1093 lines
32 KiB
C
1093 lines
32 KiB
C
/*
|
|
*
|
|
* Copyright (C) 2015 Google, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <libpayload.h>
|
|
#include <cbfs.h>
|
|
#include <fpmath.h>
|
|
#include <sysinfo.h>
|
|
#include "bitmap.h"
|
|
|
|
/*
|
|
* 'canvas' is the drawing area located in the center of the screen. It's a
|
|
* square area, stretching vertically to the edges of the screen, leaving
|
|
* non-drawing areas on the left and right. The screen is assumed to be
|
|
* landscape.
|
|
*/
|
|
static struct rect canvas;
|
|
static struct rect screen;
|
|
|
|
/*
|
|
* Framebuffer is assumed to assign a higher coordinate (larger x, y) to
|
|
* a higher address
|
|
*/
|
|
static struct cb_framebuffer *fbinfo;
|
|
static uint8_t *fbaddr;
|
|
|
|
#define LOG(x...) printf("CBGFX: " x)
|
|
#define PIVOT_H_MASK (PIVOT_H_LEFT|PIVOT_H_CENTER|PIVOT_H_RIGHT)
|
|
#define PIVOT_V_MASK (PIVOT_V_TOP|PIVOT_V_CENTER|PIVOT_V_BOTTOM)
|
|
#define ROUNDUP(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
|
|
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
|
|
|
static char initialized = 0;
|
|
|
|
static const struct vector vzero = {
|
|
.x = 0,
|
|
.y = 0,
|
|
};
|
|
|
|
static void add_vectors(struct vector *out,
|
|
const struct vector *v1, const struct vector *v2)
|
|
{
|
|
out->x = v1->x + v2->x;
|
|
out->y = v1->y + v2->y;
|
|
}
|
|
|
|
static int is_valid_fraction(const struct fraction *f)
|
|
{
|
|
return f->d != 0;
|
|
}
|
|
|
|
static int is_valid_scale(const struct scale *s)
|
|
{
|
|
return is_valid_fraction(&s->x) && is_valid_fraction(&s->y);
|
|
}
|
|
|
|
static void add_fractions(struct fraction *out,
|
|
const struct fraction *f1, const struct fraction *f2)
|
|
{
|
|
int64_t n, d;
|
|
int shift;
|
|
n = (int64_t)f1->n * f2->d + (int64_t)f2->n * f1->d;
|
|
d = (int64_t)f1->d * f2->d;
|
|
/* Simplest way to reduce the fraction until fitting in int32_t */
|
|
shift = log2(MAX(ABS(n), ABS(d)) >> 31) + 1;
|
|
out->n = n >> shift;
|
|
out->d = d >> shift;
|
|
}
|
|
|
|
static void add_scales(struct scale *out,
|
|
const struct scale *s1, const struct scale *s2)
|
|
{
|
|
add_fractions(&out->x, &s1->x, &s2->x);
|
|
add_fractions(&out->y, &s1->y, &s2->y);
|
|
}
|
|
|
|
/*
|
|
* Transform a vector:
|
|
* x' = x * a_x + offset_x
|
|
* y' = y * a_y + offset_y
|
|
*/
|
|
static int transform_vector(struct vector *out,
|
|
const struct vector *in,
|
|
const struct scale *a,
|
|
const struct vector *offset)
|
|
{
|
|
if (!is_valid_scale(a))
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
out->x = (int64_t)a->x.n * in->x / a->x.d + offset->x;
|
|
out->y = (int64_t)a->y.n * in->y / a->y.d + offset->y;
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Returns 1 if v is exclusively within box, 0 if v is inclusively within box,
|
|
* or -1 otherwise.
|
|
*/
|
|
static int within_box(const struct vector *v, const struct rect *bound)
|
|
{
|
|
if (v->x > bound->offset.x &&
|
|
v->y > bound->offset.y &&
|
|
v->x < bound->offset.x + bound->size.width &&
|
|
v->y < bound->offset.y + bound->size.height)
|
|
return 1;
|
|
else if (v->x >= bound->offset.x &&
|
|
v->y >= bound->offset.y &&
|
|
v->x <= bound->offset.x + bound->size.width &&
|
|
v->y <= bound->offset.y + bound->size.height)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
static inline uint32_t calculate_color(const struct rgb_color *rgb,
|
|
uint8_t invert)
|
|
{
|
|
uint32_t color = 0;
|
|
color |= (rgb->red >> (8 - fbinfo->red_mask_size))
|
|
<< fbinfo->red_mask_pos;
|
|
color |= (rgb->green >> (8 - fbinfo->green_mask_size))
|
|
<< fbinfo->green_mask_pos;
|
|
color |= (rgb->blue >> (8 - fbinfo->blue_mask_size))
|
|
<< fbinfo->blue_mask_pos;
|
|
if (invert)
|
|
color ^= 0xffffffff;
|
|
return color;
|
|
}
|
|
|
|
/*
|
|
* Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim
|
|
* and do the validation at callers' site.
|
|
*/
|
|
static inline void set_pixel(struct vector *coord, uint32_t color)
|
|
{
|
|
const int bpp = fbinfo->bits_per_pixel;
|
|
const int bpl = fbinfo->bytes_per_line;
|
|
struct vector rcoord;
|
|
int i;
|
|
|
|
switch (fbinfo->orientation) {
|
|
case CB_FB_ORIENTATION_NORMAL:
|
|
default:
|
|
rcoord.x = coord->x;
|
|
rcoord.y = coord->y;
|
|
break;
|
|
case CB_FB_ORIENTATION_BOTTOM_UP:
|
|
rcoord.x = screen.size.width - 1 - coord->x;
|
|
rcoord.y = screen.size.height - 1 - coord->y;
|
|
break;
|
|
case CB_FB_ORIENTATION_LEFT_UP:
|
|
rcoord.x = coord->y;
|
|
rcoord.y = screen.size.width - 1 - coord->x;
|
|
break;
|
|
case CB_FB_ORIENTATION_RIGHT_UP:
|
|
rcoord.x = screen.size.height - 1 - coord->y;
|
|
rcoord.y = coord->x;
|
|
break;
|
|
}
|
|
|
|
uint8_t * const pixel = fbaddr + rcoord.y * bpl + rcoord.x * bpp / 8;
|
|
for (i = 0; i < bpp / 8; i++)
|
|
pixel[i] = (color >> (i * 8));
|
|
}
|
|
|
|
/*
|
|
* Initializes the library. Automatically called by APIs. It sets up
|
|
* the canvas and the framebuffer.
|
|
*/
|
|
static int cbgfx_init(void)
|
|
{
|
|
if (initialized)
|
|
return 0;
|
|
|
|
fbinfo = lib_sysinfo.framebuffer;
|
|
if (!fbinfo)
|
|
return CBGFX_ERROR_FRAMEBUFFER_INFO;
|
|
|
|
fbaddr = phys_to_virt((uint8_t *)(uintptr_t)(fbinfo->physical_address));
|
|
if (!fbaddr)
|
|
return CBGFX_ERROR_FRAMEBUFFER_ADDR;
|
|
|
|
switch (fbinfo->orientation) {
|
|
default: /* Normal or rotated 180 degrees. */
|
|
screen.size.width = fbinfo->x_resolution;
|
|
screen.size.height = fbinfo->y_resolution;
|
|
break;
|
|
case CB_FB_ORIENTATION_LEFT_UP: /* 90 degree rotation. */
|
|
case CB_FB_ORIENTATION_RIGHT_UP:
|
|
screen.size.width = fbinfo->y_resolution;
|
|
screen.size.height = fbinfo->x_resolution;
|
|
break;
|
|
}
|
|
screen.offset.x = 0;
|
|
screen.offset.y = 0;
|
|
|
|
/* Calculate canvas size & offset. Canvas is always square. */
|
|
if (screen.size.height > screen.size.width) {
|
|
canvas.size.height = screen.size.width;
|
|
canvas.size.width = canvas.size.height;
|
|
canvas.offset.x = 0;
|
|
canvas.offset.y = (screen.size.height - canvas.size.height) / 2;
|
|
} else {
|
|
canvas.size.height = screen.size.height;
|
|
canvas.size.width = canvas.size.height;
|
|
canvas.offset.x = (screen.size.width - canvas.size.width) / 2;
|
|
canvas.offset.y = 0;
|
|
}
|
|
|
|
initialized = 1;
|
|
LOG("cbgfx initialized: screen:width=%d, height=%d, offset=%d canvas:width=%d, height=%d, offset=%d\n",
|
|
screen.size.width, screen.size.height, screen.offset.x,
|
|
canvas.size.width, canvas.size.height, canvas.offset.x);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int draw_box(const struct rect *box, const struct rgb_color *rgb)
|
|
{
|
|
struct vector top_left;
|
|
struct vector p, t;
|
|
|
|
if (cbgfx_init())
|
|
return CBGFX_ERROR_INIT;
|
|
|
|
const uint32_t color = calculate_color(rgb, 0);
|
|
const struct scale top_left_s = {
|
|
.x = { .n = box->offset.x, .d = CANVAS_SCALE, },
|
|
.y = { .n = box->offset.y, .d = CANVAS_SCALE, }
|
|
};
|
|
const struct scale bottom_right_s = {
|
|
.x = { .n = box->offset.x + box->size.x, .d = CANVAS_SCALE, },
|
|
.y = { .n = box->offset.y + box->size.y, .d = CANVAS_SCALE, }
|
|
};
|
|
|
|
transform_vector(&top_left, &canvas.size, &top_left_s, &canvas.offset);
|
|
transform_vector(&t, &canvas.size, &bottom_right_s, &canvas.offset);
|
|
if (within_box(&t, &canvas) < 0) {
|
|
LOG("Box exceeds canvas boundary\n");
|
|
return CBGFX_ERROR_BOUNDARY;
|
|
}
|
|
|
|
for (p.y = top_left.y; p.y < t.y; p.y++)
|
|
for (p.x = top_left.x; p.x < t.x; p.x++)
|
|
set_pixel(&p, color);
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
int draw_rounded_box(const struct scale *pos_rel, const struct scale *dim_rel,
|
|
const struct rgb_color *rgb,
|
|
const struct fraction *thickness,
|
|
const struct fraction *radius)
|
|
{
|
|
struct scale pos_end_rel;
|
|
struct vector top_left;
|
|
struct vector p, t;
|
|
|
|
if (cbgfx_init())
|
|
return CBGFX_ERROR_INIT;
|
|
|
|
const uint32_t color = calculate_color(rgb, 0);
|
|
|
|
if (!is_valid_scale(pos_rel) || !is_valid_scale(dim_rel))
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
|
|
add_scales(&pos_end_rel, pos_rel, dim_rel);
|
|
transform_vector(&top_left, &canvas.size, pos_rel, &canvas.offset);
|
|
transform_vector(&t, &canvas.size, &pos_end_rel, &canvas.offset);
|
|
if (within_box(&t, &canvas) < 0) {
|
|
LOG("Box exceeds canvas boundary\n");
|
|
return CBGFX_ERROR_BOUNDARY;
|
|
}
|
|
|
|
if (!is_valid_fraction(thickness) || !is_valid_fraction(radius))
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
|
|
struct scale thickness_scale = {
|
|
.x = { .n = thickness->n, .d = thickness->d },
|
|
.y = { .n = thickness->n, .d = thickness->d },
|
|
};
|
|
struct scale radius_scale = {
|
|
.x = { .n = radius->n, .d = radius->d },
|
|
.y = { .n = radius->n, .d = radius->d },
|
|
};
|
|
struct vector d, r, s;
|
|
transform_vector(&d, &canvas.size, &thickness_scale, &vzero);
|
|
transform_vector(&r, &canvas.size, &radius_scale, &vzero);
|
|
const uint8_t has_thickness = d.x > 0 && d.y > 0;
|
|
if (thickness->n != 0 && !has_thickness)
|
|
LOG("Thickness truncated to 0\n");
|
|
const uint8_t has_radius = r.x > 0 && r.y > 0;
|
|
if (radius->n != 0 && !has_radius)
|
|
LOG("Radius truncated to 0\n");
|
|
if (has_radius) {
|
|
if (d.x > r.x || d.y > r.y) {
|
|
LOG("Thickness cannot be greater than radius\n");
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
if (r.x * 2 > t.x - top_left.x || r.y * 2 > t.y - top_left.y) {
|
|
LOG("Radius cannot be greater than half of the box\n");
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
/* Step 1: Draw edges */
|
|
int32_t x_begin, x_end;
|
|
if (has_thickness) {
|
|
/* top */
|
|
for (p.y = top_left.y; p.y < top_left.y + d.y; p.y++)
|
|
for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
|
|
set_pixel(&p, color);
|
|
/* bottom */
|
|
for (p.y = t.y - d.y; p.y < t.y; p.y++)
|
|
for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
|
|
set_pixel(&p, color);
|
|
for (p.y = top_left.y + r.y; p.y < t.y - r.y; p.y++) {
|
|
/* left */
|
|
for (p.x = top_left.x; p.x < top_left.x + d.x; p.x++)
|
|
set_pixel(&p, color);
|
|
/* right */
|
|
for (p.x = t.x - d.x; p.x < t.x; p.x++)
|
|
set_pixel(&p, color);
|
|
}
|
|
} else {
|
|
/* Fill the regions except circular sectors */
|
|
for (p.y = top_left.y; p.y < t.y; p.y++) {
|
|
if (p.y >= top_left.y + r.y && p.y < t.y - r.y) {
|
|
x_begin = top_left.x;
|
|
x_end = t.x;
|
|
} else {
|
|
x_begin = top_left.x + r.x;
|
|
x_end = t.x - r.x;
|
|
}
|
|
for (p.x = x_begin; p.x < x_end; p.x++)
|
|
set_pixel(&p, color);
|
|
}
|
|
}
|
|
|
|
if (!has_radius)
|
|
return CBGFX_SUCCESS;
|
|
|
|
/*
|
|
* Step 2: Draw rounded corners
|
|
* When has_thickness, only the border is drawn. With fixed thickness,
|
|
* the time complexity is linear to the size of the box.
|
|
*/
|
|
if (has_thickness) {
|
|
s.x = r.x - d.x;
|
|
s.y = r.y - d.y;
|
|
} else {
|
|
s.x = 0;
|
|
s.y = 0;
|
|
}
|
|
|
|
/* Use 64 bits to avoid overflow */
|
|
int32_t x, y;
|
|
uint64_t yy;
|
|
const uint64_t rrx = (uint64_t)r.x * r.x, rry = (uint64_t)r.y * r.y;
|
|
const uint64_t ssx = (uint64_t)s.x * s.x, ssy = (uint64_t)s.y * s.y;
|
|
x_begin = 0;
|
|
x_end = 0;
|
|
for (y = r.y - 1; y >= 0; y--) {
|
|
/*
|
|
* The inequality is valid in the beginning of each iteration:
|
|
* y^2 + x_end^2 < r^2
|
|
*/
|
|
yy = (uint64_t)y * y;
|
|
/* Check yy/ssy + xx/ssx < 1 */
|
|
while (yy * ssx + x_begin * x_begin * ssy < ssx * ssy)
|
|
x_begin++;
|
|
/* The inequality must be valid now: y^2 + x_begin >= s^2 */
|
|
x = x_begin;
|
|
/* Check yy/rry + xx/rrx < 1 */
|
|
while (x < x_end || yy * rrx + x * x * rry < rrx * rry) {
|
|
/*
|
|
* Example sequence of (y, x) when s = (4, 4) and
|
|
* r = (5, 5):
|
|
* [(4, 0), (4, 1), (4, 2), (3, 3), (2, 4),
|
|
* (1, 4), (0, 4)].
|
|
* If s.x==s.y r.x==r.y, then the sequence will be
|
|
* symmetric, and x and y will range from 0 to (r-1).
|
|
*/
|
|
/* top left */
|
|
p.y = top_left.y + r.y - 1 - y;
|
|
p.x = top_left.x + r.x - 1 - x;
|
|
set_pixel(&p, color);
|
|
/* top right */
|
|
p.y = top_left.y + r.y - 1 - y;
|
|
p.x = t.x - r.x + x;
|
|
set_pixel(&p, color);
|
|
/* bottom left */
|
|
p.y = t.y - r.y + y;
|
|
p.x = top_left.x + r.x - 1 - x;
|
|
set_pixel(&p, color);
|
|
/* bottom right */
|
|
p.y = t.y - r.y + y;
|
|
p.x = t.x - r.x + x;
|
|
set_pixel(&p, color);
|
|
x++;
|
|
}
|
|
x_end = x;
|
|
/* (x_begin <= x_end) must hold now */
|
|
}
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
int clear_canvas(const struct rgb_color *rgb)
|
|
{
|
|
const struct rect box = {
|
|
vzero,
|
|
.size = {
|
|
.width = CANVAS_SCALE,
|
|
.height = CANVAS_SCALE,
|
|
},
|
|
};
|
|
|
|
if (cbgfx_init())
|
|
return CBGFX_ERROR_INIT;
|
|
|
|
return draw_box(&box, rgb);
|
|
}
|
|
|
|
int clear_screen(const struct rgb_color *rgb)
|
|
{
|
|
if (cbgfx_init())
|
|
return CBGFX_ERROR_INIT;
|
|
|
|
struct vector p;
|
|
uint32_t color = calculate_color(rgb, 0);
|
|
const int bpp = fbinfo->bits_per_pixel;
|
|
const int bpl = fbinfo->bytes_per_line;
|
|
|
|
/* If all significant bytes in color are equal, fastpath through memset.
|
|
* We assume that for 32bpp the high byte gets ignored anyway. */
|
|
if ((((color >> 8) & 0xff) == (color & 0xff)) && (bpp == 16 ||
|
|
(((color >> 16) & 0xff) == (color & 0xff)))) {
|
|
memset(fbaddr, color & 0xff, fbinfo->y_resolution * bpl);
|
|
} else {
|
|
for (p.y = 0; p.y < screen.size.height; p.y++)
|
|
for (p.x = 0; p.x < screen.size.width; p.x++)
|
|
set_pixel(&p, color);
|
|
}
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
static int pal_to_rgb(uint8_t index, const struct bitmap_palette_element_v3 *pal,
|
|
size_t palcount, struct rgb_color *out)
|
|
{
|
|
if (index >= palcount) {
|
|
LOG("Color index %d exceeds palette boundary\n", index);
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
|
|
out->red = pal[index].red;
|
|
out->green = pal[index].green;
|
|
out->blue = pal[index].blue;
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* We're using the Lanczos resampling algorithm to rescale images to a new size.
|
|
* Since output size is often not cleanly divisible by input size, an output
|
|
* pixel (ox,oy) corresponds to a point that lies in the middle between several
|
|
* input pixels (ix,iy), meaning that if you transformed the coordinates of the
|
|
* output pixel into the input image space, they would be fractional. To sample
|
|
* the color of this "virtual" pixel with fractional coordinates, we gather the
|
|
* 6x6 grid of nearest real input pixels in a sample array. Then we multiply the
|
|
* color values for each of those pixels (separately for red, green and blue)
|
|
* with a "weight" value that was calculated from the distance between that
|
|
* input pixel and the fractional output pixel coordinates. This is done for
|
|
* both X and Y dimensions separately. The combined weights for all 36 sample
|
|
* pixels add up to 1.0, so by adding up the multiplied color values we get the
|
|
* interpolated color for the output pixel.
|
|
*
|
|
* The CONFIG_LP_CBGFX_FAST_RESAMPLE option let's the user change the 'a'
|
|
* parameter from the Lanczos weight formula from 3 to 2, which effectively
|
|
* reduces the size of the sample array from 6x6 to 4x4. This is a bit faster
|
|
* but doesn't look as good. Most use cases should be fine without it.
|
|
*/
|
|
#if CONFIG(LP_CBGFX_FAST_RESAMPLE)
|
|
#define LNCZ_A 2
|
|
#else
|
|
#define LNCZ_A 3
|
|
#endif
|
|
|
|
/*
|
|
* When walking the sample array we often need to start at a pixel close to our
|
|
* fractional output pixel (for convenience we choose the pixel on the top-left
|
|
* which corresponds to the integer parts of the output pixel coordinates) and
|
|
* then work our way outwards in both directions from there. Arrays in C must
|
|
* start at 0 but we'd really prefer indexes to go from -2 to 3 (for 6x6)
|
|
* instead, so that this "start pixel" could be 0. Since we cannot do that,
|
|
* define a constant for the index of that "0th" pixel instead.
|
|
*/
|
|
#define S0 (LNCZ_A - 1)
|
|
|
|
/* The size of the sample array, which we need a lot. */
|
|
#define SSZ (LNCZ_A * 2)
|
|
|
|
/*
|
|
* This is implementing the Lanczos kernel according to:
|
|
* https://en.wikipedia.org/wiki/Lanczos_resampling
|
|
*
|
|
* / 1 if x = 0
|
|
* L(x) = < a * sin(pi * x) * sin(pi * x / a) / (pi^2 * x^2) if -a < x <= a
|
|
* \ 0 otherwise
|
|
*/
|
|
static fpmath_t lanczos_weight(fpmath_t in, int off)
|
|
{
|
|
/*
|
|
* |in| is the output pixel coordinate scaled into the input pixel
|
|
* space. |off| is the offset in the sample array for the pixel whose
|
|
* weight we're calculating. (off - S0) is the distance from that
|
|
* sample pixel to the S0 pixel, and the fractional part of |in|
|
|
* (in - floor(in)) is by definition the distance between S0 and the
|
|
* output pixel.
|
|
*
|
|
* So (off - S0) - (in - floor(in)) is the distance from the sample
|
|
* pixel to S0 minus the distance from S0 to the output pixel, aka
|
|
* the distance from the sample pixel to the output pixel.
|
|
*/
|
|
fpmath_t x = fpisub(off - S0, fpsubi(in, fpfloor(in)));
|
|
|
|
if (fpequals(x, fp(0)))
|
|
return fp(1);
|
|
|
|
/* x * 2 / a can save some instructions if a == 2 */
|
|
fpmath_t x2a = x;
|
|
if (LNCZ_A != 2)
|
|
x2a = fpmul(x, fpfrac(2, LNCZ_A));
|
|
|
|
fpmath_t x_times_pi = fpmul(x, fppi());
|
|
|
|
/*
|
|
* Rather than using sinr(pi*x), we leverage the "one-based" sine
|
|
* function (see <fpmath.h>) with sin1(2*x) so that the pi is eliminated
|
|
* since multiplication by an integer is a slightly faster operation.
|
|
*/
|
|
fpmath_t tmp = fpmuli(fpdiv(fpsin1(fpmuli(x, 2)), x_times_pi), LNCZ_A);
|
|
return fpdiv(fpmul(tmp, fpsin1(x2a)), x_times_pi);
|
|
}
|
|
|
|
static int draw_bitmap_v3(const struct vector *top_left,
|
|
const struct vector *dim,
|
|
const struct vector *dim_org,
|
|
const struct bitmap_header_v3 *header,
|
|
const struct bitmap_palette_element_v3 *pal,
|
|
const uint8_t *pixel_array, uint8_t invert)
|
|
{
|
|
const int bpp = header->bits_per_pixel;
|
|
int32_t dir;
|
|
struct vector p;
|
|
int32_t ox, oy; /* output (resampled) pixel coordinates */
|
|
int32_t ix, iy; /* input (source image) pixel coordinates */
|
|
int sx, sy; /* index into |sample| (not ringbuffer adjusted) */
|
|
|
|
if (header->compression) {
|
|
LOG("Compressed bitmaps are not supported\n");
|
|
return CBGFX_ERROR_BITMAP_FORMAT;
|
|
}
|
|
if (bpp >= 16) {
|
|
LOG("Non-palette bitmaps are not supported\n");
|
|
return CBGFX_ERROR_BITMAP_FORMAT;
|
|
}
|
|
if (bpp != 8) {
|
|
LOG("Unsupported bits per pixel: %d\n", bpp);
|
|
return CBGFX_ERROR_BITMAP_FORMAT;
|
|
}
|
|
|
|
const int32_t y_stride = ROUNDUP(dim_org->width * bpp / 8, 4);
|
|
/*
|
|
* header->height can be positive or negative.
|
|
*
|
|
* If it's negative, pixel data is stored from top to bottom. We render
|
|
* image from the lowest row to the highest row.
|
|
*
|
|
* If it's positive, pixel data is stored from bottom to top. We render
|
|
* image from the highest row to the lowest row.
|
|
*/
|
|
p.y = top_left->y;
|
|
if (header->height < 0) {
|
|
dir = 1;
|
|
} else {
|
|
p.y += dim->height - 1;
|
|
dir = -1;
|
|
}
|
|
|
|
/* Don't waste time resampling when the scale is 1:1. */
|
|
if (dim_org->width == dim->width && dim_org->height == dim->height) {
|
|
for (oy = 0; oy < dim->height; oy++, p.y += dir) {
|
|
p.x = top_left->x;
|
|
for (ox = 0; ox < dim->width; ox++, p.x++) {
|
|
struct rgb_color rgb;
|
|
if (pal_to_rgb(pixel_array[oy * y_stride + ox],
|
|
pal, header->colors_used, &rgb))
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
set_pixel(&p, calculate_color(&rgb, invert));
|
|
}
|
|
}
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
/* Precalculate the X-weights for every possible ox so that we only have
|
|
to multiply weights together in the end. */
|
|
fpmath_t (*weight_x)[SSZ] = malloc(sizeof(fpmath_t) * SSZ * dim->width);
|
|
if (!weight_x)
|
|
return CBGFX_ERROR_UNKNOWN;
|
|
for (ox = 0; ox < dim->width; ox++) {
|
|
for (sx = 0; sx < SSZ; sx++) {
|
|
fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
|
|
weight_x[ox][sx] = lanczos_weight(ixfp, sx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For every sy in the sample array, we directly cache a pointer into
|
|
* the .BMP pixel array for the start of the corresponding line. On the
|
|
* edges of the image (where we don't have any real pixels to fill all
|
|
* lines in the sample array), we just reuse the last valid lines inside
|
|
* the image for all lines that would lie outside.
|
|
*/
|
|
const uint8_t *ypix[SSZ];
|
|
for (sy = 0; sy < SSZ; sy++) {
|
|
if (sy <= S0)
|
|
ypix[sy] = pixel_array;
|
|
else if (sy - S0 >= dim_org->height)
|
|
ypix[sy] = ypix[sy - 1];
|
|
else
|
|
ypix[sy] = &pixel_array[y_stride * (sy - S0)];
|
|
}
|
|
|
|
/* iy and ix track the input pixel corresponding to sample[S0][S0]. */
|
|
iy = 0;
|
|
for (oy = 0; oy < dim->height; oy++, p.y += dir) {
|
|
struct rgb_color sample[SSZ][SSZ];
|
|
|
|
/* Like with X weights, we also cache all Y weights. */
|
|
fpmath_t iyfp = fpfrac(oy * dim_org->height, dim->height);
|
|
fpmath_t weight_y[SSZ];
|
|
for (sy = 0; sy < SSZ; sy++)
|
|
weight_y[sy] = lanczos_weight(iyfp, sy);
|
|
|
|
/*
|
|
* If we have a new input pixel line between the last oy and
|
|
* this one, we have to adjust iy forward. When upscaling, this
|
|
* is not always the case for each new output line. When
|
|
* downscaling, we may even cross more than one line per output
|
|
* pixel.
|
|
*/
|
|
while (fpfloor(iyfp) > iy) {
|
|
iy++;
|
|
|
|
/* Shift ypix array up to center around next iy line. */
|
|
for (sy = 0; sy < SSZ - 1; sy++)
|
|
ypix[sy] = ypix[sy + 1];
|
|
|
|
/* Calculate the last ypix that is being shifted in,
|
|
but beware of reaching the end of the input image. */
|
|
if (iy + LNCZ_A < dim_org->height)
|
|
ypix[SSZ - 1] = &pixel_array[y_stride *
|
|
(iy + LNCZ_A)];
|
|
}
|
|
|
|
/*
|
|
* Initialize the sample array for this line. For pixels to the
|
|
* left of S0 there are no corresponding input pixels so just
|
|
* copy the S0 values over.
|
|
*
|
|
* Also initialize the equals counter, which counts how many of
|
|
* the latest pixels were exactly equal. We know the columns
|
|
* left of S0 must be equal to S0, so start with that number.
|
|
*/
|
|
int equals = S0 * SSZ;
|
|
uint8_t last_equal = ypix[0][0];
|
|
for (sy = 0; sy < SSZ; sy++) {
|
|
for (sx = S0; sx < SSZ; sx++) {
|
|
if (sx >= dim_org->width) {
|
|
sample[sx][sy] = sample[sx - 1][sy];
|
|
equals++;
|
|
continue;
|
|
}
|
|
uint8_t i = ypix[sy][sx - S0];
|
|
if (pal_to_rgb(i, pal, header->colors_used,
|
|
&sample[sx][sy]))
|
|
goto bitmap_error;
|
|
if (i == last_equal) {
|
|
equals++;
|
|
} else {
|
|
last_equal = i;
|
|
equals = 1;
|
|
}
|
|
}
|
|
for (sx = S0 - 1; sx >= 0; sx--)
|
|
sample[sx][sy] = sample[S0][sy];
|
|
}
|
|
|
|
ix = 0;
|
|
p.x = top_left->x;
|
|
for (ox = 0; ox < dim->width; ox++, p.x++) {
|
|
/* Adjust ix forward, same as iy above. */
|
|
fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
|
|
while (fpfloor(ixfp) > ix) {
|
|
ix++;
|
|
|
|
/*
|
|
* We want to reuse the sample columns we
|
|
* already have, but we don't want to copy them
|
|
* all around for every new column either.
|
|
* Instead, treat the X dimension of the sample
|
|
* array like a ring buffer indexed by ix. rx is
|
|
* the ringbuffer-adjusted offset of the new
|
|
* column in sample (the rightmost one) we're
|
|
* trying to fill.
|
|
*/
|
|
int rx = (SSZ - 1 + ix) % SSZ;
|
|
for (sy = 0; sy < SSZ; sy++) {
|
|
if (ix + LNCZ_A >= dim_org->width) {
|
|
sample[rx][sy] = sample[(SSZ - 2
|
|
+ ix) % SSZ][sy];
|
|
equals++;
|
|
continue;
|
|
}
|
|
uint8_t i = ypix[sy][ix + LNCZ_A];
|
|
if (i == last_equal) {
|
|
if (equals++ >= (SSZ * SSZ))
|
|
continue;
|
|
} else {
|
|
last_equal = i;
|
|
equals = 1;
|
|
}
|
|
if (pal_to_rgb(i, pal,
|
|
header->colors_used,
|
|
&sample[rx][sy]))
|
|
goto bitmap_error;
|
|
}
|
|
}
|
|
|
|
/* If all pixels in sample are equal, fast path. */
|
|
if (equals >= (SSZ * SSZ)) {
|
|
set_pixel(&p, calculate_color(&sample[0][0],
|
|
invert));
|
|
continue;
|
|
}
|
|
|
|
fpmath_t red = fp(0);
|
|
fpmath_t green = fp(0);
|
|
fpmath_t blue = fp(0);
|
|
for (sy = 0; sy < SSZ; sy++) {
|
|
for (sx = 0; sx < SSZ; sx++) {
|
|
int rx = (sx + ix) % SSZ;
|
|
fpmath_t weight = fpmul(weight_x[ox][sx],
|
|
weight_y[sy]);
|
|
red = fpadd(red, fpmuli(weight,
|
|
sample[rx][sy].red));
|
|
green = fpadd(green, fpmuli(weight,
|
|
sample[rx][sy].green));
|
|
blue = fpadd(blue, fpmuli(weight,
|
|
sample[rx][sy].blue));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Weights *should* sum up to 1.0 (making this not
|
|
* necessary) but just to hedge against rounding errors
|
|
* we should clamp color values to their legal limits.
|
|
*/
|
|
struct rgb_color rgb = {
|
|
.red = MAX(0, MIN(UINT8_MAX, fpround(red))),
|
|
.green = MAX(0, MIN(UINT8_MAX, fpround(green))),
|
|
.blue = MAX(0, MIN(UINT8_MAX, fpround(blue))),
|
|
};
|
|
|
|
set_pixel(&p, calculate_color(&rgb, invert));
|
|
}
|
|
}
|
|
|
|
free(weight_x);
|
|
return CBGFX_SUCCESS;
|
|
|
|
bitmap_error:
|
|
free(weight_x);
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
|
|
static int get_bitmap_file_header(const void *bitmap, size_t size,
|
|
struct bitmap_file_header *file_header)
|
|
{
|
|
const struct bitmap_file_header *fh;
|
|
|
|
if (sizeof(*file_header) > size) {
|
|
LOG("Invalid bitmap data\n");
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
fh = (struct bitmap_file_header *)bitmap;
|
|
if (fh->signature[0] != 'B' || fh->signature[1] != 'M') {
|
|
LOG("Bitmap signature mismatch\n");
|
|
return CBGFX_ERROR_BITMAP_SIGNATURE;
|
|
}
|
|
file_header->file_size = le32toh(fh->file_size);
|
|
if (file_header->file_size != size) {
|
|
LOG("Bitmap file size does not match cbfs file size\n");
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
file_header->bitmap_offset = le32toh(fh->bitmap_offset);
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
static int parse_bitmap_header_v3(
|
|
const uint8_t *bitmap,
|
|
size_t size,
|
|
/* ^--- IN / OUT ---v */
|
|
struct bitmap_header_v3 *header,
|
|
const struct bitmap_palette_element_v3 **palette,
|
|
const uint8_t **pixel_array,
|
|
struct vector *dim_org)
|
|
{
|
|
struct bitmap_file_header file_header;
|
|
struct bitmap_header_v3 *h;
|
|
int rv;
|
|
|
|
rv = get_bitmap_file_header(bitmap, size, &file_header);
|
|
if (rv)
|
|
return rv;
|
|
|
|
size_t header_offset = sizeof(struct bitmap_file_header);
|
|
size_t header_size = sizeof(struct bitmap_header_v3);
|
|
size_t palette_offset = header_offset + header_size;
|
|
size_t file_size = file_header.file_size;
|
|
|
|
h = (struct bitmap_header_v3 *)(bitmap + header_offset);
|
|
header->header_size = le32toh(h->header_size);
|
|
if (header->header_size != header_size) {
|
|
LOG("Unsupported bitmap format\n");
|
|
return CBGFX_ERROR_BITMAP_FORMAT;
|
|
}
|
|
|
|
header->width = le32toh(h->width);
|
|
header->height = le32toh(h->height);
|
|
if (header->width == 0 || header->height == 0) {
|
|
LOG("Invalid image width or height\n");
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
dim_org->width = header->width;
|
|
dim_org->height = ABS(header->height);
|
|
|
|
header->bits_per_pixel = le16toh(h->bits_per_pixel);
|
|
header->compression = le32toh(h->compression);
|
|
header->size = le32toh(h->size);
|
|
header->colors_used = le32toh(h->colors_used);
|
|
size_t palette_size = header->colors_used
|
|
* sizeof(struct bitmap_palette_element_v3);
|
|
size_t pixel_offset = file_header.bitmap_offset;
|
|
if (pixel_offset > file_size) {
|
|
LOG("Bitmap pixel data exceeds buffer boundary\n");
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
if (palette_offset + palette_size > pixel_offset) {
|
|
LOG("Bitmap palette data exceeds palette boundary\n");
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
*palette = (struct bitmap_palette_element_v3 *)(bitmap +
|
|
palette_offset);
|
|
|
|
size_t pixel_size = header->size;
|
|
if (pixel_size != dim_org->height *
|
|
ROUNDUP(dim_org->width * header->bits_per_pixel / 8, 4)) {
|
|
LOG("Bitmap pixel array size does not match expected size\n");
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
if (pixel_offset + pixel_size > file_size) {
|
|
LOG("Bitmap pixel array exceeds buffer boundary\n");
|
|
return CBGFX_ERROR_BITMAP_DATA;
|
|
}
|
|
*pixel_array = bitmap + pixel_offset;
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* This calculates the dimension of the image projected on the canvas from the
|
|
* dimension relative to the canvas size. If either width or height is zero, it
|
|
* is derived from the other (non-zero) value to keep the aspect ratio.
|
|
*/
|
|
static int calculate_dimension(const struct vector *dim_org,
|
|
const struct scale *dim_rel,
|
|
struct vector *dim)
|
|
{
|
|
if (dim_rel->x.n == 0 && dim_rel->y.n == 0)
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
|
|
if (dim_rel->x.n > dim_rel->x.d || dim_rel->y.n > dim_rel->y.d)
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
|
|
if (dim_rel->x.n > 0) {
|
|
if (!is_valid_fraction(&dim_rel->x))
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
dim->width = canvas.size.width * dim_rel->x.n / dim_rel->x.d;
|
|
}
|
|
if (dim_rel->y.n > 0) {
|
|
if (!is_valid_fraction(&dim_rel->y))
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
dim->height = canvas.size.height * dim_rel->y.n / dim_rel->y.d;
|
|
}
|
|
|
|
/* Derive height from width using aspect ratio */
|
|
if (dim_rel->y.n == 0)
|
|
dim->height = dim->width * dim_org->height / dim_org->width;
|
|
/* Derive width from height using aspect ratio */
|
|
if (dim_rel->x.n == 0)
|
|
dim->width = dim->height * dim_org->width / dim_org->height;
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
static int calculate_position(const struct vector *dim,
|
|
const struct scale *pos_rel, uint8_t pivot,
|
|
struct vector *top_left)
|
|
{
|
|
int rv;
|
|
|
|
rv = transform_vector(top_left, &canvas.size, pos_rel, &canvas.offset);
|
|
if (rv)
|
|
return rv;
|
|
|
|
switch (pivot & PIVOT_H_MASK) {
|
|
case PIVOT_H_LEFT:
|
|
break;
|
|
case PIVOT_H_CENTER:
|
|
top_left->x -= dim->width / 2;
|
|
break;
|
|
case PIVOT_H_RIGHT:
|
|
top_left->x -= dim->width;
|
|
break;
|
|
default:
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
|
|
switch (pivot & PIVOT_V_MASK) {
|
|
case PIVOT_V_TOP:
|
|
break;
|
|
case PIVOT_V_CENTER:
|
|
top_left->y -= dim->height / 2;
|
|
break;
|
|
case PIVOT_V_BOTTOM:
|
|
top_left->y -= dim->height;
|
|
break;
|
|
default:
|
|
return CBGFX_ERROR_INVALID_PARAMETER;
|
|
}
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
static int check_boundary(const struct vector *top_left,
|
|
const struct vector *dim,
|
|
const struct rect *bound)
|
|
{
|
|
struct vector v;
|
|
add_vectors(&v, dim, top_left);
|
|
if (top_left->x < bound->offset.x
|
|
|| top_left->y < bound->offset.y
|
|
|| within_box(&v, bound) < 0)
|
|
return CBGFX_ERROR_BOUNDARY;
|
|
return CBGFX_SUCCESS;
|
|
}
|
|
|
|
int draw_bitmap(const void *bitmap, size_t size,
|
|
const struct scale *pos_rel, const struct scale *dim_rel,
|
|
uint32_t flags)
|
|
{
|
|
struct bitmap_header_v3 header;
|
|
const struct bitmap_palette_element_v3 *palette;
|
|
const uint8_t *pixel_array;
|
|
struct vector top_left, dim, dim_org;
|
|
int rv;
|
|
const uint8_t pivot = flags & PIVOT_MASK;
|
|
const uint8_t invert = (flags & INVERT_COLORS) >> INVERT_SHIFT;
|
|
|
|
if (cbgfx_init())
|
|
return CBGFX_ERROR_INIT;
|
|
|
|
/* only v3 is supported now */
|
|
rv = parse_bitmap_header_v3(bitmap, size,
|
|
&header, &palette, &pixel_array, &dim_org);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Calculate height and width of the image */
|
|
rv = calculate_dimension(&dim_org, dim_rel, &dim);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Calculate coordinate */
|
|
rv = calculate_position(&dim, pos_rel, pivot, &top_left);
|
|
if (rv)
|
|
return rv;
|
|
|
|
rv = check_boundary(&top_left, &dim, &canvas);
|
|
if (rv) {
|
|
LOG("Bitmap image exceeds canvas boundary\n");
|
|
return rv;
|
|
}
|
|
|
|
return draw_bitmap_v3(&top_left, &dim, &dim_org,
|
|
&header, palette, pixel_array, invert);
|
|
}
|
|
|
|
int draw_bitmap_direct(const void *bitmap, size_t size,
|
|
const struct vector *top_left)
|
|
{
|
|
struct bitmap_header_v3 header;
|
|
const struct bitmap_palette_element_v3 *palette;
|
|
const uint8_t *pixel_array;
|
|
struct vector dim;
|
|
int rv;
|
|
|
|
if (cbgfx_init())
|
|
return CBGFX_ERROR_INIT;
|
|
|
|
/* only v3 is supported now */
|
|
rv = parse_bitmap_header_v3(bitmap, size,
|
|
&header, &palette, &pixel_array, &dim);
|
|
if (rv)
|
|
return rv;
|
|
|
|
rv = check_boundary(top_left, &dim, &screen);
|
|
if (rv) {
|
|
LOG("Bitmap image exceeds screen boundary\n");
|
|
return rv;
|
|
}
|
|
|
|
return draw_bitmap_v3(top_left, &dim, &dim,
|
|
&header, palette, pixel_array, 0);
|
|
}
|
|
|
|
int get_bitmap_dimension(const void *bitmap, size_t sz, struct scale *dim_rel)
|
|
{
|
|
struct bitmap_header_v3 header;
|
|
const struct bitmap_palette_element_v3 *palette;
|
|
const uint8_t *pixel_array;
|
|
struct vector dim, dim_org;
|
|
int rv;
|
|
|
|
if (cbgfx_init())
|
|
return CBGFX_ERROR_INIT;
|
|
|
|
/* Only v3 is supported now */
|
|
rv = parse_bitmap_header_v3(bitmap, sz,
|
|
&header, &palette, &pixel_array, &dim_org);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Calculate height and width of the image */
|
|
rv = calculate_dimension(&dim_org, dim_rel, &dim);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Calculate size relative to the canvas */
|
|
dim_rel->x.n = dim.width;
|
|
dim_rel->x.d = canvas.size.width;
|
|
dim_rel->y.n = dim.height;
|
|
dim_rel->y.d = canvas.size.height;
|
|
|
|
return CBGFX_SUCCESS;
|
|
}
|