coreboot-kgpe-d16/src/northbridge/via/cx700/raminit.c
Stefan Reinauer aeba92ab5b Add VIA CX700 support, plus VIA vt8454c reference board support.
Signed-off-by: Stefan Reinauer <stepan@coresystems.de>
Acked-by: Uwe Hermann <uwe@hermann-uwe.de>
Acked-by: Ronald G. Minnich <rminnich@gmail.com>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@4126 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2009-04-17 08:37:18 +00:00

1480 lines
38 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007-2009 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <types.h>
#include <spd.h>
#include <spd_ddr2.h>
#include <sdram_mode.h>
#include <delay.h>
#include "cx700_registers.h"
// #define DEBUG_RAM_SETUP 1
/* Debugging macros. */
#if defined(DEBUG_RAM_SETUP)
#define PRINTK_DEBUG(x...) printk_debug(x)
#else
#define PRINTK_DEBUG(x...)
#endif
#define RAM_COMMAND_NORMAL 0x0
#define RAM_COMMAND_NOP 0x1
#define RAM_COMMAND_PRECHARGE 0x2
#define RAM_COMMAND_MRS 0x3
#define RAM_COMMAND_CBR 0x4
#define HOSTCTRL PCI_DEV(0, 0, 2)
#define MEMCTRL PCI_DEV(0, 0, 3)
#define DDRII_666 0x5
#define DDRII_533 0x4
#define DDRII_400 0x3
#define DDRII_333 0x2
#define DDRII_266 0x1
#define DDRII_200 0x0
#define OHM_150 1
#ifdef MEM_WIDTH_32BIT_MODE
#define SDRAM1X_RA_14 30
#define SDRAM1X_RA_13 29
#define SDRAM1X_RA_12 28
#define SDRAM1X_RA_12_8bk 26
#define SDRAM1X_CA_12 15
#define SDRAM1X_CA_11 14
#define SDRAM1X_CA_09 11
#define SDRAM1X_CA_09_8bk 11
#define SDRAM1X_BA1 13
#define SDRAM1X_BA2_8bk 14
#define SDRAM1X_BA1_8bk 13
#else
#define SDRAM1X_RA_14 31
#define SDRAM1X_RA_13 30
#define SDRAM1X_RA_12 29
#define SDRAM1X_RA_12_8bk 27
#define SDRAM1X_CA_12 16
#define SDRAM1X_CA_11 15
#define SDRAM1X_CA_09 12
#define SDRAM1X_CA_09_8bk 12
#define SDRAM1X_BA1 14
#define SDRAM1X_BA2_8bk 15
#define SDRAM1X_BA1_8bk 14
#endif
#define MA_Column 0x06
#define MA_Bank 0x08
#define MA_Row 0x30
#define MA_4_Bank 0x00
#define MA_8_Bank 0x08
#define MA_12_Row 0x00
#define MA_13_Row 0x10
#define MA_14_Row 0x20
#define MA_15_Row 0x30
#define MA_9_Column 0x00
#define MA_10_Column 0x02
#define MA_11_Column 0x04
#define MA_12_Column 0x06
#define GET_SPD(i, val, tmp, reg) \
do{ \
val = 0; \
tmp = 0; \
for(i = 0; i < 2; i++) { \
if(pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_REG_BASE + (i << 1)))) { \
tmp = get_spd_data(ctrl, i, reg); \
if(tmp > val) \
val = tmp; \
} \
} \
} while ( 0 )
#define REGISTERPRESET(bus,dev,fun,bdfspec) \
{ u8 i, reg; \
for (i=0; i<(sizeof((bdfspec))/sizeof(struct regmask)); i++) { \
printk_debug("Writing bus " #bus " dev " #dev " fun " #fun " register "); \
printk_debug("%02x", (bdfspec)[i].reg); \
printk_debug("\n"); \
reg = pci_read_config8(PCI_DEV((bus), (dev), (fun)), (bdfspec)[i].reg); \
reg &= (bdfspec)[i].mask; \
reg |= (bdfspec)[i].val; \
pci_write_config8(PCI_DEV((bus), (dev), (fun)), (bdfspec)[i].reg, reg); \
} \
}
static void do_ram_command(const struct mem_controller *ctrl, u8 command)
{
u8 reg;
reg = pci_read_config8(MEMCTRL, 0x6b);
reg &= 0xf8; /* Clear bits 2-0. */
reg |= command;
pci_write_config8(MEMCTRL, 0x6b, reg);
PRINTK_DEBUG(" Sending RAM command 0x%02x\n", reg);
}
// TODO factor out to another file
static void c7_cpu_setup(const struct mem_controller *ctrl)
{
u8 size, i;
size = sizeof(Reg_Val) / sizeof(Reg_Val[0]);
for (i = 0; i < size; i += 2)
pci_write_config8(HOSTCTRL, Reg_Val[i], Reg_Val[i + 1]);
}
static void ddr_detect(const struct mem_controller *ctrl)
{
/* FIXME: Only supports 2 ranks per DIMM */
u8 val, rsize, dimm;
u8 nrank = 0;
u8 ndimm = 0;
u8 rmap = 0;
for (dimm = 0; dimm < DIMM_SOCKETS; dimm++) {
val = get_spd_data(ctrl, dimm, 0);
if ((val == 0x80) || (val == 0xff)) {
ndimm++;
rsize = get_spd_data(ctrl, dimm, SPD_RANK_SIZE);
/* unit is 128M */
rsize = (rsize << 3) | (rsize >> 5);
val =
get_spd_data(ctrl, dimm,
SPD_MOD_ATTRIB_RANK) & SPD_MOD_ATTRIB_RANK_NUM_MASK;
switch (val) {
case 1:
pci_write_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_1 + (dimm << 1)),
rsize);
rmap |= (1 << ((dimm << 1) + 1));
nrank++;
case 0:
pci_write_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + (dimm << 1)),
rsize);
rmap |= (1 << (dimm << 1));
nrank++;
}
}
}
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_DIMM_NUM, ndimm);
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_NUM, nrank);
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_MAP, rmap);
}
static void sdram_set_safe_values(const struct mem_controller *ctrl)
{
/* The purpose of this function is to set initial values for the dram
* size and timings. It will be replaced with the SPD based function
* once the RAM commands are working with these values.
*/
u8 regs, val, t, dimm;
u32 spds, tmp;
regs = pci_read_config8(MEMCTRL, 0x6c);
if (regs & (1 << 6))
printk_debug("DDR2 Detected.\n");
else
die("ERROR: DDR1 memory detected but not supported by coreboot.\n");
/* Enable DDR2 */
regs |= (1 << 7);
pci_write_config8(MEMCTRL, 0x6c, regs);
/* SPD 5 # of ranks */
pci_write_config8(MEMCTRL, 0x6d, 0xc0);
/**********************************************/
/* Set DRAM Freq (DDR2 533) */
/**********************************************/
/* SPD 9 SDRAM Cycle Time */
GET_SPD(dimm, spds, regs, 9);
printk_debug("\nDDRII ");
if (spds <= 0x3d) {
printk_debug("533");
val = DDRII_533;
t = 38;
} else if (spds <= 0x50) {
printk_debug("400");
val = DDRII_400;
t = 50;
} else if (spds <= 0x60) {
printk_debug("333");
val = DDRII_333;
t = 60;
} else if (spds <= 0x75) {
printk_debug("266");
val = DDRII_266;
t = 75;
} else {
printk_debug("200");
val = DDRII_200;
t = 100;
}
/* To store DDRII frequence */
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_FREQ, val);
/* Manual reset and adjust DLL when DRAM change frequency
* This is a necessary sequence.
*/
udelay(2000);
regs = pci_read_config8(MEMCTRL, 0x90);
regs |= 0x7;
pci_write_config8(MEMCTRL, 0x90, regs);
udelay(2000);
regs = pci_read_config8(MEMCTRL, 0x90);
regs &= ~0x7;
regs |= val;
pci_write_config8(MEMCTRL, 0x90, regs);
udelay(2000);
regs = pci_read_config8(MEMCTRL, 0x6b);
regs |= 0xc0;
regs &= ~0x10;
pci_write_config8(MEMCTRL, 0x6b, regs);
udelay(1);
regs |= 0x10;
pci_write_config8(MEMCTRL, 0x6b, regs);
udelay(1);
regs &= ~0xc0;
pci_write_config8(MEMCTRL, 0x6b, regs);
regs = pci_read_config8(MEMCTRL, 0x6f);
regs |= 0x1;
pci_write_config8(MEMCTRL, 0x6f, regs);
/**********************************************/
/* Set DRAM Timing Setting (DDR2 533) */
/**********************************************/
/* SPD 9 18 23 25 CAS Latency NB3DRAM_REG62[2:0] */
/* Read SPD byte 18 CAS Latency */
GET_SPD(dimm, spds, regs, SPD_CAS_LAT);
printk_debug("\nCAS Supported ");
if (spds & SPD_CAS_LAT_2)
printk_debug("2 ");
if (spds & SPD_CAS_LAT_3)
printk_debug("3 ");
if (spds & SPD_CAS_LAT_4)
printk_debug("4 ");
if (spds & SPD_CAS_LAT_5)
printk_debug("5 ");
if (spds & SPD_CAS_LAT_6)
printk_debug("6");
/* We don't consider CAS = 6, because CX700 doesn't support it */
printk_debug("\n CAS:");
if (spds & SPD_CAS_LAT_5) {
printk_debug("Starting at CL5");
val = 0x3;
/* See whether we can improve it */
GET_SPD(dimm, tmp, regs, SPD_CAS_LAT_MIN_X_1);
if ((spds & SPD_CAS_LAT_4) && (tmp < 0x50)) {
printk_debug("\n... going to CL4");
val = 0x2;
}
GET_SPD(dimm, tmp, regs, SPD_CAS_LAT_MIN_X_2);
if ((spds & SPD_CAS_LAT_3) && (tmp < 0x50)) {
printk_debug("\n... going to CL3");
val = 0x1;
}
} else {
printk_debug("Starting at CL4");
val = 0x2;
GET_SPD(dimm, tmp, regs, SPD_CAS_LAT_MIN_X_1);
if ((spds & SPD_CAS_LAT_3) && (tmp < 0x50)) {
printk_debug("\n... going to CL3");
val = 0x1;
}
GET_SPD(dimm, tmp, regs, SPD_CAS_LAT_MIN_X_2);
if ((spds & SPD_CAS_LAT_2) && (tmp < 0x50)) {
printk_debug("\n... going to CL2");
val = 0x0;
}
}
regs = pci_read_config8(MEMCTRL, 0x62);
regs &= ~0x7;
regs |= val;
pci_write_config8(MEMCTRL, 0x62, regs);
/* SPD 27 Trp NB3DRAM_REG64[3:2] */
GET_SPD(dimm, spds, regs, SPD_TRP);
printk_debug("\nTrp %d", spds);
spds >>= 2;
for (val = 2; val <= 5; val++) {
if (spds <= (val * t / 10)) {
val = val - 2;
break;
}
}
val <<= 2;
regs = pci_read_config8(MEMCTRL, 0x64);
regs &= ~0xc;
regs |= val;
pci_write_config8(MEMCTRL, 0x64, regs);
/* SPD 29 Trcd NB3DRAM_REG64[7:6] */
GET_SPD(dimm, spds, regs, SPD_TRCD);
printk_debug("\nTrcd %d", spds);
spds >>= 2;
for (val = 2; val <= 5; val++) {
if (spds <= (val * t / 10)) {
val = val - 2;
break;
}
}
val <<= 6;
regs = pci_read_config8(MEMCTRL, 0x64);
regs &= ~0xc0;
regs |= val;
pci_write_config8(MEMCTRL, 0x64, regs);
/* SPD 30 Tras NB3DRAM_REG62[7:4] */
GET_SPD(dimm, spds, regs, SPD_TRAS);
printk_debug("\nTras %d", spds);
for (val = 5; val <= 20; val++) {
if (spds <= (val * t / 10)) {
val = val - 5;
break;
}
}
val <<= 4;
regs = pci_read_config8(MEMCTRL, 0x62);
regs &= ~0xf0;
regs |= val;
pci_write_config8(MEMCTRL, 0x62, regs);
/* SPD 42 SPD 40 Trfc NB3DRAM_REG61[5:0] */
GET_SPD(dimm, spds, regs, SPD_TRFC);
printk_debug("\nTrfc %d", spds);
tmp = spds;
GET_SPD(dimm, spds, regs, SPD_EX_TRC_TRFC);
if (spds & 0x1)
tmp += 256;
if (spds & 0xe)
tmp++;
for (val = 8; val <= 71; val++) {
if (tmp <= (val * t / 10)) {
val = val - 8;
break;
}
}
regs = pci_read_config8(MEMCTRL, 0x61);
regs &= ~0x3f;
regs |= val;
pci_write_config8(MEMCTRL, 0x61, regs);
/* SPD 28 Trrd NB3DRAM_REG63[7:6] */
GET_SPD(dimm, spds, regs, SPD_TRRD);
for (val = 2; val <= 5; val++) {
if (spds <= (val * t / 10)) {
val = val - 2;
break;
}
}
val <<= 6;
printk_debug("\nTrrd val = 0x%x", val);
regs = pci_read_config8(MEMCTRL, 0x63);
regs &= ~0xc0;
regs |= val;
pci_write_config8(MEMCTRL, 0x63, regs);
/* SPD 36 Twr NB3DRAM_REG61[7:6] */
GET_SPD(dimm, spds, regs, SPD_TWR);
for (val = 2; val <= 5; val++) {
if (spds <= (val * t / 10)) {
val = val - 2;
break;
}
}
val <<= 6;
printk_debug("\nTwr val = 0x%x", val);
regs = pci_read_config8(MEMCTRL, 0x61);
regs &= ~0xc0;
regs |= val;
pci_write_config8(MEMCTRL, 0x61, regs);
/* SPD 37 Twtr NB3DRAM_REG63[1] */
GET_SPD(dimm, spds, regs, SPD_TWTR);
spds >>= 2;
printk_debug("\nTwtr 0x%x", spds);
if (spds <= (t * 2 / 10))
val = 0;
else
val = 1;
val <<= 1;
printk_debug("\nTwtr val = 0x%x", val);
regs = pci_read_config8(MEMCTRL, 0x63);
regs &= ~0x2;
regs |= val;
pci_write_config8(MEMCTRL, 0x63, regs);
/* SPD 38 Trtp NB3DRAM_REG63[3] */
GET_SPD(dimm, spds, regs, SPD_TRTP);
spds >>= 2;
printk_debug("\nTrtp 0x%x", spds);
if (spds <= (t * 2 / 10))
val = 0;
else
val = 1;
val <<= 3;
printk_debug("\nTrtp val = 0x%x", val);
regs = pci_read_config8(MEMCTRL, 0x63);
regs &= ~0x8;
regs |= val;
pci_write_config8(MEMCTRL, 0x63, regs);
/**********************************************/
/* Set DRAM DRDY Setting */
/**********************************************/
/* Write slowest value to register */
tmp = sizeof(Host_Reg_Val) / sizeof(Host_Reg_Val[0]);
for (val = 0; val < tmp; val += 2)
pci_write_config8(HOSTCTRL, Host_Reg_Val[val], Host_Reg_Val[val + 1]);
/* F2_RX51[7]=0, disable DRDY timing */
regs = pci_read_config8(HOSTCTRL, 0x51);
regs &= ~0x80;
pci_write_config8(HOSTCTRL, 0x51, regs);
/**********************************************/
/* Set DRAM BurstLength */
/**********************************************/
regs = pci_read_config8(MEMCTRL, 0x6c);
for (dimm = 0; dimm < DIMM_SOCKETS; dimm++) {
if (pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_REG_BASE + (dimm << 1)))) {
spds = get_spd_data(ctrl, dimm, 16);
if (!(spds & 0x8))
break;
}
}
if (dimm == 2)
regs |= 0x8;
pci_write_config8(MEMCTRL, 0x6c, regs);
val = pci_read_config8(HOSTCTRL, 0x54);
val &= ~0x10;
if (dimm == 2)
val |= 0x10;
pci_write_config8(HOSTCTRL, 0x54, val);
/**********************************************/
/* Set DRAM Driving Setting */
/**********************************************/
/* DRAM Timing ODT */
tmp = sizeof(Dram_Driving_ODT_CTRL) / sizeof(Dram_Driving_ODT_CTRL[0]);
for (val = 0; val < tmp; val += 2)
pci_write_config8(MEMCTRL, Dram_Driving_ODT_CTRL[val],
Dram_Driving_ODT_CTRL[val + 1]);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_NUM);
val = pci_read_config8(MEMCTRL, 0xd5);
val &= ~0xaa;
switch (regs) {
case 3:
case 2:
val |= 0xa0;
break;
default:
val |= 0x80;
}
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DIMM_NUM);
if (regs == 1)
val |= 0xa;
pci_write_config8(MEMCTRL, 0xd5, val);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DIMM_NUM);
val = pci_read_config8(MEMCTRL, 0xd6);
val &= ~0x2;
if (regs == 1)
val |= 0x2;
pci_write_config8(MEMCTRL, 0xd6, val);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_MAP);
tmp = sizeof(ODT_TBL) / sizeof(ODT_TBL[0]);
for (val = 0; val < tmp; val += 3) {
if (regs == ODT_TBL[val]) {
pci_write_config8(MEMCTRL, 0xd8, ODT_TBL[val + 1]);
/* Store DRAM & NB ODT setting in d0f4_Rxd8 */
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_NB_ODT, ODT_TBL[val + 2]);
break;
}
}
pci_write_config8(MEMCTRL, 0xd9, 0x0a);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_NUM);
regs--;
regs = regs << 1;
pci_write_config8(MEMCTRL, 0xe0, DQS_DQ_TBL[regs++]);
pci_write_config8(MEMCTRL, 0xe2, DQS_DQ_TBL[regs]);
/* DRAM Timing CS */
pci_write_config8(MEMCTRL, 0xe4, 0x66);
/* DRAM Timing MAA */
val = 0;
for (dimm = 0; dimm < DIMM_SOCKETS; dimm++) {
if (pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_REG_BASE + (dimm << 1)))) {
spds = get_spd_data(ctrl, dimm, SPD_PRI_WIDTH);
spds = 64 / spds;
if (pci_read_config8
(PCI_DEV(0, 0, 4), (SCRATCH_REG_BASE + (dimm << 1) + 1)))
spds = spds << 1;
val += spds;
}
}
printk_debug("\nchip #%d", val);
if (val > 18)
regs = 0xdb;
else
regs = 0x86;
pci_write_config8(MEMCTRL, 0xe8, regs);
/* DRAM Timing MAB */
pci_write_config8(MEMCTRL, 0xe9, 0x0);
/* DRAM Timing DCLK VT8454C always 0x66 */
pci_write_config8(MEMCTRL, 0xe6, 0xaa);
/**********************************************/
/* Set DRAM Duty Control */
/**********************************************/
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_NUM);
switch (regs) {
case 1:
case 2: /* 1~2 rank */
val = 0;
break;
case 3:
case 4: /* 3~4 rank */
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_FREQ);
if (regs == DDRII_533)
val = 4;
else /* DDRII-400 */
val = 0;
break;
}
regs = 0xec;
for (t = 0; t < 4; t++) {
pci_write_config8(MEMCTRL, regs, Duty_Control_DDR2[val]);
regs++;
val++;
}
/**********************************************/
/* Set DRAM Clock Control */
/**********************************************/
/* Write Data Phase */
val = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_FREQ);
regs = pci_read_config8(MEMCTRL, 0x75);
regs &= 0xf0;
switch (val) {
case DDRII_533:
pci_write_config8(MEMCTRL, 0x74, 0x07);
regs |= 0x7;
break;
case DDRII_400:
default:
pci_write_config8(MEMCTRL, 0x74, 0x05);
regs |= 0x5;
break;
}
pci_write_config8(MEMCTRL, 0x75, regs);
pci_write_config8(MEMCTRL, 0x76, 0x80);
/* Clock Phase Control for FeedBack Mode */
regs = pci_read_config8(MEMCTRL, 0x90);
// regs |= 0x80;
pci_write_config8(MEMCTRL, 0x90, regs);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_FREQ);
switch (regs) {
case DDRII_533:
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_NUM);
if (regs == 1)
val = 0;
else
val = 3;
break;
case DDRII_400:
default:
val = 6;
break;
}
regs = pci_read_config8(MEMCTRL, 0x91);
regs &= ~0xc0;
regs |= 0x80;
pci_write_config8(MEMCTRL, 0x91, regs);
regs = 0x91;
for (t = 0; t < 3; t++) {
dimm = pci_read_config8(MEMCTRL, regs);
dimm &= ~0x7;
dimm |= ChA_Clk_Phase_DDR2_Table[val];
pci_write_config8(MEMCTRL, regs, dimm);
regs++;
val++;
}
pci_write_config8(MEMCTRL, 0x97, 0x12);
pci_write_config8(MEMCTRL, 0x98, 0x33);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_0);
val = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_2);
if (regs && val)
pci_write_config8(MEMCTRL, 0x9d, 0x00);
else
pci_write_config8(MEMCTRL, 0x9d, 0x0f);
tmp = sizeof(DQ_DQS_Table) / sizeof(DQ_DQS_Table[0]);
for (val = 0; val < tmp; val += 2)
pci_write_config8(MEMCTRL, DQ_DQS_Table[val], DQ_DQS_Table[val + 1]);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_FREQ);
if (regs == DDRII_533)
pci_write_config8(MEMCTRL, 0x7b, 0xa0);
else
pci_write_config8(MEMCTRL, 0x7b, 0x10);
/***************************************************/
/* Set necessary register before DRAM initialize */
/***************************************************/
tmp = sizeof(Mem_Reg_Init) / sizeof(Mem_Reg_Init[0]);
for (val = 0; val < tmp; val += 3) {
regs = pci_read_config8(MEMCTRL, Mem_Reg_Init[val]);
regs &= Mem_Reg_Init[val + 1];
regs |= Mem_Reg_Init[val + 2];
pci_write_config8(MEMCTRL, Mem_Reg_Init[val], regs);
}
regs = pci_read_config8(HOSTCTRL, 0x51);
regs &= 0xbf; // Clear bit 6 Disable Read Around Write
pci_write_config8(HOSTCTRL, 0x51, regs);
regs = pci_read_config8(HOSTCTRL, 0x54);
t = regs >> 5;
val = pci_read_config8(HOSTCTRL, 0x57);
dimm = val >> 5;
if (t == dimm)
t = 0x0;
else
t = 0x1;
regs &= ~0x1;
regs |= t;
val &= ~0x1;
val |= t;
pci_write_config8(HOSTCTRL, 0x57, val);
regs = pci_read_config8(HOSTCTRL, 0x51);
regs |= t;
pci_write_config8(HOSTCTRL, 0x51, regs);
regs = pci_read_config8(MEMCTRL, 0x90);
regs &= 0x7;
val = 0;
if (regs < 0x2)
val = 0x80;
regs = pci_read_config8(MEMCTRL, 0x76);
regs &= 0x80;
regs |= val;
pci_write_config8(MEMCTRL, 0x76, regs);
regs = pci_read_config8(MEMCTRL, 0x6f);
regs |= 0x10;
pci_write_config8(MEMCTRL, 0x6f, regs);
/***************************************************/
/* Find suitable DQS value for ChA and ChB */
/***************************************************/
// Set DQS output delay for Channel A
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_FREQ);
val = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_NUM);
switch (regs) {
case DDRII_533:
if (val < 2)
val = 0;
else
val = 2;
break;
case DDRII_400:
default:
if (val < 2)
val = 4;
else
val = 6;
break;
}
for (t = 0; t < 2; t++)
pci_write_config8(MEMCTRL, (0x70 + t), DQSOChA_DDR2_Driving_Table[val + t]);
// Set DQS output delay for Channel B
pci_write_config8(MEMCTRL, 0x72, 0x0);
regs = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_0);
val = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_RANK_2);
if (regs && val)
pci_write_config8(MEMCTRL, 0x73, 0xfd);
else
pci_write_config8(MEMCTRL, 0x73, 0x01);
}
static void sdram_set_registers(const struct mem_controller *ctrl)
{
c7_cpu_setup(ctrl);
ddr_detect(ctrl);
sdram_set_safe_values(ctrl);
}
static void step_20_21(const struct mem_controller *ctrl)
{
u8 val;
// Step 20
udelay(200);
val = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_NB_ODT);
if (val & DDR2_ODT_150ohm)
read32(0x102200);
else
read32(0x102020);
/* Step 21. Normal operation */
print_spew("RAM Enable 5: Normal operation\n");
do_ram_command(ctrl, RAM_COMMAND_NORMAL);
udelay(3);
}
static void step_2_19(const struct mem_controller *ctrl)
{
u32 i;
u8 val;
// Step 2
val = pci_read_config8(MEMCTRL, 0x69);
val &= ~0x03;
pci_write_config8(MEMCTRL, 0x69, val);
/* Step 3 Apply NOP. */
print_spew("RAM Enable 1: Apply NOP\n");
do_ram_command(ctrl, RAM_COMMAND_NOP);
udelay(15);
// Step 4
print_spew("SEND: ");
read32(0);
print_spew("OK\n");
// Step 5
udelay(400);
/* 6. Precharge all. Wait tRP. */
print_spew("RAM Enable 2: Precharge all\n");
do_ram_command(ctrl, RAM_COMMAND_PRECHARGE);
// Step 7
print_spew("SEND: ");
read32(0);
print_spew("OK\n");
/* Step 8. Mode register set. */
print_spew("RAM Enable 4: Mode register set\n");
do_ram_command(ctrl, RAM_COMMAND_MRS); //enable dll
// Step 9
print_spew("SEND: ");
val = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_NB_ODT);
if (val & DDR2_ODT_150ohm)
read32(0x102200); //DDR2_ODT_150ohm
else
read32(0x102020);
print_spew("OK\n");
// Step 10
print_spew("SEND: ");
read32(0x800);
print_spew("OK\n");
/* Step 11. Precharge all. Wait tRP. */
print_spew("RAM Enable 2: Precharge all\n");
do_ram_command(ctrl, RAM_COMMAND_PRECHARGE);
// Step 12
print_spew("SEND: ");
read32(0x0);
print_spew("OK\n");
/* Step 13. Perform 8 refresh cycles. Wait tRC each time. */
print_spew("RAM Enable 3: CBR\n");
do_ram_command(ctrl, RAM_COMMAND_CBR);
/* JEDEC says only twice, do 8 times for posterity */
// Step 16: Repeat Step 14 and 15 another 7 times
for (i = 0; i < 8; i++) {
// Step 14
read32(0);
print_spew(".");
// Step 15
udelay(100);
}
/* Step 17. Mode register set. Wait 200us. */
print_spew("\nRAM Enable 4: Mode register set\n");
//safe value for now, BL=8, WR=4, CAS=4
do_ram_command(ctrl, RAM_COMMAND_MRS);
udelay(200);
/* Use Single Chanel temporarily */
val = pci_read_config8(MEMCTRL, 0x6c);
if (val & 0x8) { /* Burst Length = 8 */
val = pci_read_config8(MEMCTRL, 0x62);
val &= 0x7;
i = DDR2_MRS_table[4 + val];
} else {
val = pci_read_config8(MEMCTRL, 0x62);
val &= 0x7;
i = DDR2_MRS_table[val];
}
// Step 18
val = pci_read_config8(MEMCTRL, 0x61);
val = val >> 6;
i |= DDR2_Twr_table[val];
read32(i);
printk_debug("MRS = %08x\n", i);
udelay(15);
// Step 19
val = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_NB_ODT);
if (val & DDR2_ODT_150ohm)
read32(0x103e00); //EMRS OCD Default
else
read32(0x103c20);
}
static void sdram_set_vr(const struct mem_controller *ctrl, u8 num)
{
u8 reg, val;
val = 0x54 + (num >> 1);
reg = pci_read_config8(MEMCTRL, val);
reg &= (0xf << (4 * (num & 0x1)));
reg |= (((0x8 | num) << 4) >> (4 * (num & 0x1)));
pci_write_config8(MEMCTRL, val, reg);
}
static void sdram_ending_addr(const struct mem_controller *ctrl, u8 num)
{
u8 reg, val;
/* Set Ending Address */
val = 0x40 + num;
reg = pci_read_config8(MEMCTRL, val);
reg += 0x10;
pci_write_config8(MEMCTRL, val, reg);
/* Set Beginning Address */
val = 0x48 + num;
pci_write_config8(MEMCTRL, val, 0x0);
}
static void sdram_clear_vr_addr(const struct mem_controller *ctrl, u8 num)
{
u8 reg, val;
val = 0x54 + (num >> 1);
reg = pci_read_config8(MEMCTRL, val);
reg = ~(0x80 >> (4 * (num & 0x1)));
pci_write_config8(MEMCTRL, val, reg);
val = 0x40 + num;
reg = pci_read_config8(MEMCTRL, val);
reg -= 0x10;
pci_write_config8(MEMCTRL, val, reg);
val = 0x48 + num;
pci_write_config8(MEMCTRL, val, 0x0);
}
/* Perform sizing DRAM by dynamic method */
static void sdram_calc_size(const struct mem_controller *ctrl, u8 num)
{
u8 ca, ra, ba, reg;
ba = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_FLAGS);
if (ba == 8) {
write8(0, 0x0d);
ra = read8(0);
write8((1 << SDRAM1X_RA_12_8bk), 0x0c);
ra = read8(0);
write8(0, 0x0a);
ca = read8(0);
write8((1 << SDRAM1X_CA_09_8bk), 0x0c);
ca = read8(0);
write8(0, 0x03);
ba = read8(0);
write8((1 << SDRAM1X_BA2_8bk), 0x02);
ba = read8(0);
write8((1 << SDRAM1X_BA1_8bk), 0x01);
ba = read8(0);
} else {
write8(0, 0x0f);
ra = read8(0);
write8((1 << SDRAM1X_RA_14), 0x0e);
ra = read8(0);
write8((1 << SDRAM1X_RA_13), 0x0d);
ra = read8(0);
write8((1 << SDRAM1X_RA_12), 0x0c);
ra = read8(0);
write8(0, 0x0c);
ca = read8(0);
write8((1 << SDRAM1X_CA_12), 0x0b);
ca = read8(0);
write8((1 << SDRAM1X_CA_11), 0x0a);
ca = read8(0);
write8((1 << SDRAM1X_CA_09), 0x09);
ca = read8(0);
write8(0, 0x02);
ba = read8(0);
write8((1 << SDRAM1X_BA1), 0x01);
ba = read8(0);
}
if (ra < 10 || ra > 15)
die("bad RA");
if (ca < 8 || ca > 12)
die("bad CA");
if (ba < 1 || ba > 3)
die("bad BA");
/* Calculate MA type save to scratch register */
reg = 0;
switch (ra) {
case 12:
reg |= MA_12_Row;
break;
case 13:
reg |= MA_13_Row;
break;
case 14:
reg |= MA_14_Row;
break;
default:
reg |= MA_15_Row;
}
switch (ca) {
case 9:
reg |= MA_9_Column;
break;
case 10:
reg |= MA_10_Column;
break;
case 11:
reg |= MA_11_Column;
break;
default:
reg |= MA_12_Column;
}
switch (ba) {
case 3:
reg |= MA_8_Bank;
break;
default:
reg |= MA_4_Bank;
}
pci_write_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK0_MA_REG + num), reg);
if (ra >= 13)
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_256M_BIT, 1);
/* Calculate rank size save to scratch register */
ra = ra + ca + ba + 3 - 26; /* 1 unit = 64M */
ra = 1 << ra;
pci_write_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK0_SIZE_REG + num), ra);
}
static void sdram_enable(const struct mem_controller *ctrl)
{
u8 reg8;
u8 val, i;
device_t dev;
u8 dl, dh;
u32 quot;
/* Init Present Bank */
val = sizeof(Init_Rank_Reg_Table) / sizeof(Init_Rank_Reg_Table[0]);
for (i = 0; i < val; i++)
pci_write_config8(MEMCTRL, Init_Rank_Reg_Table[i], 0x0);
/* Init other banks */
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
sdram_set_vr(ctrl, i);
sdram_ending_addr(ctrl, i);
step_2_19(ctrl);
step_20_21(ctrl);
sdram_clear_vr_addr(ctrl, i);
}
}
#ifdef MEM_WIDTH_32BIT_MODE
/****************************************************************/
/* Set Dram 32bit Mode */
/****************************************************************/
reg8 = pci_read_config8(MEMCTRL, 0x6c);
reg8 |= 0x20;
pci_write_config(MEMCTRL, 0x6c, reg8);
#endif
/****************************************************************/
/* Find the DQSI Low/High bound and save it to Scratch register */
/****************************************************************/
for (dl = 0; dl < 0x3f; dl += 2) {
reg8 = dl & 0x3f;
reg8 |= 0x80; /* Set Manual Mode */
pci_write_config8(MEMCTRL, 0x77, reg8);
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
sdram_set_vr(ctrl, i);
sdram_ending_addr(ctrl, i);
write32(0, 0x55555555);
write32(4, 0x55555555);
udelay(15);
if (read32(0) != 0x55555555)
break;
if (read32(4) != 0x55555555)
break;
write32(0, 0xaaaaaaaa);
write32(4, 0xaaaaaaaa);
udelay(15);
if (read32(0) != 0xaaaaaaaa)
break;
if (read32(4) != 0xaaaaaaaa)
break;
sdram_clear_vr_addr(ctrl, i);
}
}
if (i == 4)
break;
else
sdram_clear_vr_addr(ctrl, i);
}
printk_debug("\nDQSI Low %08x", dl);
for (dh = dl; dh < 0x3f; dh += 2) {
reg8 = dh & 0x3f;
reg8 |= 0x80; /* Set Manual Mode */
pci_write_config8(MEMCTRL, 0x77, reg8);
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
sdram_set_vr(ctrl, i);
sdram_ending_addr(ctrl, i);
write32(0, 0x55555555);
write32(4, 0x55555555);
udelay(15);
if (read32(0) != 0x55555555)
break;
if (read32(4) != 0x55555555)
break;
write32(0, 0xaaaaaaaa);
write32(4, 0xaaaaaaaa);
udelay(15);
if (read32(0) != 0xaaaaaaaa)
break;
if (read32(4) != 0xaaaaaaaa)
break;
sdram_clear_vr_addr(ctrl, i);
}
}
if (i != 4) {
sdram_clear_vr_addr(ctrl, i);
break;
}
}
printk_debug("\nDQSI High %02x", dh);
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_CHA_DQSI_LOW_REG, dl);
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_CHA_DQSI_HIGH_REG, dh);
reg8 = pci_read_config8(MEMCTRL, 0X90) & 0X7;
val = DQSI_Rate_Table[reg8];
quot = dh - dl;
quot = quot * val;
quot >>= 4;
val = quot + dl;
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_ChA_DQSI_REG, val);
reg8 = val & 0x3f;
reg8 |= 0x80;
pci_write_config8(MEMCTRL, 0x77, reg8);
/****************************************************************/
/* Find out the lowest Bank Interleave and Set Register */
/****************************************************************/
#if 0
//TODO
reg8 = pci_read_config8(MEMCTRL, 0x69);
reg8 &= ~0xc0;
reg8 |= 0x80; //8 banks
pci_write_config8(MEMCTRL, 0x69, reg8);
#endif
dl = 2;
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
reg8 = get_spd_data(ctrl, (i >> 1), 17);
sdram_set_vr(ctrl, i);
sdram_ending_addr(ctrl, i);
if (reg8 == 4) {
write8(0, 0x02);
val = read8(0);
write8((1 << SDRAM1X_BA1), 0x01);
val = read8(0);
} else {
write8(0, 0x03);
val = read8(0);
write8((1 << SDRAM1X_BA2_8bk), 0x02);
val = read8(0);
write8((1 << SDRAM1X_BA1_8bk), 0x01);
val = read8(0);
}
if (val < dl)
dl = val;
sdram_clear_vr_addr(ctrl, i);
}
}
dl <<= 6;
reg8 = pci_read_config8(MEMCTRL, 0x69);
reg8 &= ~0xc0;
reg8 |= dl;
pci_write_config8(MEMCTRL, 0x69, reg8);
/****************************************************************/
/* DRAM Sizing and Fill MA type */
/****************************************************************/
for (i = 0; i < 4; i++) {
val = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (val) {
reg8 = get_spd_data(ctrl, (i >> 1), 17);
pci_write_config8(PCI_DEV(0, 0, 4), SCRATCH_FLAGS, reg8);
if (reg8 == 4) {
/* Use MA Type 3 for DRAM sizing */
reg8 = pci_read_config8(MEMCTRL, 0x50);
reg8 &= 0x11;
reg8 |= 0x66;
pci_write_config8(MEMCTRL, 0x50, reg8);
pci_write_config8(MEMCTRL, 0x51, reg8);
} else {
/* Use MA Type 5 for DRAM sizing */
reg8 = pci_read_config8(MEMCTRL, 0x50);
reg8 &= 0x11;
reg8 |= 0xaa;
pci_write_config8(MEMCTRL, 0x50, reg8);
pci_write_config8(MEMCTRL, 0x51, reg8);
reg8 = pci_read_config8(MEMCTRL, 0x53);
reg8 &= 0x0f;
reg8 |= 0x90;
pci_write_config8(MEMCTRL, 0x53, reg8);
}
sdram_set_vr(ctrl, i);
val = 0x40 + i;
reg8 = pci_read_config8(MEMCTRL, val);
/* max size 3G for new MA table */
reg8 += 0x30;
pci_write_config8(MEMCTRL, val, reg8);
/* Set Beginning Address */
val = 0x48 + i;
pci_write_config8(MEMCTRL, val, 0x0);
sdram_calc_size(ctrl, i);
/* Clear */
val = 0x54 + (i >> 1);
reg8 = pci_read_config8(MEMCTRL, val);
reg8 = ~(0x80 >> (4 * (i & 0x1)));
pci_write_config8(MEMCTRL, val, reg8);
val = 0x40 + i;
reg8 = pci_read_config8(MEMCTRL, val);
reg8 -= 0x30;
pci_write_config8(MEMCTRL, val, reg8);
val = 0x48 + i;
pci_write_config8(MEMCTRL, val, 0x0);
}
}
/* Clear MA Type */
reg8 = pci_read_config8(MEMCTRL, 0x50);
reg8 &= 0x11;
pci_write_config8(MEMCTRL, 0x50, reg8);
pci_write_config8(MEMCTRL, 0x51, reg8);
reg8 = pci_read_config8(MEMCTRL, 0x6b);
reg8 &= ~0x08;
pci_write_config8(MEMCTRL, 0x6b, reg8);
/****************************************************************/
/* DRAM re-initialize for burst length */
/****************************************************************/
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
sdram_set_vr(ctrl, i);
sdram_ending_addr(ctrl, i);
step_2_19(ctrl);
step_20_21(ctrl);
sdram_clear_vr_addr(ctrl, i);
}
}
/****************************************************************/
/* Set the MA Type */
/****************************************************************/
reg8 = pci_read_config8(MEMCTRL, 0x50);
reg8 &= 0x11;
pci_write_config8(MEMCTRL, 0x50, reg8);
reg8 = pci_read_config8(MEMCTRL, 0x51);
reg8 &= 0x11;
pci_write_config8(MEMCTRL, 0x51, reg8);
reg8 = pci_read_config8(MEMCTRL, 0x6b);
reg8 &= ~0x08;
pci_write_config8(MEMCTRL, 0x6b, reg8);
for (i = 0; i < 4; i += 2) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK0_MA_REG + i));
reg8 &= (MA_Bank + MA_Column);
val = pci_read_config8(MEMCTRL, 0x50);
if (i == 0) {
reg8 <<= 4;
val &= 0x1f;
} else
val &= 0xf1;
val |= reg8;
pci_write_config8(MEMCTRL, 0x50, val);
}
}
/****************************************************************/
/* Set Start and Ending Address */
/****************************************************************/
dl = 0; /* Begin Address */
dh = 0; /* Ending Address */
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK0_SIZE_REG + i));
if (reg8 == 0)
continue;
dh += reg8;
pci_write_config8(MEMCTRL, (0x40 + i), dh);
pci_write_config8(MEMCTRL, (0x48 + i), dl);
dl = dh;
}
}
dh <<= 2;
// F7_Rx57 Ending address mirror register
pci_write_config8(PCI_DEV(0, 0, 7), 0x57, dh);
dev = pci_locate_device(PCI_ID(0x1106, 0x324e), 0);
pci_write_config8(dev, 0x57, dh);
// LOW TOP Address
pci_write_config8(MEMCTRL, 0x88, dh);
pci_write_config8(MEMCTRL, 0x85, dh);
// also program vlink mirror
pci_write_config8(PCI_DEV(0, 0, 7), 0xe5, dh);
/****************************************************************/
/* Set Physical to Virtual Rank mapping */
/****************************************************************/
pci_write_config32(MEMCTRL, 0x54, 0x0);
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8) {
reg8 = pci_read_config8(MEMCTRL, (0x54 + (i >> 1)));
if (i & 0x1) { /* Odd Rank */
reg8 &= 0xf0;
reg8 |= (0x8 | i);
} else { /* Even Rank */
reg8 &= 0x0f;
reg8 |= ((0x8 | i) << 4);
}
pci_write_config8(MEMCTRL, (0x54 + (i >> 1)), reg8);
}
}
/****************************************************************/
/* Set DRAM Refresh Counter */
/****************************************************************/
val = pci_read_config8(MEMCTRL, 0X90) & 0X7;
val <<= 1;
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), SCRATCH_DRAM_256M_BIT);
if (reg8)
val++;
pci_write_config8(MEMCTRL, 0x6a, REFC_Table[val]);
/****************************************************************/
/* Chipset Performance UP and other setting after DRAM Sizing */
/****************************************************************/
/* Dram Registers */
val = sizeof(Dram_Table) / sizeof(Dram_Table[0]);
for (i = 0; i < val; i += 3) {
reg8 = pci_read_config8(MEMCTRL, Dram_Table[i]);
reg8 &= Dram_Table[i + 1];
reg8 |= Dram_Table[i + 2];
pci_write_config8(MEMCTRL, Dram_Table[i], reg8);
}
/* Host Registers */
val = sizeof(Host_Table) / sizeof(Host_Table[0]);
for (i = 0; i < val; i += 3) {
reg8 = pci_read_config8(HOSTCTRL, Host_Table[i]);
reg8 &= Host_Table[i + 1];
reg8 |= Host_Table[i + 2];
pci_write_config8(HOSTCTRL, Host_Table[i], reg8);
}
/* PM Registers */
#ifdef SETUP_PM_REGISTERS
val = sizeof(PM_Table) / sizeof(PM_Table[0]);
for (i = 0; i < val; i += 3) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), PM_Table[i]);
reg8 &= PM_Table[i + 1];
reg8 |= PM_Table[i + 2];
pci_write_config8(PCI_DEV(0, 0, 4), PM_Table[i], reg8);
}
#endif
pci_write_config8(HOSTCTRL, 0x5d, 0xb2);
/****************************************************************/
/* UMA registers for N-series projects */
/****************************************************************/
/* Manual setting frame buffer bank */
for (i = 0; i < 4; i++) {
reg8 = pci_read_config8(PCI_DEV(0, 0, 4), (SCRATCH_RANK_0 + i));
if (reg8)
val = i;
}
pci_write_config8(MEMCTRL, 0xb0, val);
reg8 = 0x40; // Frame buffer size 64M
reg8 |= 0x80; // VGA Enable
reg8 |= 0x0a; // A[31:28] = 1010b
pci_write_config8(MEMCTRL, 0xa1, reg8);
#ifdef ECC
// Clear Ecc
outl(0x80000180, 0xcf8);
outb(0xff, 0xcfc);
// Enable Ecc
outl(0x80000188, 0xcf8);
outb(0xcf, 0xcfc);
reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xa5);
reg8 |= 0x10;
pci_write_config8(PCI_DEV(0, 0, 0), 0xa5, reg8);
reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0x91);
reg8 |= 0x20;
pci_write_config8(PCI_DEV(0, 0, 0), 0x91, reg8);
#endif
static const struct regmask {
u8 reg;
u8 mask;
u8 val;
} b0d1f0[] = {
{ 0x40, 0x00, 0x8b},
{ 0x41, 0x80, 0x43},
{ 0x42, 0x00, 0x62},
{ 0x43, 0x00, 0x44},
{ 0x44, 0x00, 0x34},
{ 0x45, 0x00, 0x72}
}, b0d0f3[] = {
{ 0x53, 0xf0, 0x0f},
{ 0x60, 0x00, 0x03},
{ 0x65, 0x00, 0xd9},
{ 0x66, 0x00, 0x80},
{ 0x67, 0x00, 0x00},
{ 0x68, 0x00, 0x01},
{ 0x69, 0xe0, 0x03},
{ 0x6b, 0x00, 0x10},
{ 0x6c, 0xc1, 0x08},
{ 0x6e, 0x00, 0x89},
{ 0x6f, 0x00, 0x51},
{ 0x75, ~0x40, 0x40},
{ 0x76, 0x8f, 0x00},
{ 0x7b, 0x00, 0xa0},
{ 0x86, 0x01, 0x24},
{ 0x86, 0x04, 0x29},
{ 0x8c, 0x00, 0x00},
{ 0x8d, 0x00, 0x00},
{ 0x95, ~0x40, 0x00},
{ 0xa2, 0x00, 0x44},
{ 0xb1, 0x00, 0xaa}
}, b0d0f0[] = {
{ 0x4d, 0x00, 0x24},
{ 0x4f, 0x00, 0x01},
{ 0xbc, 0x00, 0x21},
{ 0xbe, 0x00, 0x00},
{ 0xbf, 0x7f, 0x80}
}, b0d17f0[] = {
{ 0x40, ~0x01, 0x01}, // enable timer/counter shadow registers
{ 0x67, ~0x03, 0x01},
{ 0x5b, ~0x01, 0x00},
{ 0x8d, ~0x02, 0x02},
{ 0x97, ~0x80, 0x00},
{ 0xd2, ~0x18, 0x00},
{ 0xe2, ~0x36, 0x06},
{ 0xe4, ~0x80, 0x00},
{ 0xe5, 0x00, 0x40},
{ 0xe6, 0x00, 0x20},
{ 0xe7, ~0xd0, 0xc0},
{ 0xec, ~0x08, 0x00}
}, b0d17f7[] = {
{ 0x4e, ~0x80, 0x80},
{ 0x4f, ~(1 << 6), 1 << 6 }, /* PG_CX700: 14.1.1 enable P2P Bridge Header for External PCI Bus */
{ 0x74, ~0x00, 0x04}, /* PG_CX700: 14.1.2 APIC FSB directly up to snmic, not on pci */
{ 0x7c, ~0x00, 0x02}, /* PG_CX700: 14.1.1 APIC FSB directly up to snmic, not on pci */
{ 0xe6, 0x0, 0x04} // MSI post
}, b0d19f0[] = { /* P2PE */
{ 0x42, ~0x08, 0x08}, // Disable HD Audio,
{ 0x40, ~0xc0, 0x80} // 14.1.3.1.1 of the PG: extended cfg mode for pcie. enable capability, but don't activate
}, b0d0f2[] = {
{ 0x50, ~0x40, 0x88},
{ 0x51, 0x80, 0x7b},
{ 0x52, 0x90, 0x6f},
{ 0x53, 0x00, 0x88},
{ 0x54, 0xe4, 0x16},
{ 0x55, 0xf2, 0x04},
{ 0x56, 0x0f, 0x00},
{ 0x57, ~0x04, 0x00},
{ 0x5d, 0x00, 0xb2},
{ 0x5e, 0x00, 0x88},
{ 0x5f, 0x00, 0xc7},
{ 0x5c, 0x00, 0x01}
};
REGISTERPRESET(0, 0, 0, b0d0f0);
REGISTERPRESET(0, 0, 2, b0d0f2);
REGISTERPRESET(0, 0, 3, b0d0f3);
REGISTERPRESET(0, 1, 0, b0d1f0);
REGISTERPRESET(0, 17, 0, b0d17f0);
REGISTERPRESET(0, 17, 7, b0d17f7);
REGISTERPRESET(0, 19, 0, b0d19f0);
}