6b0fb0dc3c
When the MONOTONIC_TIMER is available track the entry, run, and exit times for each state. It should be noted that the times for states that vector to OS or a payload do not have their times reported. Change-Id: I6af23fe011609e0b1e019f35ee40f1fbebd59c9d Signed-off-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/3156 Tested-by: build bot (Jenkins) Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
419 lines
10 KiB
C
419 lines
10 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2013 Google, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
|
|
/*
|
|
* C Bootstrap code for the coreboot
|
|
*/
|
|
|
|
#include <bootstate.h>
|
|
#include <console/console.h>
|
|
#include <version.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <delay.h>
|
|
#include <stdlib.h>
|
|
#include <reset.h>
|
|
#include <boot/tables.h>
|
|
#include <boot/elf.h>
|
|
#include <cbfs.h>
|
|
#include <lib.h>
|
|
#if CONFIG_HAVE_ACPI_RESUME
|
|
#include <arch/acpi.h>
|
|
#endif
|
|
#include <timer.h>
|
|
#include <timestamp.h>
|
|
|
|
#if BOOT_STATE_DEBUG
|
|
#define BS_DEBUG_LVL BIOS_DEBUG
|
|
#else
|
|
#define BS_DEBUG_LVL BIOS_NEVER
|
|
#endif
|
|
|
|
static boot_state_t bs_pre_device(void *arg);
|
|
static boot_state_t bs_dev_init_chips(void *arg);
|
|
static boot_state_t bs_dev_enumerate(void *arg);
|
|
static boot_state_t bs_dev_resources(void *arg);
|
|
static boot_state_t bs_dev_eanble(void *arg);
|
|
static boot_state_t bs_dev_init(void *arg);
|
|
static boot_state_t bs_post_device(void *arg);
|
|
static boot_state_t bs_os_resume_check(void *arg);
|
|
static boot_state_t bs_os_resume(void *arg);
|
|
static boot_state_t bs_write_tables(void *arg);
|
|
static boot_state_t bs_payload_load(void *arg);
|
|
static boot_state_t bs_payload_boot(void *arg);
|
|
|
|
/*
|
|
* Typically a state will take 4 time samples:
|
|
* 1. Before state entry callbacks
|
|
* 2. After state entry callbacks / Before state function.
|
|
* 3. After state function / Before state exit callbacks.
|
|
* 4. After state exit callbacks.
|
|
*/
|
|
#define MAX_TIME_SAMPLES 4
|
|
struct boot_state_times {
|
|
int num_samples;
|
|
struct mono_time samples[MAX_TIME_SAMPLES];
|
|
};
|
|
|
|
struct boot_state {
|
|
const char *name;
|
|
boot_state_t id;
|
|
struct boot_state_callback *seq_callbacks[2];
|
|
boot_state_t (*run_state)(void *arg);
|
|
void *arg;
|
|
int complete;
|
|
#if CONFIG_HAVE_MONOTONIC_TIMER
|
|
struct boot_state_times times;
|
|
#endif
|
|
};
|
|
|
|
#define BS_INIT(state_, run_func_) \
|
|
{ \
|
|
.name = #state_, \
|
|
.id = state_, \
|
|
.seq_callbacks = { NULL, NULL },\
|
|
.run_state = run_func_, \
|
|
.arg = NULL, \
|
|
.complete = 0 \
|
|
}
|
|
#define BS_INIT_ENTRY(state_, run_func_) \
|
|
[state_] = BS_INIT(state_, run_func_)
|
|
|
|
static struct boot_state boot_states[] = {
|
|
BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device),
|
|
BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips),
|
|
BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate),
|
|
BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources),
|
|
BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_eanble),
|
|
BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
|
|
BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
|
|
BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
|
|
BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
|
|
BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables),
|
|
BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
|
|
BS_INIT_ENTRY(BS_PAYLOAD_BOOT, bs_payload_boot),
|
|
};
|
|
|
|
static boot_state_t bs_pre_device(void *arg)
|
|
{
|
|
return BS_DEV_INIT_CHIPS;
|
|
}
|
|
|
|
static boot_state_t bs_dev_init_chips(void *arg)
|
|
{
|
|
timestamp_stash(TS_DEVICE_ENUMERATE);
|
|
|
|
/* Initialize chips early, they might disable unused devices. */
|
|
dev_initialize_chips();
|
|
|
|
return BS_DEV_ENUMERATE;
|
|
}
|
|
|
|
static boot_state_t bs_dev_enumerate(void *arg)
|
|
{
|
|
/* Find the devices we don't have hard coded knowledge about. */
|
|
dev_enumerate();
|
|
post_code(POST_DEVICE_ENUMERATION_COMPLETE);
|
|
|
|
return BS_DEV_RESOURCES;
|
|
}
|
|
|
|
static boot_state_t bs_dev_resources(void *arg)
|
|
{
|
|
timestamp_stash(TS_DEVICE_CONFIGURE);
|
|
/* Now compute and assign the bus resources. */
|
|
dev_configure();
|
|
post_code(POST_DEVICE_CONFIGURATION_COMPLETE);
|
|
|
|
return BS_DEV_ENABLE;
|
|
}
|
|
|
|
static boot_state_t bs_dev_eanble(void *arg)
|
|
{
|
|
timestamp_stash(TS_DEVICE_ENABLE);
|
|
/* Now actually enable devices on the bus */
|
|
dev_enable();
|
|
post_code(POST_DEVICES_ENABLED);
|
|
|
|
return BS_DEV_INIT;
|
|
}
|
|
|
|
static boot_state_t bs_dev_init(void *arg)
|
|
{
|
|
timestamp_stash(TS_DEVICE_INITIALIZE);
|
|
/* And of course initialize devices on the bus */
|
|
dev_initialize();
|
|
post_code(POST_DEVICES_INITIALIZED);
|
|
|
|
return BS_POST_DEVICE;
|
|
}
|
|
|
|
static boot_state_t bs_post_device(void *arg)
|
|
{
|
|
timestamp_stash(TS_DEVICE_DONE);
|
|
|
|
timestamp_sync();
|
|
|
|
return BS_OS_RESUME_CHECK;
|
|
}
|
|
|
|
static boot_state_t bs_os_resume_check(void *arg)
|
|
{
|
|
#if CONFIG_HAVE_ACPI_RESUME
|
|
void *wake_vector;
|
|
|
|
wake_vector = acpi_find_wakeup_vector();
|
|
|
|
if (wake_vector != NULL) {
|
|
boot_states[BS_OS_RESUME].arg = wake_vector;
|
|
return BS_OS_RESUME;
|
|
}
|
|
post_code(0x8a);
|
|
#endif
|
|
timestamp_add_now(TS_CBMEM_POST);
|
|
|
|
return BS_WRITE_TABLES;
|
|
}
|
|
|
|
static boot_state_t bs_os_resume(void *wake_vector)
|
|
{
|
|
#if CONFIG_HAVE_ACPI_RESUME
|
|
acpi_resume(wake_vector);
|
|
#endif
|
|
return BS_WRITE_TABLES;
|
|
}
|
|
|
|
static boot_state_t bs_write_tables(void *arg)
|
|
{
|
|
timestamp_add_now(TS_WRITE_TABLES);
|
|
|
|
/* Now that we have collected all of our information
|
|
* write our configuration tables.
|
|
*/
|
|
write_tables();
|
|
|
|
return BS_PAYLOAD_LOAD;
|
|
}
|
|
|
|
static boot_state_t bs_payload_load(void *arg)
|
|
{
|
|
void *payload;
|
|
void *entry;
|
|
|
|
timestamp_add_now(TS_LOAD_PAYLOAD);
|
|
|
|
payload = cbfs_load_payload(CBFS_DEFAULT_MEDIA,
|
|
CONFIG_CBFS_PREFIX "/payload");
|
|
if (! payload)
|
|
die("Could not find a payload\n");
|
|
|
|
entry = selfload(get_lb_mem(), payload);
|
|
|
|
if (! entry)
|
|
die("Could not load payload\n");
|
|
|
|
/* Pass the payload to the next state. */
|
|
boot_states[BS_PAYLOAD_BOOT].arg = entry;
|
|
|
|
return BS_PAYLOAD_BOOT;
|
|
}
|
|
|
|
static boot_state_t bs_payload_boot(void *entry)
|
|
{
|
|
selfboot(entry);
|
|
|
|
printk(BIOS_EMERG, "Boot failed");
|
|
/* Returning from this state will fail because the following signals
|
|
* return to a completed state. */
|
|
return BS_PAYLOAD_BOOT;
|
|
}
|
|
|
|
#if CONFIG_HAVE_MONOTONIC_TIMER
|
|
static void bs_sample_time(struct boot_state *state)
|
|
{
|
|
struct mono_time *mt;
|
|
|
|
mt = &state->times.samples[state->times.num_samples];
|
|
timer_monotonic_get(mt);
|
|
state->times.num_samples++;
|
|
}
|
|
|
|
static void bs_report_time(struct boot_state *state)
|
|
{
|
|
struct rela_time entry_time;
|
|
struct rela_time run_time;
|
|
struct rela_time exit_time;
|
|
struct boot_state_times *times;
|
|
|
|
times = &state->times;
|
|
entry_time = mono_time_diff(×->samples[0], ×->samples[1]);
|
|
run_time = mono_time_diff(×->samples[1], ×->samples[2]);
|
|
exit_time = mono_time_diff(×->samples[2], ×->samples[3]);
|
|
|
|
printk(BIOS_DEBUG, "BS: %s times (us): entry %ld run %ld exit %ld\n",
|
|
state->name,
|
|
rela_time_in_microseconds(&entry_time),
|
|
rela_time_in_microseconds(&run_time),
|
|
rela_time_in_microseconds(&exit_time));
|
|
}
|
|
#else
|
|
static inline void bs_sample_time(struct boot_state *state) {}
|
|
static inline void bs_report_time(struct boot_state *state) {}
|
|
#endif
|
|
|
|
static void bs_call_callbacks(struct boot_state *state,
|
|
boot_state_sequence_t seq)
|
|
{
|
|
while (state->seq_callbacks[seq] != NULL) {
|
|
struct boot_state_callback *bscb;
|
|
|
|
/* Remove the first callback. */
|
|
bscb = state->seq_callbacks[seq];
|
|
state->seq_callbacks[seq] = bscb->next;
|
|
bscb->next = NULL;
|
|
|
|
#if BOOT_STATE_DEBUG
|
|
printk(BS_DEBUG_LVL, "BS: callback (%p) @ %s.\n",
|
|
bscb, bscb->location);
|
|
#endif
|
|
bscb->callback(bscb->arg);
|
|
}
|
|
}
|
|
|
|
static void bs_walk_state_machine(boot_state_t current_state_id)
|
|
{
|
|
|
|
while (1) {
|
|
struct boot_state *state;
|
|
|
|
state = &boot_states[current_state_id];
|
|
|
|
if (state->complete) {
|
|
printk(BIOS_EMERG, "BS: %s state already executed.\n",
|
|
state->name);
|
|
break;
|
|
}
|
|
|
|
printk(BS_DEBUG_LVL, "BS: Entering %s state.\n", state->name);
|
|
|
|
bs_sample_time(state);
|
|
|
|
bs_call_callbacks(state, BS_ON_ENTRY);
|
|
|
|
bs_sample_time(state);
|
|
|
|
current_state_id = state->run_state(state->arg);
|
|
|
|
printk(BS_DEBUG_LVL, "BS: Exiting %s state.\n", state->name);
|
|
|
|
bs_sample_time(state);
|
|
|
|
bs_call_callbacks(state, BS_ON_EXIT);
|
|
|
|
bs_sample_time(state);
|
|
|
|
bs_report_time(state);
|
|
|
|
state->complete = 1;
|
|
}
|
|
}
|
|
|
|
static int boot_state_sched_callback(struct boot_state *state,
|
|
struct boot_state_callback *bscb,
|
|
boot_state_sequence_t seq)
|
|
{
|
|
if (state->complete) {
|
|
printk(BIOS_WARNING,
|
|
"Tried to schedule callback on completed state %s.\n",
|
|
state->name);
|
|
|
|
return -1;
|
|
}
|
|
|
|
bscb->next = state->seq_callbacks[seq];
|
|
state->seq_callbacks[seq] = bscb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int boot_state_sched_on_entry(struct boot_state_callback *bscb,
|
|
boot_state_t state_id)
|
|
{
|
|
struct boot_state *state = &boot_states[state_id];
|
|
|
|
return boot_state_sched_callback(state, bscb, BS_ON_ENTRY);
|
|
}
|
|
|
|
int boot_state_sched_on_exit(struct boot_state_callback *bscb,
|
|
boot_state_t state_id)
|
|
{
|
|
struct boot_state *state = &boot_states[state_id];
|
|
|
|
return boot_state_sched_callback(state, bscb, BS_ON_EXIT);
|
|
}
|
|
|
|
static void boot_state_schedule_static_entries(void)
|
|
{
|
|
extern struct boot_state_init_entry _bs_init_begin;
|
|
extern struct boot_state_init_entry _bs_init_end;
|
|
struct boot_state_init_entry *cur;
|
|
|
|
cur = &_bs_init_begin;
|
|
|
|
while (cur != &_bs_init_end) {
|
|
if (cur->when == BS_ON_ENTRY)
|
|
boot_state_sched_on_entry(&cur->bscb, cur->state);
|
|
else
|
|
boot_state_sched_on_exit(&cur->bscb, cur->state);
|
|
cur++;
|
|
}
|
|
}
|
|
|
|
void hardwaremain(int boot_complete)
|
|
{
|
|
timestamp_stash(TS_START_RAMSTAGE);
|
|
post_code(POST_ENTRY_RAMSTAGE);
|
|
|
|
/* console_init() MUST PRECEDE ALL printk()! */
|
|
console_init();
|
|
|
|
post_code(POST_CONSOLE_READY);
|
|
|
|
printk(BIOS_NOTICE, "coreboot-%s%s %s %s...\n",
|
|
coreboot_version, coreboot_extra_version, coreboot_build,
|
|
(boot_complete)?"rebooting":"booting");
|
|
|
|
post_code(POST_CONSOLE_BOOT_MSG);
|
|
|
|
/* If we have already booted attempt a hard reboot */
|
|
if (boot_complete) {
|
|
hard_reset();
|
|
}
|
|
|
|
/* Schedule the static boot state entries. */
|
|
boot_state_schedule_static_entries();
|
|
|
|
/* FIXME: Is there a better way to handle this? */
|
|
init_timer();
|
|
|
|
bs_walk_state_machine(BS_PRE_DEVICE);
|
|
die("Boot state machine failure.\n");
|
|
}
|
|
|