&edp->regs->aux_ch_ctl_1, val);
/* Start AUX transaction */
retval = rk_edp_start_aux_transaction(edp);
if (retval != 0)
edp_debug("select_i2c_device Aux Transaction fail!\n");
return retval;
}
static int rk_edp_read_bytes_from_i2c(struct rk_edp *edp,
unsigned int device_addr,
unsigned int val_addr,
unsigned int count,
u8 edid[])
{
u32 val;
unsigned int i, j;
unsigned int cur_data_idx;
unsigned int defer = 0;
int retval = 0;
for (i = 0; i < count; i += 16) {
for (j = 0; j < 10; j++) { /* try 10 times */
/* Clear AUX CH data buffer */
val = BUF_CLR;
write32(&edp->regs->buf_data_ctl, val);
/* Set normal AUX CH command */
clrbits_le32(&edp->regs->aux_ch_ctl_2, ADDR_ONLY);
/*
* If Rx sends defer, Tx sends only reads
* request without sending address
*/
if (!defer)
retval = rk_edp_select_i2c_device(edp,
device_addr, val_addr + i);
else
defer = 0;
/*
* Set I2C transaction and write data
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
val = AUX_LENGTH(16) | AUX_TX_COMM_I2C_TRANSACTION |
AUX_TX_COMM_READ;
write32(&edp->regs->aux_ch_ctl_1, val);
/* Start AUX transaction */
retval = rk_edp_start_aux_transaction(edp);
if (retval == 0)
break;
else {
edp_debug("Aux Transaction fail!\n");
continue;
}
/* Check if Rx sends defer */
val = read32(&edp->regs->aux_rx_comm);
if (val == AUX_RX_COMM_AUX_DEFER ||
val == AUX_RX_COMM_I2C_DEFER) {
edp_debug("Defer: %d\n\n", val);
defer = 1;
}
}
if (retval)
return -1;
for (cur_data_idx = 0; cur_data_idx < 16; cur_data_idx++) {
val = read32(&edp->regs->buf_data[cur_data_idx]);
edid[i + cur_data_idx] = (u8)val;
}
}
return retval;
}
static int rk_edp_read_edid(struct rk_edp *edp, struct edid *edid)
{
u8 buf[EDID_LENGTH * 2];
u32 edid_size = EDID_LENGTH;
int retval;
/* Read EDID data */
retval = rk_edp_read_bytes_from_i2c(edp, EDID_ADDR,
EDID_HEADER, EDID_LENGTH,
&buf[EDID_HEADER]);
if (retval != 0) {
printk(BIOS_ERR, "EDID Read failed!\n");
return -1;
}
/* check if edid have extension flag, and read additional EDID data */
if (buf[EDID_EXTENSION_FLAG]) {
edid_size += EDID_LENGTH;
retval = rk_edp_read_bytes_from_i2c(edp, EDID_ADDR,
EDID_LENGTH, EDID_LENGTH,
&buf[EDID_LENGTH]);
if (retval != 0) {
printk(BIOS_ERR, "EDID Read failed!\n");
return -1;
}
}
if (decode_edid(buf, edid_size, edid)) {
printk(BIOS_ERR, "%s: Failed to decode EDID.\n",
__func__);
return -1;
}
edp_debug("EDID Read success!\n");
return 0;
}
static int rk_edp_set_link_train(struct rk_edp *edp)
{
int retval;
if (rk_edp_init_training(edp)) {
printk(BIOS_ERR, "DP LT init failed!\n");
return -1;
}
retval = rk_edp_hw_link_training(edp);
return retval;
}
static void rk_edp_init_video(struct rk_edp *edp)
{
u32 val;
val = VSYNC_DET | VID_FORMAT_CHG | VID_CLK_CHG;
write32(&edp->regs->common_int_sta_1, val);
val = CHA_CRI(4) | CHA_CTRL;
write32(&edp->regs->sys_ctl_2, val);
val = VID_HRES_TH(2) | VID_VRES_TH(0);
write32(&edp->regs->video_ctl_8, val);
}
static void rk_edp_config_video_slave_mode(struct rk_edp *edp)
{
clrbits_le32(&edp->regs->func_en_1,
VID_FIFO_FUNC_EN_N | VID_CAP_FUNC_EN_N);
}
static void rk_edp_set_video_cr_mn(struct rk_edp *edp,
enum clock_recovery_m_value_type type,
u32 m_value,
u32 n_value)
{
u32 val;
if (type == REGISTER_M) {
setbits_le32(&edp->regs->sys_ctl_4, FIX_M_VID);
val = m_value & 0xff;
write32(&edp->regs->m_vid_0, val);
val = (m_value >> 8) & 0xff;
write32(&edp->regs->m_vid_1, val);
val = (m_value >> 16) & 0xff;
write32(&edp->regs->m_vid_2, val);
val = n_value & 0xff;
write32(&edp->regs->n_vid_0, val);
val = (n_value >> 8) & 0xff;
write32(&edp->regs->n_vid_1, val);
val = (n_value >> 16) & 0xff;
write32(&edp->regs->n_vid_2, val);
} else {
clrbits_le32(&edp->regs->sys_ctl_4, FIX_M_VID);
write32(&edp->regs->n_vid_0, 0x00);
write32(&edp->regs->n_vid_1, 0x80);
write32(&edp->regs->n_vid_2, 0x00);
}
}
static int rk_edp_is_video_stream_clock_on(struct rk_edp *edp)
{
u32 val;
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, 100);
do {
val = read32(&edp->regs->sys_ctl_1);
/*must write value to update DET_STA bit status*/
write32(&edp->regs->sys_ctl_1, val);
val = read32(&edp->regs->sys_ctl_1);
if (!(val & DET_STA))
continue;
val = read32(&edp->regs->sys_ctl_2);
/*must write value to update CHA_STA bit status*/
write32(&edp->regs->sys_ctl_2, val);
val = read32(&edp->regs->sys_ctl_2);
if (!(val & CHA_STA))
return 0;
} while (!stopwatch_expired(&sw));
return -1;
}
static int rk_edp_is_video_stream_on(struct rk_edp *edp)
{
u32 val;
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, 100);
do {
val = read32(&edp->regs->sys_ctl_3);
/*must write value to update STRM_VALID bit status*/
write32(&edp->regs->sys_ctl_3, val);
val = read32(&edp->regs->sys_ctl_3);
if (!(val & STRM_VALID))
return 0;
} while (!stopwatch_expired(&sw));
return -1;
}
static int rk_edp_config_video(struct rk_edp *edp)
{
rk_edp_config_video_slave_mode(edp);
if (rk_edp_get_pll_lock_status(edp) == DP_PLL_UNLOCKED) {
edp_debug("PLL is not locked yet.\n");
return -1;
}
if (rk_edp_is_video_stream_clock_on(edp))
return -1;
/* Set to use the register calculated M/N video */
rk_edp_set_video_cr_mn(edp, CALCULATED_M, 0, 0);
/* For video bist, Video timing must be generated by register */
clrbits_le32(&edp->regs->video_ctl_10, F_SEL);
/* Disable video mute */
clrbits_le32(&edp->regs->video_ctl_1, VIDEO_MUTE);
/* Enable video at next frame */
setbits_le32(&edp->regs->video_ctl_1, VIDEO_EN);
return rk_edp_is_video_stream_on(edp);
}
static void rockchip_edp_force_hpd(struct rk_edp *edp)
{
u32 val;
val = read32(&edp->regs->sys_ctl_3);
val |= (F_HPD | HPD_CTRL);
write32(&edp->regs->sys_ctl_3, val);
}
static int rockchip_edp_get_plug_in_status(struct rk_edp *edp)
{
u32 val;
val = read32(&edp->regs->sys_ctl_3);
if (val & HPD_STATUS)
return 1;
return 0;
}
/*
* support edp HPD function
* some hardware version do not support edp hdp,
* we use 360ms to try to get the hpd single now,
* if we can not get edp hpd single, it will delay 360ms,
* also meet the edp power timing request, to compatible
* all of the hardware version
*/
static void rk_edp_wait_hpd(struct rk_edp *edp)
{
struct stopwatch hpd;
stopwatch_init_msecs_expire(&hpd, 360);
do {
if (rockchip_edp_get_plug_in_status(edp))
return;
udelay(100);
} while (!stopwatch_expired(&hpd));
printk(BIOS_DEBUG, "do not get hpd single, force hpd\n");
rockchip_edp_force_hpd(edp);
}
int rk_edp_get_edid(struct edid *edid)
{
int i;
int retval;
/* Read EDID */
for (i = 0; i < 3; i++) {
retval = rk_edp_read_edid(&rk_edp, edid);
if (retval == 0)
break;
}
return retval;
}
int rk_edp_enable(void)
{
int ret = 0;
if (rk_edp_set_link_train(&rk_edp)) {
printk(BIOS_ERR, "link train failed!\n");
return -1;
}
rk_edp_init_video(&rk_edp);
ret = rk_edp_config_video(&rk_edp);
if (ret)
printk(BIOS_ERR, "config video failed\n");
return ret;
}
void rk_edp_init(void)
{
rk_edp.regs = (struct rk_edp_regs *)EDP_BASE;
rk_edp_wait_hpd(&rk_edp);
rk_edp_init_refclk(&rk_edp);
rk_edp_init_interrupt(&rk_edp);
rk_edp_enable_sw_function(&rk_edp);
rk_edp_init_analog_func(&rk_edp);
rk_edp_init_aux(&rk_edp);
}