coreboot-kgpe-d16/src/southbridge/intel/common/spi.c
Elyes HAOUAS 68c851bcd7 src: Get rid of device_t
Use of device_t is deprecated.

Change-Id: I6adc0429ae9ecc8f726d6167a6458d9333dc515f
Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr>
Reviewed-on: https://review.coreboot.org/27036
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2018-06-14 09:30:24 +00:00

1068 lines
27 KiB
C

/*
* Copyright (c) 2011 The Chromium OS Authors.
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
* Copyright (C) 2011 Stefan Tauner
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* This file is derived from the flashrom project. */
#include <arch/early_variables.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <compiler.h>
#include <bootstate.h>
#include <commonlib/helpers.h>
#include <delay.h>
#include <arch/io.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <device/pci.h>
#include <spi_flash.h>
#include <spi-generic.h>
#define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */
#define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF)
#define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */
#define HSFC_FDBC (0x3f << HSFC_FDBC_OFF)
#ifdef __SMM__
#include <arch/io.h>
#define pci_read_config_byte(dev, reg, targ)\
*(targ) = pci_read_config8(dev, reg)
#define pci_read_config_word(dev, reg, targ)\
*(targ) = pci_read_config16(dev, reg)
#define pci_read_config_dword(dev, reg, targ)\
*(targ) = pci_read_config32(dev, reg)
#define pci_write_config_byte(dev, reg, val)\
pci_write_config8(dev, reg, val)
#define pci_write_config_word(dev, reg, val)\
pci_write_config16(dev, reg, val)
#define pci_write_config_dword(dev, reg, val)\
pci_write_config32(dev, reg, val)
#else /* !__SMM__ */
#include <device/device.h>
#include <device/pci.h>
#define pci_read_config_byte(dev, reg, targ)\
*(targ) = pci_read_config8(dev, reg)
#define pci_read_config_word(dev, reg, targ)\
*(targ) = pci_read_config16(dev, reg)
#define pci_read_config_dword(dev, reg, targ)\
*(targ) = pci_read_config32(dev, reg)
#define pci_write_config_byte(dev, reg, val)\
pci_write_config8(dev, reg, val)
#define pci_write_config_word(dev, reg, val)\
pci_write_config16(dev, reg, val)
#define pci_write_config_dword(dev, reg, val)\
pci_write_config32(dev, reg, val)
#endif /* !__SMM__ */
static int spi_is_multichip(void);
typedef struct spi_slave ich_spi_slave;
static int g_ichspi_lock CAR_GLOBAL = 0;
typedef struct ich7_spi_regs {
uint16_t spis;
uint16_t spic;
uint32_t spia;
uint64_t spid[8];
uint64_t _pad;
uint32_t bbar;
uint16_t preop;
uint16_t optype;
uint8_t opmenu[8];
uint32_t pbr[3];
} __packed ich7_spi_regs;
typedef struct ich9_spi_regs {
uint32_t bfpr;
uint16_t hsfs;
uint16_t hsfc;
uint32_t faddr;
uint32_t _reserved0;
uint32_t fdata[16];
uint32_t frap;
uint32_t freg[5];
uint32_t _reserved1[3];
uint32_t pr[5];
uint32_t _reserved2[2];
uint8_t ssfs;
uint8_t ssfc[3];
uint16_t preop;
uint16_t optype;
uint8_t opmenu[8];
uint32_t bbar;
uint8_t _reserved3[12];
uint32_t fdoc;
uint32_t fdod;
uint8_t _reserved4[8];
uint32_t afc;
uint32_t lvscc;
uint32_t uvscc;
uint8_t _reserved5[4];
uint32_t fpb;
uint8_t _reserved6[28];
uint32_t srdl;
uint32_t srdc;
uint32_t srd;
} __packed ich9_spi_regs;
typedef struct ich_spi_controller {
int locked;
uint32_t flmap0;
uint32_t hsfs;
ich9_spi_regs *ich9_spi;
uint8_t *opmenu;
int menubytes;
uint16_t *preop;
uint16_t *optype;
uint32_t *addr;
uint8_t *data;
unsigned databytes;
uint8_t *status;
uint16_t *control;
uint32_t *bbar;
uint32_t *fpr;
uint8_t fpr_max;
} ich_spi_controller;
static ich_spi_controller g_cntlr CAR_GLOBAL;
enum {
SPIS_SCIP = 0x0001,
SPIS_GRANT = 0x0002,
SPIS_CDS = 0x0004,
SPIS_FCERR = 0x0008,
SSFS_AEL = 0x0010,
SPIS_LOCK = 0x8000,
SPIS_RESERVED_MASK = 0x7ff0,
SSFS_RESERVED_MASK = 0x7fe2
};
enum {
SPIC_SCGO = 0x000002,
SPIC_ACS = 0x000004,
SPIC_SPOP = 0x000008,
SPIC_DBC = 0x003f00,
SPIC_DS = 0x004000,
SPIC_SME = 0x008000,
SSFC_SCF_MASK = 0x070000,
SSFC_RESERVED = 0xf80000
};
enum {
HSFS_FDONE = 0x0001,
HSFS_FCERR = 0x0002,
HSFS_AEL = 0x0004,
HSFS_BERASE_MASK = 0x0018,
HSFS_BERASE_SHIFT = 3,
HSFS_SCIP = 0x0020,
HSFS_FDOPSS = 0x2000,
HSFS_FDV = 0x4000,
HSFS_FLOCKDN = 0x8000
};
enum {
HSFC_FGO = 0x0001,
HSFC_FCYCLE_MASK = 0x0006,
HSFC_FCYCLE_SHIFT = 1,
HSFC_FDBC_MASK = 0x3f00,
HSFC_FDBC_SHIFT = 8,
HSFC_FSMIE = 0x8000
};
enum {
SPI_OPCODE_TYPE_READ_NO_ADDRESS = 0,
SPI_OPCODE_TYPE_WRITE_NO_ADDRESS = 1,
SPI_OPCODE_TYPE_READ_WITH_ADDRESS = 2,
SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS = 3
};
#if IS_ENABLED(CONFIG_DEBUG_SPI_FLASH)
static u8 readb_(const void *addr)
{
u8 v = read8(addr);
printk(BIOS_DEBUG, "read %2.2x from %4.4x\n",
v, ((unsigned) addr & 0xffff) - 0xf020);
return v;
}
static u16 readw_(const void *addr)
{
u16 v = read16(addr);
printk(BIOS_DEBUG, "read %4.4x from %4.4x\n",
v, ((unsigned) addr & 0xffff) - 0xf020);
return v;
}
static u32 readl_(const void *addr)
{
u32 v = read32(addr);
printk(BIOS_DEBUG, "read %8.8x from %4.4x\n",
v, ((unsigned) addr & 0xffff) - 0xf020);
return v;
}
static void writeb_(u8 b, void *addr)
{
write8(addr, b);
printk(BIOS_DEBUG, "wrote %2.2x to %4.4x\n",
b, ((unsigned) addr & 0xffff) - 0xf020);
}
static void writew_(u16 b, void *addr)
{
write16(addr, b);
printk(BIOS_DEBUG, "wrote %4.4x to %4.4x\n",
b, ((unsigned) addr & 0xffff) - 0xf020);
}
static void writel_(u32 b, void *addr)
{
write32(addr, b);
printk(BIOS_DEBUG, "wrote %8.8x to %4.4x\n",
b, ((unsigned) addr & 0xffff) - 0xf020);
}
#else /* CONFIG_DEBUG_SPI_FLASH ^^^ enabled vvv NOT enabled */
#define readb_(a) read8(a)
#define readw_(a) read16(a)
#define readl_(a) read32(a)
#define writeb_(val, addr) write8(addr, val)
#define writew_(val, addr) write16(addr, val)
#define writel_(val, addr) write32(addr, val)
#endif /* CONFIG_DEBUG_SPI_FLASH ^^^ NOT enabled */
static void write_reg(const void *value, void *dest, uint32_t size)
{
const uint8_t *bvalue = value;
uint8_t *bdest = dest;
while (size >= 4) {
writel_(*(const uint32_t *)bvalue, bdest);
bdest += 4; bvalue += 4; size -= 4;
}
while (size) {
writeb_(*bvalue, bdest);
bdest++; bvalue++; size--;
}
}
static void read_reg(const void *src, void *value, uint32_t size)
{
const uint8_t *bsrc = src;
uint8_t *bvalue = value;
while (size >= 4) {
*(uint32_t *)bvalue = readl_(bsrc);
bsrc += 4; bvalue += 4; size -= 4;
}
while (size) {
*bvalue = readb_(bsrc);
bsrc++; bvalue++; size--;
}
}
static void ich_set_bbar(uint32_t minaddr)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
const uint32_t bbar_mask = 0x00ffff00;
uint32_t ichspi_bbar;
minaddr &= bbar_mask;
ichspi_bbar = readl_(cntlr->bbar) & ~bbar_mask;
ichspi_bbar |= minaddr;
writel_(ichspi_bbar, cntlr->bbar);
}
void spi_init(void)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint8_t *rcrb; /* Root Complex Register Block */
uint32_t rcba; /* Root Complex Base Address */
uint8_t bios_cntl;
ich9_spi_regs *ich9_spi;
ich7_spi_regs *ich7_spi;
uint16_t hsfs;
#ifdef __SIMPLE_DEVICE__
pci_devfn_t dev = PCI_DEV(0, 31, 0);
#else
struct device *dev = dev_find_slot(0, PCI_DEVFN(31, 0));
#endif
pci_read_config_dword(dev, 0xf0, &rcba);
/* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */
rcrb = (uint8_t *)(rcba & 0xffffc000);
if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) {
ich7_spi = (ich7_spi_regs *)(rcrb + 0x3020);
cntlr->opmenu = ich7_spi->opmenu;
cntlr->menubytes = sizeof(ich7_spi->opmenu);
cntlr->optype = &ich7_spi->optype;
cntlr->addr = &ich7_spi->spia;
cntlr->data = (uint8_t *)ich7_spi->spid;
cntlr->databytes = sizeof(ich7_spi->spid);
cntlr->status = (uint8_t *)&ich7_spi->spis;
car_set_var(g_ichspi_lock, readw_(&ich7_spi->spis) & HSFS_FLOCKDN);
cntlr->control = &ich7_spi->spic;
cntlr->bbar = &ich7_spi->bbar;
cntlr->preop = &ich7_spi->preop;
cntlr->fpr = &ich7_spi->pbr[0];
cntlr->fpr_max = 3;
} else {
ich9_spi = (ich9_spi_regs *)(rcrb + 0x3800);
cntlr->ich9_spi = ich9_spi;
hsfs = readw_(&ich9_spi->hsfs);
car_set_var(g_ichspi_lock, hsfs & HSFS_FLOCKDN);
cntlr->hsfs = hsfs;
cntlr->opmenu = ich9_spi->opmenu;
cntlr->menubytes = sizeof(ich9_spi->opmenu);
cntlr->optype = &ich9_spi->optype;
cntlr->addr = &ich9_spi->faddr;
cntlr->data = (uint8_t *)ich9_spi->fdata;
cntlr->databytes = sizeof(ich9_spi->fdata);
cntlr->status = &ich9_spi->ssfs;
cntlr->control = (uint16_t *)ich9_spi->ssfc;
cntlr->bbar = &ich9_spi->bbar;
cntlr->preop = &ich9_spi->preop;
cntlr->fpr = &ich9_spi->pr[0];
cntlr->fpr_max = 5;
if (cntlr->hsfs & HSFS_FDV) {
writel_ (4, &ich9_spi->fdoc);
cntlr->flmap0 = readl_(&ich9_spi->fdod);
}
}
ich_set_bbar(0);
/* Disable the BIOS write protect so write commands are allowed. */
pci_read_config_byte(dev, 0xdc, &bios_cntl);
/* Deassert SMM BIOS Write Protect Disable. */
bios_cntl &= ~(1 << 5);
pci_write_config_byte(dev, 0xdc, bios_cntl | 0x1);
}
static void spi_init_cb(void *unused)
{
spi_init();
}
BOOT_STATE_INIT_ENTRY(BS_DEV_INIT, BS_ON_ENTRY, spi_init_cb, NULL);
typedef struct spi_transaction {
const uint8_t *out;
uint32_t bytesout;
uint8_t *in;
uint32_t bytesin;
uint8_t type;
uint8_t opcode;
uint32_t offset;
} spi_transaction;
static inline void spi_use_out(spi_transaction *trans, unsigned bytes)
{
trans->out += bytes;
trans->bytesout -= bytes;
}
static inline void spi_use_in(spi_transaction *trans, unsigned bytes)
{
trans->in += bytes;
trans->bytesin -= bytes;
}
static void spi_setup_type(spi_transaction *trans)
{
trans->type = 0xFF;
/* Try to guess spi type from read/write sizes. */
if (trans->bytesin == 0) {
if (trans->bytesout > 4)
/*
* If bytesin = 0 and bytesout > 4, we presume this is
* a write data operation, which is accompanied by an
* address.
*/
trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
else
trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
return;
}
if (trans->bytesout == 1) { /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
return;
}
if (trans->bytesout == 4) { /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
}
/* Fast read command is called with 5 bytes instead of 4 */
if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) {
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
--trans->bytesout;
}
}
static int spi_setup_opcode(spi_transaction *trans)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t optypes;
uint8_t opmenu[cntlr->menubytes];
trans->opcode = trans->out[0];
spi_use_out(trans, 1);
if (!car_get_var(g_ichspi_lock)) {
/* The lock is off, so just use index 0. */
writeb_(trans->opcode, cntlr->opmenu);
optypes = readw_(cntlr->optype);
optypes = (optypes & 0xfffc) | (trans->type & 0x3);
writew_(optypes, cntlr->optype);
return 0;
} else {
/* The lock is on. See if what we need is on the menu. */
uint8_t optype;
uint16_t opcode_index;
/* Write Enable is handled as atomic prefix */
if (trans->opcode == SPI_OPCODE_WREN)
return 0;
read_reg(cntlr->opmenu, opmenu, sizeof(opmenu));
for (opcode_index = 0; opcode_index < cntlr->menubytes;
opcode_index++) {
if (opmenu[opcode_index] == trans->opcode)
break;
}
if (opcode_index == cntlr->menubytes) {
printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n",
trans->opcode);
return -1;
}
optypes = readw_(cntlr->optype);
optype = (optypes >> (opcode_index * 2)) & 0x3;
if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
trans->bytesout >= 3) {
/* We guessed wrong earlier. Fix it up. */
trans->type = optype;
}
if (optype != trans->type) {
printk(BIOS_DEBUG, "ICH SPI: Transaction doesn't fit type %d\n",
optype);
return -1;
}
return opcode_index;
}
}
static int spi_setup_offset(spi_transaction *trans)
{
/* Separate the SPI address and data. */
switch (trans->type) {
case SPI_OPCODE_TYPE_READ_NO_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS:
return 0;
case SPI_OPCODE_TYPE_READ_WITH_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS:
trans->offset = ((uint32_t)trans->out[0] << 16) |
((uint32_t)trans->out[1] << 8) |
((uint32_t)trans->out[2] << 0);
spi_use_out(trans, 3);
return 1;
default:
printk(BIOS_DEBUG, "Unrecognized SPI transaction type %#x\n", trans->type);
return -1;
}
}
/*
* Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
* below is True) or 0. In case the wait was for the bit(s) to set - write
* those bits back, which would cause resetting them.
*
* Return the last read status value on success or -1 on failure.
*/
static int ich_status_poll(u16 bitmask, int wait_til_set)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
int timeout = 600000; /* This will result in 6 seconds */
u16 status = 0;
while (timeout--) {
status = readw_(cntlr->status);
if (wait_til_set ^ ((status & bitmask) == 0)) {
if (wait_til_set)
writew_((status & bitmask), cntlr->status);
return status;
}
udelay(10);
}
printk(BIOS_DEBUG, "ICH SPI: SCIP timeout, read %x, bitmask %x\n",
status, bitmask);
return -1;
}
static int spi_is_multichip (void)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
if (!(cntlr->hsfs & HSFS_FDV))
return 0;
return !!((cntlr->flmap0 >> 8) & 3);
}
static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
size_t bytesout, void *din, size_t bytesin)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t control;
int16_t opcode_index;
int with_address;
int status;
spi_transaction trans = {
dout, bytesout,
din, bytesin,
0xff, 0xff, 0
};
/* There has to always at least be an opcode. */
if (!bytesout || !dout) {
printk(BIOS_DEBUG, "ICH SPI: No opcode for transfer\n");
return -1;
}
/* Make sure if we read something we have a place to put it. */
if (bytesin != 0 && !din) {
printk(BIOS_DEBUG, "ICH SPI: Read but no target buffer\n");
return -1;
}
if (ich_status_poll(SPIS_SCIP, 0) == -1)
return -1;
writew_(SPIS_CDS | SPIS_FCERR, cntlr->status);
spi_setup_type(&trans);
if ((opcode_index = spi_setup_opcode(&trans)) < 0)
return -1;
if ((with_address = spi_setup_offset(&trans)) < 0)
return -1;
if (trans.opcode == SPI_OPCODE_WREN) {
/*
* Treat Write Enable as Atomic Pre-Op if possible
* in order to prevent the Management Engine from
* issuing a transaction between WREN and DATA.
*/
if (!car_get_var(g_ichspi_lock))
writew_(trans.opcode, cntlr->preop);
return 0;
}
/* Preset control fields */
control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
/* Issue atomic preop cycle if needed */
if (readw_(cntlr->preop))
control |= SPIC_ACS;
if (!trans.bytesout && !trans.bytesin) {
/* SPI addresses are 24 bit only */
if (with_address)
writel_(trans.offset & 0x00FFFFFF, cntlr->addr);
/*
* This is a 'no data' command (like Write Enable), its
* bitesout size was 1, decremented to zero while executing
* spi_setup_opcode() above. Tell the chip to send the
* command.
*/
writew_(control, cntlr->control);
/* wait for the result */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
if (status == -1)
return -1;
if (status & SPIS_FCERR) {
printk(BIOS_DEBUG, "ICH SPI: Command transaction error\n");
return -1;
}
return 0;
}
/*
* Check if this is a write command attempting to transfer more bytes
* than the controller can handle. Iterations for writes are not
* supported here because each SPI write command needs to be preceded
* and followed by other SPI commands, and this sequence is controlled
* by the SPI chip driver.
*/
if (trans.bytesout > cntlr->databytes) {
printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use"
" spi_crop_chunk()?\n");
return -1;
}
/*
* Read or write up to databytes bytes at a time until everything has
* been sent.
*/
while (trans.bytesout || trans.bytesin) {
uint32_t data_length;
/* SPI addresses are 24 bit only */
writel_(trans.offset & 0x00FFFFFF, cntlr->addr);
if (trans.bytesout)
data_length = min(trans.bytesout, cntlr->databytes);
else
data_length = min(trans.bytesin, cntlr->databytes);
/* Program data into FDATA0 to N */
if (trans.bytesout) {
write_reg(trans.out, cntlr->data, data_length);
spi_use_out(&trans, data_length);
if (with_address)
trans.offset += data_length;
}
/* Add proper control fields' values */
control &= ~((cntlr->databytes - 1) << 8);
control |= SPIC_DS;
control |= (data_length - 1) << 8;
/* write it */
writew_(control, cntlr->control);
/* Wait for Cycle Done Status or Flash Cycle Error. */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
if (status == -1)
return -1;
if (status & SPIS_FCERR) {
printk(BIOS_DEBUG, "ICH SPI: Data transaction error\n");
return -1;
}
if (trans.bytesin) {
read_reg(cntlr->data, trans.in, data_length);
spi_use_in(&trans, data_length);
if (with_address)
trans.offset += data_length;
}
}
/* Clear atomic preop now that xfer is done */
writew_(0, cntlr->preop);
return 0;
}
/* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */
static void ich_hwseq_set_addr(uint32_t addr)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint32_t addr_old = readl_(&cntlr->ich9_spi->faddr) & ~0x01FFFFFF;
writel_((addr & 0x01FFFFFF) | addr_old, &cntlr->ich9_spi->faddr);
}
/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
Resets all error flags in HSFS.
Returns 0 if the cycle completes successfully without errors within
timeout us, 1 on errors. */
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
unsigned int len)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t hsfs;
uint32_t addr;
timeout /= 8; /* scale timeout duration to counter */
while ((((hsfs = readw_(&cntlr->ich9_spi->hsfs)) &
(HSFS_FDONE | HSFS_FCERR)) == 0) &&
--timeout) {
udelay(8);
}
writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
if (!timeout) {
uint16_t hsfc;
addr = readl_(&cntlr->ich9_spi->faddr) & 0x01FFFFFF;
hsfc = readw_(&cntlr->ich9_spi->hsfc);
printk(BIOS_ERR, "Transaction timeout between offset 0x%08x and "
"0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
addr, addr + len - 1, addr, len - 1,
hsfc, hsfs);
return 1;
}
if (hsfs & HSFS_FCERR) {
uint16_t hsfc;
addr = readl_(&cntlr->ich9_spi->faddr) & 0x01FFFFFF;
hsfc = readw_(&cntlr->ich9_spi->hsfc);
printk(BIOS_ERR, "Transaction error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
addr, addr + len - 1, addr, len - 1,
hsfc, hsfs);
return 1;
}
return 0;
}
static int ich_hwseq_erase(const struct spi_flash *flash, u32 offset,
size_t len)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
u32 start, end, erase_size;
int ret;
uint16_t hsfc;
uint16_t timeout = 1000 * 60;
erase_size = flash->sector_size;
if (offset % erase_size || len % erase_size) {
printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n");
return -1;
}
ret = spi_claim_bus(&flash->spi);
if (ret) {
printk(BIOS_ERR, "SF: Unable to claim SPI bus\n");
return ret;
}
start = offset;
end = start + len;
while (offset < end) {
/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
ich_hwseq_set_addr(offset);
offset += erase_size;
hsfc = readw_(&cntlr->ich9_spi->hsfc);
hsfc &= ~HSFC_FCYCLE; /* clear operation */
hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
hsfc |= HSFC_FGO; /* start */
writew_(hsfc, &cntlr->ich9_spi->hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, len))
{
printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size);
ret = -1;
goto out;
}
}
printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start);
out:
spi_release_bus(&flash->spi);
return ret;
}
static void ich_read_data(uint8_t *data, int len)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
int i;
uint32_t temp32 = 0;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = readl_(cntlr->data + i);
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
}
}
static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len,
void *buf)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
if (addr + len > flash->size) {
printk (BIOS_ERR,
"Attempt to read %x-%x which is out of chip\n",
(unsigned) addr,
(unsigned) addr+(unsigned) len);
return -1;
}
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
while (len > 0) {
block_len = min(len, cntlr->databytes);
if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1;
ich_hwseq_set_addr(addr);
hsfc = readw_(&cntlr->ich9_spi->hsfc);
hsfc &= ~HSFC_FCYCLE; /* set read operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */
writew_(hsfc, &cntlr->ich9_spi->hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
return 1;
ich_read_data(buf, block_len);
addr += block_len;
buf += block_len;
len -= block_len;
}
return 0;
}
/* Fill len bytes from the data array into the fdata/spid registers.
*
* Note that using len > flash->pgm->spi.max_data_write will trash the registers
* following the data registers.
*/
static void ich_fill_data(const uint8_t *data, int len)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint32_t temp32 = 0;
int i;
if (len <= 0)
return;
for (i = 0; i < len; i++) {
if ((i % 4) == 0)
temp32 = 0;
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
writel_(temp32, cntlr->data + (i - (i % 4)));
}
i--;
if ((i % 4) != 3) /* Write remaining data to regs. */
writel_(temp32, cntlr->data + (i - (i % 4)));
}
static int ich_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len,
const void *buf)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t hsfc;
uint16_t timeout = 100 * 60;
uint8_t block_len;
uint32_t start = addr;
if (addr + len > flash->size) {
printk (BIOS_ERR,
"Attempt to write 0x%x-0x%x which is out of chip\n",
(unsigned)addr, (unsigned) (addr+len));
return -1;
}
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
while (len > 0) {
block_len = min(len, cntlr->databytes);
if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1;
ich_hwseq_set_addr(addr);
ich_fill_data(buf, block_len);
hsfc = readw_(&cntlr->ich9_spi->hsfc);
hsfc &= ~HSFC_FCYCLE; /* clear operation */
hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */
writew_(hsfc, &cntlr->ich9_spi->hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
{
printk (BIOS_ERR, "SF: write failure at %x\n",
addr);
return -1;
}
addr += block_len;
buf += block_len;
len -= block_len;
}
printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n",
(unsigned) (addr - start), start);
return 0;
}
static const struct spi_flash_ops spi_flash_ops = {
.read = ich_hwseq_read,
.write = ich_hwseq_write,
.erase = ich_hwseq_erase,
};
static int spi_flash_programmer_probe(const struct spi_slave *spi,
struct spi_flash *flash)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint32_t flcomp;
if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX))
return spi_flash_generic_probe(spi, flash);
/* Try generic probing first if spi_is_multichip returns 0. */
if (!spi_is_multichip() && !spi_flash_generic_probe(spi, flash))
return 0;
memcpy(&flash->spi, spi, sizeof(*spi));
flash->name = "Opaque HW-sequencing";
ich_hwseq_set_addr (0);
switch ((cntlr->hsfs >> 3) & 3)
{
case 0:
flash->sector_size = 256;
break;
case 1:
flash->sector_size = 4096;
break;
case 2:
flash->sector_size = 8192;
break;
case 3:
flash->sector_size = 65536;
break;
}
writel_ (0x1000, &cntlr->ich9_spi->fdoc);
flcomp = readl_(&cntlr->ich9_spi->fdod);
flash->size = 1 << (19 + (flcomp & 7));
flash->ops = &spi_flash_ops;
if ((cntlr->hsfs & HSFS_FDV) && ((cntlr->flmap0 >> 8) & 3))
flash->size += 1 << (19 + ((flcomp >> 3) & 7));
printk (BIOS_DEBUG, "flash size 0x%x bytes\n", flash->size);
return 0;
}
static int xfer_vectors(const struct spi_slave *slave,
struct spi_op vectors[], size_t count)
{
return spi_flash_vector_helper(slave, vectors, count, spi_ctrlr_xfer);
}
#define SPI_FPR_SHIFT 12
#define ICH7_SPI_FPR_MASK 0xfff
#define ICH9_SPI_FPR_MASK 0x1fff
#define SPI_FPR_BASE_SHIFT 0
#define ICH7_SPI_FPR_LIMIT_SHIFT 12
#define ICH9_SPI_FPR_LIMIT_SHIFT 16
#define ICH9_SPI_FPR_RPE (1 << 15) /* Read Protect */
#define SPI_FPR_WPE (1 << 31) /* Write Protect */
static u32 spi_fpr(u32 base, u32 limit)
{
u32 ret;
u32 mask, limit_shift;
if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) {
mask = ICH7_SPI_FPR_MASK;
limit_shift = ICH7_SPI_FPR_LIMIT_SHIFT;
} else {
mask = ICH9_SPI_FPR_MASK;
limit_shift = ICH9_SPI_FPR_LIMIT_SHIFT;
}
ret = ((limit >> SPI_FPR_SHIFT) & mask) << limit_shift;
ret |= ((base >> SPI_FPR_SHIFT) & mask) << SPI_FPR_BASE_SHIFT;
return ret;
}
/*
* Protect range of SPI flash defined by [start, start+size-1] using Flash
* Protected Range (FPR) register if available.
* Returns 0 on success, -1 on failure of programming fpr registers.
*/
static int spi_flash_protect(const struct spi_flash *flash,
const struct region *region)
{
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
u32 start = region_offset(region);
u32 end = start + region_sz(region) - 1;
u32 reg;
int fpr;
uint32_t *fpr_base;
fpr_base = cntlr->fpr;
/* Find first empty FPR */
for (fpr = 0; fpr < cntlr->fpr_max; fpr++) {
reg = read32(&fpr_base[fpr]);
if (reg == 0)
break;
}
if (fpr == cntlr->fpr_max) {
printk(BIOS_ERR, "ERROR: No SPI FPR free!\n");
return -1;
}
/* Set protected range base and limit */
reg = spi_fpr(start, end) | SPI_FPR_WPE;
/* Set the FPR register and verify it is protected */
write32(&fpr_base[fpr], reg);
reg = read32(&fpr_base[fpr]);
if (!(reg & SPI_FPR_WPE)) {
printk(BIOS_ERR, "ERROR: Unable to set SPI FPR %d\n", fpr);
return -1;
}
printk(BIOS_INFO, "%s: FPR %d is enabled for range 0x%08x-0x%08x\n",
__func__, fpr, start, end);
return 0;
}
static const struct spi_ctrlr spi_ctrlr = {
.xfer_vector = xfer_vectors,
.max_xfer_size = member_size(ich9_spi_regs, fdata),
.flash_probe = spi_flash_programmer_probe,
.flash_protect = spi_flash_protect,
};
const struct spi_ctrlr_buses spi_ctrlr_bus_map[] = {
{
.ctrlr = &spi_ctrlr,
.bus_start = 0,
.bus_end = 0,
},
};
const size_t spi_ctrlr_bus_map_count = ARRAY_SIZE(spi_ctrlr_bus_map);