9c19bf090e
Denverton-NS supports uCode PM Timer emulation, according to Intel doc#558579 rev2.2. Thus, enable it. Change-Id: I21f55816da9f5e240fdf01a0e92b67b09ef38599 Signed-off-by: Michael Niewöhner <foss@mniewoehner.de> Reviewed-on: https://review.coreboot.org/c/coreboot/+/57944 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Nico Huber <nico.h@gmx.de>
301 lines
7.6 KiB
C
301 lines
7.6 KiB
C
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include <console/console.h>
|
|
#include <cpu/cpu.h>
|
|
#include <cpu/x86/cr.h>
|
|
#include <cpu/x86/mp.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/x86/smm.h>
|
|
#include <cpu/intel/smm_reloc.h>
|
|
#include <cpu/intel/em64t100_save_state.h>
|
|
#include <cpu/intel/turbo.h>
|
|
#include <cpu/intel/common/common.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <intelblocks/cpulib.h>
|
|
|
|
#include <soc/msr.h>
|
|
#include <soc/cpu.h>
|
|
#include <soc/iomap.h>
|
|
#include <soc/smm.h>
|
|
#include <soc/soc_util.h>
|
|
|
|
static struct smm_relocation_attrs relo_attrs;
|
|
|
|
static void dnv_configure_mca(void)
|
|
{
|
|
msr_t msr;
|
|
struct cpuid_result cpuid_regs;
|
|
|
|
/* Check feature flag in CPUID.(EAX=1):EDX[7]==1 MCE
|
|
* and CPUID.(EAX=1):EDX[14]==1 MCA*/
|
|
cpuid_regs = cpuid(1);
|
|
if ((cpuid_regs.edx & (1<<7 | 1<<14)) != (1<<7 | 1<<14))
|
|
return;
|
|
|
|
msr = rdmsr(IA32_MCG_CAP);
|
|
if (msr.lo & IA32_MCG_CAP_CTL_P_MASK) {
|
|
/* Enable all error logging */
|
|
msr.lo = msr.hi = 0xffffffff;
|
|
wrmsr(IA32_MCG_CTL, msr);
|
|
}
|
|
|
|
/* TODO(adurbin): This should only be done on a cold boot. Also, some
|
|
of these banks are core vs package scope. For now every CPU clears
|
|
every bank. */
|
|
mca_configure();
|
|
|
|
/* TODO install a fallback MC handler for each core in case OS does
|
|
not provide one. Is it really needed? */
|
|
|
|
/* Enable the machine check exception */
|
|
write_cr4(read_cr4() | CR4_MCE);
|
|
}
|
|
|
|
static void configure_thermal_core(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
/* Disable Thermal interrupts */
|
|
msr.lo = 0;
|
|
msr.hi = 0;
|
|
wrmsr(IA32_THERM_INTERRUPT, msr);
|
|
wrmsr(IA32_PACKAGE_THERM_INTERRUPT, msr);
|
|
|
|
msr = rdmsr(IA32_MISC_ENABLE);
|
|
msr.lo |= THERMAL_MONITOR_ENABLE_BIT; /* TM1/TM2/EMTTM enable */
|
|
wrmsr(IA32_MISC_ENABLE, msr);
|
|
}
|
|
|
|
static void denverton_core_init(struct device *cpu)
|
|
{
|
|
msr_t msr;
|
|
|
|
printk(BIOS_DEBUG, "Init Denverton-NS SoC cores.\n");
|
|
|
|
/* Clear out pending MCEs */
|
|
dnv_configure_mca();
|
|
|
|
/* Configure Thermal Sensors */
|
|
configure_thermal_core();
|
|
|
|
/* Enable Fast Strings */
|
|
msr = rdmsr(IA32_MISC_ENABLE);
|
|
msr.lo |= FAST_STRINGS_ENABLE_BIT;
|
|
wrmsr(IA32_MISC_ENABLE, msr);
|
|
|
|
set_aesni_lock();
|
|
|
|
/* Enable Turbo */
|
|
enable_turbo();
|
|
|
|
/* Enable speed step. Always ON.*/
|
|
msr = rdmsr(IA32_MISC_ENABLE);
|
|
msr.lo |= SPEED_STEP_ENABLE_BIT;
|
|
wrmsr(IA32_MISC_ENABLE, msr);
|
|
|
|
enable_pm_timer_emulation();
|
|
}
|
|
|
|
static struct device_operations cpu_dev_ops = {
|
|
.init = denverton_core_init,
|
|
};
|
|
|
|
static const struct cpu_device_id cpu_table[] = {
|
|
{X86_VENDOR_INTEL,
|
|
CPUID_DENVERTON_A0_A1}, /* Denverton-NS A0/A1 CPUID */
|
|
{X86_VENDOR_INTEL, CPUID_DENVERTON_B0}, /* Denverton-NS B0 CPUID */
|
|
{0, 0},
|
|
};
|
|
|
|
static const struct cpu_driver driver __cpu_driver = {
|
|
.ops = &cpu_dev_ops,
|
|
.id_table = cpu_table,
|
|
};
|
|
|
|
/*
|
|
* MP and SMM loading initialization.
|
|
*/
|
|
|
|
static void relocation_handler(int cpu, uintptr_t curr_smbase,
|
|
uintptr_t staggered_smbase)
|
|
{
|
|
msr_t smrr;
|
|
em64t100_smm_state_save_area_t *smm_state;
|
|
(void)cpu;
|
|
|
|
/* Set up SMRR. */
|
|
smrr.lo = relo_attrs.smrr_base;
|
|
smrr.hi = 0;
|
|
wrmsr(IA32_SMRR_PHYS_BASE, smrr);
|
|
smrr.lo = relo_attrs.smrr_mask;
|
|
smrr.hi = 0;
|
|
wrmsr(IA32_SMRR_PHYS_MASK, smrr);
|
|
smm_state = (void *)(SMM_EM64T100_SAVE_STATE_OFFSET + curr_smbase);
|
|
smm_state->smbase = staggered_smbase;
|
|
}
|
|
|
|
static void get_smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
|
size_t *smm_save_state_size)
|
|
{
|
|
uintptr_t smm_base;
|
|
size_t smm_size;
|
|
uintptr_t handler_base;
|
|
size_t handler_size;
|
|
|
|
/* All range registers are aligned to 4KiB */
|
|
const uint32_t rmask = ~((1 << 12) - 1);
|
|
|
|
/* Initialize global tracking state. */
|
|
smm_region(&smm_base, &smm_size);
|
|
smm_subregion(SMM_SUBREGION_HANDLER, &handler_base, &handler_size);
|
|
|
|
relo_attrs.smbase = smm_base;
|
|
relo_attrs.smrr_base = relo_attrs.smbase | MTRR_TYPE_WRBACK;
|
|
relo_attrs.smrr_mask = ~(smm_size - 1) & rmask;
|
|
relo_attrs.smrr_mask |= MTRR_PHYS_MASK_VALID;
|
|
|
|
*perm_smbase = handler_base;
|
|
*perm_smsize = handler_size;
|
|
*smm_save_state_size = sizeof(em64t100_smm_state_save_area_t);
|
|
}
|
|
|
|
static int detect_num_cpus_via_cpuid(void)
|
|
{
|
|
register int ecx = 0;
|
|
struct cpuid_result leaf_b;
|
|
|
|
while (1) {
|
|
leaf_b = cpuid_ext(0xb, ecx);
|
|
|
|
/* Processor doesn't have hyperthreading so just determine the
|
|
* number of cores by from level type (ecx[15:8] == * 2). */
|
|
if ((leaf_b.ecx & 0xff00) == 0x0200)
|
|
break;
|
|
ecx++;
|
|
}
|
|
return (leaf_b.ebx & 0xffff);
|
|
}
|
|
|
|
static int detect_num_cpus_via_mch(void)
|
|
{
|
|
/* Assumes that FSP has already programmed the cores disabled register
|
|
*/
|
|
u32 core_exists_mask, active_cores_mask;
|
|
u32 core_disable_mask;
|
|
register int active_cores = 0, total_cores = 0;
|
|
register int counter = 0;
|
|
|
|
/* Get Masks for Total Existing SOC Cores and Core Disable Mask */
|
|
core_exists_mask = MMIO32(DEFAULT_MCHBAR + MCH_BAR_CORE_EXISTS_MASK);
|
|
core_disable_mask = MMIO32(DEFAULT_MCHBAR + MCH_BAR_CORE_DISABLE_MASK);
|
|
active_cores_mask = (~core_disable_mask) & core_exists_mask;
|
|
|
|
/* Calculate Number of Active Cores */
|
|
for (; counter < CONFIG_MAX_CPUS;
|
|
counter++, active_cores_mask >>= 1, core_exists_mask >>= 1) {
|
|
active_cores += (active_cores_mask & CORE_BIT_MSK);
|
|
total_cores += (core_exists_mask & CORE_BIT_MSK);
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "Number of Active Cores: %d of %d total.\n",
|
|
active_cores, total_cores);
|
|
|
|
return active_cores;
|
|
}
|
|
|
|
/* Find CPU topology */
|
|
int get_cpu_count(void)
|
|
{
|
|
int num_cpus = detect_num_cpus_via_mch();
|
|
|
|
if (num_cpus <= 0 || num_cpus > CONFIG_MAX_CPUS) {
|
|
num_cpus = detect_num_cpus_via_cpuid();
|
|
printk(BIOS_DEBUG, "Number of Cores (CPUID): %d.\n", num_cpus);
|
|
}
|
|
return num_cpus;
|
|
}
|
|
|
|
static void set_max_turbo_freq(void)
|
|
{
|
|
msr_t msr, perf_ctl;
|
|
|
|
perf_ctl.hi = 0;
|
|
|
|
/* Check for configurable TDP option */
|
|
if (get_turbo_state() == TURBO_ENABLED) {
|
|
msr = rdmsr(MSR_TURBO_RATIO_LIMIT);
|
|
perf_ctl.lo = (msr.lo & 0xff) << 8;
|
|
|
|
} else if (cpu_config_tdp_levels()) {
|
|
/* Set to nominal TDP ratio */
|
|
msr = rdmsr(MSR_CONFIG_TDP_NOMINAL);
|
|
perf_ctl.lo = (msr.lo & 0xff) << 8;
|
|
|
|
} else {
|
|
/* Platform Info bits 15:8 give max ratio */
|
|
msr = rdmsr(MSR_PLATFORM_INFO);
|
|
perf_ctl.lo = msr.lo & 0xff00;
|
|
}
|
|
wrmsr(IA32_PERF_CTL, perf_ctl);
|
|
|
|
printk(BIOS_DEBUG, "cpu: frequency set to %d\n",
|
|
((perf_ctl.lo >> 8) & 0xff) * CPU_BCLK);
|
|
}
|
|
|
|
/*
|
|
* Do essential initialization tasks before APs can be fired up
|
|
*
|
|
* 1. Prevent race condition in MTRR solution. Enable MTRRs on the BSP. This
|
|
* creates the MTRR solution that the APs will use. Otherwise APs will try to
|
|
* apply the incomplete solution as the BSP is calculating it.
|
|
*/
|
|
static void pre_mp_init(void)
|
|
{
|
|
x86_setup_mtrrs_with_detect();
|
|
x86_mtrr_check();
|
|
}
|
|
|
|
static void post_mp_init(void)
|
|
{
|
|
/* Set Max Ratio */
|
|
set_max_turbo_freq();
|
|
|
|
/*
|
|
* Now that all APs have been relocated as well as the BSP let SMIs
|
|
* start flowing.
|
|
*/
|
|
global_smi_enable();
|
|
}
|
|
|
|
/*
|
|
* CPU initialization recipe
|
|
*
|
|
* Note that no microcode update is passed to the init function. CSE updates
|
|
* the microcode on all cores before releasing them from reset. That means that
|
|
* the BSP and all APs will come up with the same microcode revision.
|
|
*/
|
|
static const struct mp_ops mp_ops = {
|
|
.pre_mp_init = pre_mp_init,
|
|
.get_cpu_count = get_cpu_count,
|
|
.get_smm_info = get_smm_info,
|
|
.pre_mp_smm_init = smm_southbridge_clear_state,
|
|
.relocation_handler = relocation_handler,
|
|
.post_mp_init = post_mp_init,
|
|
};
|
|
|
|
void denverton_init_cpus(struct device *dev)
|
|
{
|
|
/*
|
|
* Ensure there is at least one bus downstream to the CPU device. If not, then create a
|
|
* new link. This can occur if the mainboard does not add any APIC device in the device
|
|
* tree.
|
|
*/
|
|
if (!dev->link_list)
|
|
add_more_links(dev, 1);
|
|
|
|
/* Clear for take-off */
|
|
if (mp_init_with_smm(dev->link_list, &mp_ops) < 0)
|
|
printk(BIOS_ERR, "MP initialization failure.\n");
|
|
}
|