coreboot-kgpe-d16/util/cbfstool/cbfs_image.c
Sol Boucher 057256541b cbfstool: Fix ability to add files at offsets near the end of empty spaces
Because cbfs_add_entry_at() previously *assumed* it would have to create a
trailing empty entry, it was impossible to add files at exact offsets close
enough to the end of an existing empty entry that they occupied the remainder
of its space. This addresses the problem by skipping the step of creating the
trailing empty entry if doing so would place it at the start offset of whatever
already followed the original empty section.

BUG=chromium:473511
TEST=Run the following commands:
$ ./cbfstool test.image create -s 0x100000 -m arm
$ dd if=/dev/zero of=twok.bin bs=1 count=2048
$ ./cbfstool test.image add -t 0x50 -f twok.bin -n at_end -b 0xff7c0
$ ./cbfstool test.image add -t 0x50 -f twok.bin -n near_end -b 0xfef80
$ ./cbfstool test.image print
There shouldn't be any assertions, and the output should be:
test.image: 1024 kB, bootblocksize 0, romsize 1048576, offset 0x40
alignment: 64 bytes, architecture: arm

Name                           Offset     Type         Size
(empty)                        0x40       null         1044184
near_end                       0xfef40    raw          2048
at_end                         0xff780    raw          2048
BRANCH=None

Change-Id: Ic8a6c3dfa4f82346a067c0804afb6c5a5e89e6c8
Signed-off-by: Sol Boucher <solb@chromium.org>
Original-Commit-Id: 1bbd353fddc818f725e488e8f2fb6e967033539d
Original-Change-Id: I15d25df80787a8e34c2237262681720203509c72
Original-Signed-off-by: Sol Boucher <solb@chromium.org>
Original-Reviewed-on: https://chromium-review.googlesource.com/263809
Original-Reviewed-by: Hung-Te Lin <hungte@chromium.org>
Original-Reviewed-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/9938
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
2015-04-25 12:16:57 +02:00

1076 lines
33 KiB
C

/*
* CBFS Image Manipulation
*
* Copyright (C) 2013 The Chromium OS Authors. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <inttypes.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include "common.h"
#include "cbfs_image.h"
/* The file name align is not defined in CBFS spec -- only a preference by
* (old) cbfstool. */
#define CBFS_FILENAME_ALIGN (16)
/* To make CBFS more friendly to ROM, fill -1 (0xFF) instead of zero. */
#define CBFS_CONTENT_DEFAULT_VALUE (-1)
/* Type and format */
struct typedesc_t {
uint32_t type;
const char *name;
};
static const struct typedesc_t types_cbfs_entry[] = {
{CBFS_COMPONENT_STAGE, "stage"},
{CBFS_COMPONENT_PAYLOAD, "payload"},
{CBFS_COMPONENT_OPTIONROM, "optionrom"},
{CBFS_COMPONENT_BOOTSPLASH, "bootsplash"},
{CBFS_COMPONENT_RAW, "raw"},
{CBFS_COMPONENT_VSA, "vsa"},
{CBFS_COMPONENT_MBI, "mbi"},
{CBFS_COMPONENT_MICROCODE, "microcode"},
{CBFS_COMPONENT_FSP, "fsp"},
{CBFS_COMPONENT_MRC, "mrc"},
{CBFS_COMPONENT_CMOS_DEFAULT, "cmos_default"},
{CBFS_COMPONENT_CMOS_LAYOUT, "cmos_layout"},
{CBFS_COMPONENT_SPD, "spd"},
{CBFS_COMPONENT_MRC_CACHE, "mrc_cache"},
{CBFS_COMPONENT_DELETED, "deleted"},
{CBFS_COMPONENT_NULL, "null"},
{0, NULL},
};
static const struct typedesc_t types_cbfs_compression[] = {
{CBFS_COMPRESS_NONE, "none"},
{CBFS_COMPRESS_LZMA, "LZMA"},
{0, NULL},
};
static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type,
const char *default_value)
{
int i;
for (i = 0; desc[i].name; i++)
if (desc[i].type == type)
return desc[i].name;
return default_value;
}
static const char *get_cbfs_entry_type_name(uint32_t type)
{
return lookup_name_by_type(types_cbfs_entry, type, "(unknown)");
}
/* CBFS image */
static size_t cbfs_calculate_file_header_size(const char *name)
{
return (sizeof(struct cbfs_file) +
align_up(strlen(name) + 1, CBFS_FILENAME_ALIGN));
}
static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc)
{
// A bug in old cbfstool may produce extra few bytes (by alignment) and
// cause cbfstool to overwrite things after free space -- which is
// usually CBFS header on x86. We need to workaround that.
struct cbfs_file *entry, *first = NULL, *last = NULL;
for (first = entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
last = entry;
}
if ((char *)first < (char *)hdr_loc &&
(char *)entry > (char *)hdr_loc) {
WARN("CBFS image was created with old cbfstool with size bug. "
"Fixing size in last entry...\n");
last->len = htonl(ntohl(last->len) - image->header->align);
DEBUG("Last entry has been changed from 0x%x to 0x%x.\n",
cbfs_get_entry_addr(image, entry),
cbfs_get_entry_addr(image,
cbfs_find_next_entry(image, last)));
}
return 0;
}
void cbfs_put_header(void *dest, const struct cbfs_header *header)
{
struct buffer outheader;
outheader.data = dest;
outheader.size = 0;
xdr_be.put32(&outheader, header->magic);
xdr_be.put32(&outheader, header->version);
xdr_be.put32(&outheader, header->romsize);
xdr_be.put32(&outheader, header->bootblocksize);
xdr_be.put32(&outheader, header->align);
xdr_be.put32(&outheader, header->offset);
xdr_be.put32(&outheader, header->architecture);
}
static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output,
struct cbfs_payload_segment *input)
{
struct buffer seg = {
.data = (void *)input,
.size = sizeof(*input),
};
output->type = xdr_be.get32(&seg);
output->compression = xdr_be.get32(&seg);
output->offset = xdr_be.get32(&seg);
output->load_addr = xdr_be.get64(&seg);
output->len = xdr_be.get32(&seg);
output->mem_len = xdr_be.get32(&seg);
assert(seg.size == 0);
}
void cbfs_get_header(struct cbfs_header *header, void *src)
{
struct buffer outheader;
outheader.data = src; /* We're not modifying the data */
outheader.size = 0;
header->magic = xdr_be.get32(&outheader);
header->version = xdr_be.get32(&outheader);
header->romsize = xdr_be.get32(&outheader);
header->bootblocksize = xdr_be.get32(&outheader);
header->align = xdr_be.get32(&outheader);
header->offset = xdr_be.get32(&outheader);
header->architecture = xdr_be.get32(&outheader);
}
int cbfs_image_create(struct cbfs_image *image,
uint32_t architecture,
size_t size,
uint32_t align,
struct buffer *bootblock,
uint32_t bootblock_offset,
uint32_t header_offset,
uint32_t entries_offset)
{
struct cbfs_header header;
struct cbfs_file *entry;
int32_t *rel_offset;
uint32_t cbfs_len;
size_t entry_header_len;
void *header_loc;
DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, "
"header=0x%x+0x%zx, entries_offset=0x%x\n",
bootblock_offset, bootblock->size,
header_offset, sizeof(header), entries_offset);
if (buffer_create(&image->buffer, size, "(new)") != 0)
return -1;
if ((image->header = malloc(sizeof(*image->header))) == NULL)
return -1;
memset(image->buffer.data, CBFS_CONTENT_DEFAULT_VALUE, size);
// Adjust legcay top-aligned address to ROM offset.
if (IS_TOP_ALIGNED_ADDRESS(entries_offset))
entries_offset = size + (int32_t)entries_offset;
if (IS_TOP_ALIGNED_ADDRESS(bootblock_offset))
bootblock_offset = size + (int32_t)bootblock_offset;
if (IS_TOP_ALIGNED_ADDRESS(header_offset))
header_offset = size + (int32_t)header_offset;
DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, "
"header=0x%x, entries_offset=0x%x\n",
bootblock_offset, header_offset, entries_offset);
// Prepare bootblock
if (bootblock_offset + bootblock->size > size) {
ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
bootblock_offset, bootblock->size, size);
return -1;
}
if (entries_offset > bootblock_offset &&
entries_offset < bootblock->size) {
ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n",
bootblock_offset, bootblock->size, entries_offset);
return -1;
}
memcpy(image->buffer.data + bootblock_offset, bootblock->data,
bootblock->size);
// Prepare header
if (header_offset + sizeof(header) > size - sizeof(int32_t)) {
ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
header_offset, sizeof(header), size);
return -1;
}
image->header->magic = CBFS_HEADER_MAGIC;
image->header->version = CBFS_HEADER_VERSION;
image->header->romsize = size;
image->header->bootblocksize = bootblock->size;
image->header->align = align;
image->header->offset = entries_offset;
image->header->architecture = architecture;
header_loc = (image->buffer.data + header_offset);
cbfs_put_header(header_loc, image->header);
// The last 4 byte of the image contain the relative offset from the end
// of the image to the master header as a 32-bit signed integer. x86
// relies on this also being its (memory-mapped, top-aligned) absolute
// 32-bit address by virtue of how two's complement numbers work.
assert(size % sizeof(int32_t) == 0);
rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t));
*rel_offset = header_offset - size;
// Prepare entries
if (align_up(entries_offset, align) != entries_offset) {
ERROR("Offset (0x%x) must be aligned to 0x%x.\n",
entries_offset, align);
return -1;
}
entry_header_len = cbfs_calculate_file_header_size("");
if (entries_offset + entry_header_len > size) {
ERROR("Offset (0x%x+0x%zx) exceed ROM size(0x%zx)\n",
entries_offset, entry_header_len, size);
return -1;
}
entry = (struct cbfs_file *)(image->buffer.data + entries_offset);
// To calculate available length, find
// e = min(bootblock, header, rel_offset) where e > entries_offset.
cbfs_len = size - sizeof(int32_t);
if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len)
cbfs_len = bootblock_offset;
if (header_offset > entries_offset && header_offset < cbfs_len)
cbfs_len = header_offset;
cbfs_len -= entries_offset + align + entry_header_len;
cbfs_create_empty_entry(entry, cbfs_len, "");
LOG("Created CBFS image (capacity = %d bytes)\n", cbfs_len);
return 0;
}
int cbfs_image_from_file(struct cbfs_image *image,
const char *filename, uint32_t offset)
{
void *header_loc;
if (buffer_from_file(&image->buffer, filename) != 0)
return -1;
DEBUG("read_cbfs_image: %s (%zd bytes)\n", image->buffer.name,
image->buffer.size);
header_loc = cbfs_find_header(image->buffer.data,
image->buffer.size,
offset);
if (!header_loc) {
ERROR("%s does not have CBFS master header.\n", filename);
cbfs_image_delete(image);
return -1;
}
if ((image->header = malloc(sizeof(*image->header))) == NULL)
return -1;
cbfs_get_header(image->header, header_loc);
cbfs_fix_legacy_size(image, header_loc);
return 0;
}
int cbfs_copy_instance(struct cbfs_image *image, size_t copy_offset,
size_t copy_size)
{
struct cbfs_file *src_entry, *dst_entry;
struct cbfs_header *copy_header;
size_t align, entry_offset;
ssize_t last_entry_size;
size_t header_offset, header_end;
size_t cbfs_offset, cbfs_end;
size_t copy_end = copy_offset + copy_size;
align = htonl(image->header->align);
header_offset = (char *)image->header - image->buffer.data;
header_end = header_offset + sizeof(image->header);
cbfs_offset = htonl(image->header->offset);
cbfs_end = htonl(image->header->romsize);
if (copy_end > image->buffer.size) {
ERROR("Copy offset out of range: [%zx:%zx)\n",
copy_offset, copy_end);
return 1;
}
/* Range check requested copy region with header and source cbfs. */
if ((copy_offset >= header_offset && copy_offset < header_end) ||
(copy_end >= header_offset && copy_end <= header_end)) {
ERROR("New image would overlap old header.\n");
}
if ((copy_offset >= cbfs_offset && copy_offset < cbfs_end) ||
(copy_end >= cbfs_offset && copy_end <= cbfs_end)) {
ERROR("New image would overlap old one.\n");
return 1;
}
/* This will work, let's create a copy. */
copy_header = (struct cbfs_header *)(image->buffer.data + copy_offset);
*copy_header = *image->header;
copy_header->bootblocksize = 0;
/* Romsize is a misnomer. It's the absolute limit of cbfs content.*/
copy_header->romsize = htonl(copy_end);
entry_offset = align_up(copy_offset + sizeof(*copy_header), align);
copy_header->offset = htonl(entry_offset);
dst_entry = (struct cbfs_file *)(image->buffer.data + entry_offset);
/* Copy non-empty files */
for (src_entry = cbfs_find_first_entry(image);
src_entry && cbfs_is_valid_entry(image, src_entry);
src_entry = cbfs_find_next_entry(image, src_entry)) {
size_t entry_size;
if ((src_entry->type == htonl(CBFS_COMPONENT_NULL)) ||
(src_entry->type == htonl(CBFS_COMPONENT_DELETED)))
continue;
entry_size = htonl(src_entry->len) + htonl(src_entry->offset);
memcpy(dst_entry, src_entry, entry_size);
dst_entry = (struct cbfs_file *)(
(uintptr_t)dst_entry + align_up(entry_size, align));
if ((size_t)((char *)dst_entry - image->buffer.data) >=
copy_end) {
ERROR("Ran out of room in copy region.\n");
return 1;
}
}
/* Last entry size is all the room above it. */
last_entry_size = copy_end - ((char *)dst_entry - image->buffer.data)
- cbfs_calculate_file_header_size("");
if (last_entry_size < 0)
WARN("No room to create the last entry!\n")
else
cbfs_create_empty_entry(dst_entry, last_entry_size, "");
return 0;
}
int cbfs_image_write_file(struct cbfs_image *image, const char *filename)
{
assert(image && image->buffer.data);
return buffer_write_file(&image->buffer, filename);
}
int cbfs_image_delete(struct cbfs_image *image)
{
if (image == NULL)
return 0;
buffer_delete(&image->buffer);
image->header = NULL;
return 0;
}
/* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */
static int cbfs_add_entry_at(struct cbfs_image *image,
struct cbfs_file *entry,
uint32_t size,
const char *name,
uint32_t type,
const void *data,
uint32_t content_offset)
{
struct cbfs_file *next = cbfs_find_next_entry(image, entry);
uint32_t addr = cbfs_get_entry_addr(image, entry),
addr_next = cbfs_get_entry_addr(image, next);
uint32_t header_size = cbfs_calculate_file_header_size(name),
min_entry_size = cbfs_calculate_file_header_size("");
uint32_t len, target;
uint32_t align = image->header->align;
target = content_offset - header_size;
if (target % align)
target -= target % align;
if (target < addr) {
ERROR("No space to hold cbfs_file header.");
return -1;
}
// Process buffer BEFORE content_offset.
if (target - addr > min_entry_size) {
DEBUG("|min|...|header|content|... <create new entry>\n");
len = target - addr - min_entry_size;
cbfs_create_empty_entry(entry, len, "");
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
entry = cbfs_find_next_entry(image, entry);
addr = cbfs_get_entry_addr(image, entry);
}
len = size + (content_offset - addr - header_size);
cbfs_create_empty_entry(entry, len, name);
if (len != size) {
DEBUG("|..|header|content|... <use offset to create entry>\n");
DEBUG("before: offset=0x%x, len=0x%x\n",
ntohl(entry->offset), ntohl(entry->len));
// TODO reset expanded name buffer to 0xFF.
entry->offset = htonl(ntohl(entry->offset) + (len - size));
entry->len = htonl(size);
DEBUG("after: offset=0x%x, len=0x%x\n",
ntohl(entry->offset), ntohl(entry->len));
}
// Ready to fill data into entry.
assert(ntohl(entry->len) == size);
entry->type = htonl(type);
DEBUG("content_offset: 0x%x, entry location: %x\n",
content_offset, (int)((char*)CBFS_SUBHEADER(entry) -
image->buffer.data));
assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data ==
content_offset);
memcpy(CBFS_SUBHEADER(entry), data, size);
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
// Process buffer AFTER entry.
entry = cbfs_find_next_entry(image, entry);
addr = cbfs_get_entry_addr(image, entry);
if (addr == addr_next)
return 0;
assert(addr < addr_next);
if (addr_next - addr < min_entry_size) {
DEBUG("No space after content to keep CBFS structure.\n");
return -1;
}
len = addr_next - addr - min_entry_size;
cbfs_create_empty_entry(entry, len, "");
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
return 0;
}
int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer,
const char *name, uint32_t type, uint32_t content_offset)
{
uint32_t entry_type;
uint32_t addr, addr_next;
struct cbfs_file *entry, *next;
uint32_t header_size, need_size, new_size;
header_size = cbfs_calculate_file_header_size(name);
need_size = header_size + buffer->size;
DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n",
name, content_offset, header_size, buffer->size, need_size);
if (IS_TOP_ALIGNED_ADDRESS(content_offset)) {
// legacy cbfstool takes top-aligned address.
uint32_t theromsize = image->header->romsize;
INFO("Converting top-aligned address 0x%x to offset: 0x%x\n",
content_offset, content_offset + theromsize);
content_offset = theromsize + (int32_t)content_offset;
}
// Merge empty entries.
DEBUG("(trying to merge empty entries...)\n");
cbfs_walk(image, cbfs_merge_empty_entry, NULL);
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
entry_type = ntohl(entry->type);
if (entry_type != CBFS_COMPONENT_NULL)
continue;
addr = cbfs_get_entry_addr(image, entry);
next = cbfs_find_next_entry(image, entry);
addr_next = cbfs_get_entry_addr(image, next);
DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n",
addr, addr_next - addr, addr_next - addr);
/* Will the file fit? Don't yet worry if we have space for a new
* "empty" entry. We take care of that later.
*/
if (addr + need_size > addr_next)
continue;
// Can we simply put object here?
if (!content_offset || content_offset == addr + header_size) {
DEBUG("Filling new entry data (%zd bytes).\n",
buffer->size);
cbfs_create_empty_entry(entry, buffer->size, name);
entry->type = htonl(type);
memcpy(CBFS_SUBHEADER(entry), buffer->data, buffer->size);
if (verbose)
cbfs_print_entry_info(image, entry, stderr);
// setup new entry
DEBUG("Setting new empty entry.\n");
entry = cbfs_find_next_entry(image, entry);
new_size = (cbfs_get_entry_addr(image, next) -
cbfs_get_entry_addr(image, entry));
/* Entry was added and no space for new "empty" entry */
if (new_size < cbfs_calculate_file_header_size("")) {
DEBUG("No need for new \"empty\" entry\n");
/* No need to increase the size of the just
* stored file to extend to next file. Alignment
* of next file takes care of this.
*/
return 0;
}
new_size -= cbfs_calculate_file_header_size("");
DEBUG("new size: %d\n", new_size);
cbfs_create_empty_entry(entry, new_size, "");
if (verbose)
cbfs_print_entry_info(image, entry, stderr);
return 0;
}
// We need to put content here, and the case is really
// complicated...
assert(content_offset);
if (addr_next < content_offset) {
DEBUG("Not for specified offset yet");
continue;
} else if (addr > content_offset) {
DEBUG("Exceed specified content_offset.");
break;
} else if (addr + header_size > content_offset) {
ERROR("Not enough space for header.\n");
break;
} else if (content_offset + buffer->size > addr_next) {
ERROR("Not enough space for content.\n");
break;
}
// TODO there are more few tricky cases that we may
// want to fit by altering offset.
DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n",
addr, addr_next - addr, content_offset);
if (cbfs_add_entry_at(image, entry, buffer->size, name, type,
buffer->data, content_offset) == 0) {
return 0;
}
break;
}
ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n",
buffer->name, buffer->size, buffer->size / 1024, content_offset);
return -1;
}
struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name)
{
struct cbfs_file *entry;
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
if (strcasecmp(CBFS_NAME(entry), name) == 0) {
DEBUG("cbfs_get_entry: found %s\n", name);
return entry;
}
}
return NULL;
}
int cbfs_export_entry(struct cbfs_image *image, const char *entry_name,
const char *filename)
{
struct cbfs_file *entry = cbfs_get_entry(image, entry_name);
struct buffer buffer;
if (!entry) {
ERROR("File not found: %s\n", entry_name);
return -1;
}
LOG("Found file %.30s at 0x%x, type %.12s, size %d\n",
entry_name, cbfs_get_entry_addr(image, entry),
get_cbfs_entry_type_name(ntohl(entry->type)), ntohl(entry->len));
if (ntohl(entry->type) != CBFS_COMPONENT_RAW) {
WARN("Only 'raw' files are safe to extract.\n");
}
buffer.data = CBFS_SUBHEADER(entry);
buffer.size = ntohl(entry->len);
buffer.name = strdup("(cbfs_export_entry)");
if (buffer_write_file(&buffer, filename) != 0) {
ERROR("Failed to write %s into %s.\n",
entry_name, filename);
free(buffer.name);
return -1;
}
free(buffer.name);
INFO("Successfully dumped the file to: %s\n", filename);
return 0;
}
int cbfs_remove_entry(struct cbfs_image *image, const char *name)
{
struct cbfs_file *entry, *next;
size_t len;
entry = cbfs_get_entry(image, name);
if (!entry) {
ERROR("CBFS file %s not found.\n", name);
return -1;
}
next = cbfs_find_next_entry(image, entry);
assert(next);
DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n",
CBFS_NAME(entry), cbfs_get_entry_addr(image, entry));
entry->type = htonl(CBFS_COMPONENT_DELETED);
len = (cbfs_get_entry_addr(image, next) -
cbfs_get_entry_addr(image, entry));
entry->offset = htonl(cbfs_calculate_file_header_size(""));
entry->len = htonl(len - ntohl(entry->offset));
memset(CBFS_NAME(entry), 0, ntohl(entry->offset) - sizeof(*entry));
memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE,
ntohl(entry->len));
return 0;
}
int cbfs_print_header_info(struct cbfs_image *image)
{
char *name = strdup(image->buffer.name);
assert(image && image->header);
printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n"
"alignment: %d bytes, architecture: %s\n\n",
basename(name),
image->buffer.size / 1024,
image->header->bootblocksize,
image->header->romsize,
image->header->offset,
image->header->align,
arch_to_string(image->header->architecture));
free(name);
return 0;
}
static int cbfs_print_stage_info(struct cbfs_stage *stage, FILE* fp)
{
fprintf(fp,
" %s compression, entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", "
"length: %d/%d\n",
lookup_name_by_type(types_cbfs_compression,
stage->compression, "(unknown)"),
stage->entry,
stage->load,
stage->len,
stage->memlen);
return 0;
}
static int cbfs_print_decoded_payload_segment_info(
struct cbfs_payload_segment *seg, FILE *fp)
{
/* The input (seg) must be already decoded by
* cbfs_decode_payload_segment.
*/
switch (seg->type) {
case PAYLOAD_SEGMENT_CODE:
case PAYLOAD_SEGMENT_DATA:
fprintf(fp, " %s (%s compression, offset: 0x%x, "
"load: 0x%" PRIx64 ", length: %d/%d)\n",
(seg->type == PAYLOAD_SEGMENT_CODE ?
"code " : "data"),
lookup_name_by_type(types_cbfs_compression,
seg->compression,
"(unknown)"),
seg->offset, seg->load_addr, seg->len,
seg->mem_len);
break;
case PAYLOAD_SEGMENT_ENTRY:
fprintf(fp, " entry (0x%" PRIx64 ")\n",
seg->load_addr);
break;
case PAYLOAD_SEGMENT_BSS:
fprintf(fp, " BSS (address 0x%016" PRIx64 ", "
"length 0x%x)\n",
seg->load_addr, seg->len);
break;
case PAYLOAD_SEGMENT_PARAMS:
fprintf(fp, " parameters\n");
break;
default:
fprintf(fp, " 0x%x (%s compression, offset: 0x%x, "
"load: 0x%" PRIx64 ", length: %d/%d\n",
seg->type,
lookup_name_by_type(types_cbfs_compression,
seg->compression,
"(unknown)"),
seg->offset, seg->load_addr, seg->len,
seg->mem_len);
break;
}
return 0;
}
int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry,
void *arg)
{
const char *name = CBFS_NAME(entry);
struct cbfs_payload_segment *payload;
FILE *fp = (FILE *)arg;
if (!cbfs_is_valid_entry(image, entry)) {
ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
cbfs_get_entry_addr(image, entry));
return -1;
}
if (!fp)
fp = stdout;
fprintf(fp, "%-30s 0x%-8x %-12s %d\n",
*name ? name : "(empty)",
cbfs_get_entry_addr(image, entry),
get_cbfs_entry_type_name(ntohl(entry->type)),
ntohl(entry->len));
if (!verbose)
return 0;
DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n",
cbfs_get_entry_addr(image, entry), ntohl(entry->offset),
cbfs_get_entry_addr(image, entry) + ntohl(entry->offset),
ntohl(entry->len));
/* note the components of the subheader may be in host order ... */
switch (ntohl(entry->type)) {
case CBFS_COMPONENT_STAGE:
cbfs_print_stage_info((struct cbfs_stage *)
CBFS_SUBHEADER(entry), fp);
break;
case CBFS_COMPONENT_PAYLOAD:
payload = (struct cbfs_payload_segment *)
CBFS_SUBHEADER(entry);
while (payload) {
struct cbfs_payload_segment seg;
cbfs_decode_payload_segment(&seg, payload);
cbfs_print_decoded_payload_segment_info(
&seg, fp);
if (seg.type == PAYLOAD_SEGMENT_ENTRY)
break;
else
payload ++;
}
break;
default:
break;
}
return 0;
}
int cbfs_print_directory(struct cbfs_image *image)
{
cbfs_print_header_info(image);
printf("%-30s %-10s %-12s Size\n", "Name", "Offset", "Type");
cbfs_walk(image, cbfs_print_entry_info, NULL);
return 0;
}
int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
unused void *arg)
{
struct cbfs_file *next;
uint32_t type, addr, last_addr;
type = ntohl(entry->type);
if (type == CBFS_COMPONENT_DELETED) {
// Ready to be recycled.
type = CBFS_COMPONENT_NULL;
entry->type = htonl(type);
}
if (type != CBFS_COMPONENT_NULL)
return 0;
next = cbfs_find_next_entry(image, entry);
while (next && cbfs_is_valid_entry(image, next)) {
type = ntohl(next->type);
if (type == CBFS_COMPONENT_DELETED) {
type = CBFS_COMPONENT_NULL;
next->type = htonl(type);
}
if (type != CBFS_COMPONENT_NULL)
return 0;
addr = cbfs_get_entry_addr(image, entry);
last_addr = cbfs_get_entry_addr(
image, cbfs_find_next_entry(image, next));
// Now, we find two deleted/empty entries; try to merge now.
DEBUG("join_empty_entry: combine 0x%x+0x%x and 0x%x+0x%x.\n",
cbfs_get_entry_addr(image, entry), ntohl(entry->len),
cbfs_get_entry_addr(image, next), ntohl(next->len));
cbfs_create_empty_entry(entry,
(last_addr - addr -
cbfs_calculate_file_header_size("")),
"");
DEBUG("new empty entry: length=0x%x\n", ntohl(entry->len));
next = cbfs_find_next_entry(image, entry);
}
return 0;
}
int cbfs_walk(struct cbfs_image *image, cbfs_entry_callback callback,
void *arg)
{
int count = 0;
struct cbfs_file *entry;
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
count ++;
if (callback(image, entry, arg) != 0)
break;
}
return count;
}
static int cbfs_header_valid(struct cbfs_header *header, size_t size)
{
if ((ntohl(header->magic) == CBFS_HEADER_MAGIC) &&
((ntohl(header->version) == CBFS_HEADER_VERSION1) ||
(ntohl(header->version) == CBFS_HEADER_VERSION2)) &&
(ntohl(header->romsize) <= size) &&
(ntohl(header->offset) < ntohl(header->romsize)))
return 1;
return 0;
}
struct cbfs_header *cbfs_find_header(char *data, size_t size,
uint32_t forced_offset)
{
size_t offset;
int found = 0;
int32_t rel_offset;
struct cbfs_header *header, *result = NULL;
if (forced_offset < (size - sizeof(struct cbfs_header))) {
/* Check if the forced header is valid. */
header = (struct cbfs_header *)(data + forced_offset);
if (cbfs_header_valid(header, size))
return header;
return NULL;
}
// Try finding relative offset of master header at end of file first.
rel_offset = *(int32_t *)(data + size - sizeof(int32_t));
offset = size + rel_offset;
DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n",
(size_t)rel_offset, (size_t)-rel_offset, offset);
if (offset >= size - sizeof(*header) ||
!cbfs_header_valid((struct cbfs_header *)(data + offset), size)) {
// Some use cases append non-CBFS data to the end of the ROM.
DEBUG("relative offset seems wrong, scanning whole image...\n");
offset = 0;
}
for (; offset + sizeof(*header) < size; offset++) {
header = (struct cbfs_header *)(data + offset);
if (!cbfs_header_valid(header, size))
continue;
if (!found++)
result = header;
}
if (found > 1)
// Top-aligned images usually have a working relative offset
// field, so this is more likely to happen on bottom-aligned
// ones (where the first header is the "outermost" one)
WARN("Multiple (%d) CBFS headers found, using the first one.\n",
found);
return result;
}
struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image)
{
assert(image && image->header);
return (struct cbfs_file *)(image->buffer.data +
image->header->offset);
}
struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image,
struct cbfs_file *entry)
{
uint32_t addr = cbfs_get_entry_addr(image, entry);
int align = image->header->align;
assert(entry && cbfs_is_valid_entry(image, entry));
addr += ntohl(entry->offset) + ntohl(entry->len);
addr = align_up(addr, align);
return (struct cbfs_file *)(image->buffer.data + addr);
}
uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry)
{
assert(image && image->buffer.data && entry);
return (int32_t)((char *)entry - image->buffer.data);
}
int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry)
{
return (entry &&
(char *)entry >= image->buffer.data &&
(char *)entry + sizeof(entry->magic) <
image->buffer.data + image->buffer.size &&
memcmp(entry->magic, CBFS_FILE_MAGIC,
sizeof(entry->magic)) == 0);
}
int cbfs_create_empty_entry(struct cbfs_file *entry,
size_t len, const char *name)
{
memset(entry, CBFS_CONTENT_DEFAULT_VALUE, sizeof(*entry));
memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
entry->type = htonl(CBFS_COMPONENT_NULL);
entry->len = htonl(len);
entry->checksum = 0; // TODO Build a checksum algorithm.
entry->offset = htonl(cbfs_calculate_file_header_size(name));
memset(CBFS_NAME(entry), 0, ntohl(entry->offset) - sizeof(*entry));
strcpy(CBFS_NAME(entry), name);
memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len);
return 0;
}
/* Finds a place to hold whole data in same memory page. */
static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page)
{
if (!page)
return 1;
return (start / page) == (start + size - 1) / page;
}
/* Tests if data can fit in a range by given offset:
* start ->| header_len | offset (+ size) |<- end
*/
static int is_in_range(uint32_t start, uint32_t end, uint32_t header_len,
uint32_t offset, uint32_t size)
{
return (offset >= start + header_len && offset + size <= end);
}
int32_t cbfs_locate_entry(struct cbfs_image *image, const char *name,
uint32_t size, uint32_t page_size, uint32_t align)
{
struct cbfs_file *entry;
size_t need_len;
uint32_t addr, addr_next, addr2, addr3, offset, header_len;
/* Default values: allow fitting anywhere in ROM. */
if (!page_size)
page_size = image->header->romsize;
if (!align)
align = 1;
if (size > page_size)
ERROR("Input file size (%d) greater than page size (%d).\n",
size, page_size);
if (page_size % image->header->align)
WARN("%s: Page size (%#x) not aligned with CBFS image (%#x).\n",
__func__, page_size, image->header->align);
/* TODO Old cbfstool always assume input is a stage file (and adding
* sizeof(cbfs_stage) for header. We should fix that by adding "-t"
* (type) param in future. For right now, we assume cbfs_stage is the
* largest structure and add it into header size. */
assert(sizeof(struct cbfs_stage) >= sizeof(struct cbfs_payload));
header_len = (cbfs_calculate_file_header_size(name) +
sizeof(struct cbfs_stage));
need_len = header_len + size;
// Merge empty entries to build get max available space.
cbfs_walk(image, cbfs_merge_empty_entry, NULL);
/* Three cases of content location on memory page:
* case 1.
* | PAGE 1 | PAGE 2 |
* | <header><content>| Fit. Return start of content.
*
* case 2.
* | PAGE 1 | PAGE 2 |
* | <header><content> | Fits when we shift content to align
* shift-> | <header>|<content> | at starting of PAGE 2.
*
* case 3. (large content filling whole page)
* | PAGE 1 | PAGE 2 | PAGE 3 |
* | <header>< content > | Can't fit. If we shift content to
* |trial-> <header>< content > | PAGE 2, header can't fit in free
* | shift-> <header><content> space, so we must use PAGE 3.
*
* The returned address can be then used as "base-address" (-b) in add-*
* commands (will be re-calculated and positioned by cbfs_add_entry_at).
* For stage targets, the address is also used to re-link stage before
* being added into CBFS.
*/
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
uint32_t type = ntohl(entry->type);
if (type != CBFS_COMPONENT_NULL)
continue;
addr = cbfs_get_entry_addr(image, entry);
addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry(
image, entry));
if (addr_next - addr < need_len)
continue;
offset = align_up(addr + header_len, align);
if (is_in_same_page(offset, size, page_size) &&
is_in_range(addr, addr_next, header_len, offset, size)) {
DEBUG("cbfs_locate_entry: FIT (PAGE1).");
return offset;
}
addr2 = align_up(addr, page_size);
offset = align_up(addr2, align);
if (is_in_range(addr, addr_next, header_len, offset, size)) {
DEBUG("cbfs_locate_entry: OVERLAP (PAGE2).");
return offset;
}
/* Assume page_size >= header_len so adding one page will
* definitely provide the space for header. */
assert(page_size >= header_len);
addr3 = addr2 + page_size;
offset = align_up(addr3, align);
if (is_in_range(addr, addr_next, header_len, offset, size)) {
DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3).");
return offset;
}
}
return -1;
}