0dff57dd7a
By design, the imd library still provdes dynamic growth so that feature is consistent. The imd-based cbmem packs small allocations into a larger entry using a tiered imd. The following examples show the reduced fragmentation and reduced memory usage. Before with dynamic cbmem: CBMEM ROOT 0. 023ff000 00001000 aaaabbbb 1. 023fe000 00001000 aaaabbbc 2. 023fd000 00001000 aaaabbbe 3. 023fc000 00001000 aaaacccc 4. 023fa000 00002000 aaaacccd 5. 023f9000 00001000 ROMSTAGE 6. 023f8000 00001000 CONSOLE 7. 023d8000 00020000 COREBOOT 8. 023d6000 00002000 After with tiered imd: IMD ROOT 0. 023ff000 00001000 IMD SMALL 1. 023fe000 00001000 aaaacccc 2. 023fc000 00001060 aaaacccd 3. 023fb000 000007cf CONSOLE 4. 023db000 00020000 COREBOOT 5. 023d9000 00002000 IMD small region: IMD ROOT 0. 023fec00 00000400 aaaabbbb 1. 023febe0 00000020 aaaabbbc 2. 023feba0 00000040 aaaabbbe 3. 023feb20 00000080 ROMSTAGE 4. 023feb00 00000004 Side note: this CL provides a basis for what hoops one needs to jump through when there are not writeable global variables on a particular platform in the early stages. Change-Id: If770246caa64b274819e45a26e100b62b9f8d2db Signed-off-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9169 Tested-by: build bot (Jenkins) Reviewed-by: Marc Jones <marc.jones@se-eng.com>
1109 lines
26 KiB
C
1109 lines
26 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <getopt.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <ctype.h>
|
|
#include <arpa/inet.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mman.h>
|
|
#include <libgen.h>
|
|
#include <assert.h>
|
|
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
|
|
#define MAP_BYTES (1024*1024)
|
|
#define IS_ENABLED(x) (defined (x) && (x))
|
|
|
|
#include "boot/coreboot_tables.h"
|
|
|
|
typedef uint8_t u8;
|
|
typedef uint16_t u16;
|
|
typedef uint32_t u32;
|
|
typedef uint64_t u64;
|
|
|
|
#include "cbmem.h"
|
|
#include "timestamp.h"
|
|
|
|
#define CBMEM_VERSION "1.1"
|
|
|
|
/* verbose output? */
|
|
static int verbose = 0;
|
|
#define debug(x...) if(verbose) printf(x)
|
|
|
|
/* File handle used to access /dev/mem */
|
|
static int mem_fd;
|
|
|
|
/*
|
|
* calculate ip checksum (16 bit quantities) on a passed in buffer. In case
|
|
* the buffer length is odd last byte is excluded from the calculation
|
|
*/
|
|
static u16 ipchcksum(const void *addr, unsigned size)
|
|
{
|
|
const u16 *p = addr;
|
|
unsigned i, n = size / 2; /* don't expect odd sized blocks */
|
|
u32 sum = 0;
|
|
|
|
for (i = 0; i < n; i++)
|
|
sum += p[i];
|
|
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
sum += (sum >> 16);
|
|
sum = ~sum & 0xffff;
|
|
return (u16) sum;
|
|
}
|
|
|
|
/*
|
|
* Functions to map / unmap physical memory into virtual address space. These
|
|
* functions always maps 1MB at a time and can only map one area at once.
|
|
*/
|
|
static void *mapped_virtual;
|
|
static size_t mapped_size;
|
|
|
|
static inline size_t size_to_mib(size_t sz)
|
|
{
|
|
return sz >> 20;
|
|
}
|
|
|
|
static void unmap_memory(void)
|
|
{
|
|
if (mapped_virtual == NULL) {
|
|
fprintf(stderr, "Error unmapping memory\n");
|
|
return;
|
|
}
|
|
debug("Unmapping %zuMB of virtual memory at %p.\n",
|
|
size_to_mib(mapped_size), mapped_virtual);
|
|
munmap(mapped_virtual, mapped_size);
|
|
mapped_virtual = NULL;
|
|
mapped_size = 0;
|
|
}
|
|
|
|
static void *map_memory_size(u64 physical, size_t size)
|
|
{
|
|
void *v;
|
|
off_t p;
|
|
u64 page = getpagesize();
|
|
size_t padding;
|
|
|
|
if (mapped_virtual != NULL)
|
|
unmap_memory();
|
|
|
|
/* Mapped memory must be aligned to page size */
|
|
p = physical & ~(page - 1);
|
|
padding = physical & (page-1);
|
|
size += padding;
|
|
|
|
debug("Mapping %zuMB of physical memory at 0x%jx.\n",
|
|
size_to_mib(size), (intmax_t)p);
|
|
|
|
v = mmap(NULL, size, PROT_READ, MAP_SHARED, mem_fd, p);
|
|
|
|
if (v == MAP_FAILED) {
|
|
fprintf(stderr, "Failed to mmap /dev/mem: %s\n",
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
/* Remember what we actually mapped ... */
|
|
mapped_virtual = v;
|
|
mapped_size = size;
|
|
|
|
/* ... but return address to the physical memory that was requested */
|
|
if (padding)
|
|
debug(" ... padding virtual address with 0x%zx bytes.\n",
|
|
padding);
|
|
v += padding;
|
|
|
|
return v;
|
|
}
|
|
|
|
static void *map_memory(u64 physical)
|
|
{
|
|
return map_memory_size(physical, MAP_BYTES);
|
|
}
|
|
|
|
/*
|
|
* Try finding the timestamp table and coreboot cbmem console starting from the
|
|
* passed in memory offset. Could be called recursively in case a forwarding
|
|
* entry is found.
|
|
*
|
|
* Returns pointer to a memory buffer containg the timestamp table or zero if
|
|
* none found.
|
|
*/
|
|
|
|
static struct lb_cbmem_ref timestamps;
|
|
static struct lb_cbmem_ref console;
|
|
static struct lb_memory_range cbmem;
|
|
|
|
/* This is a work-around for a nasty problem introduced by initially having
|
|
* pointer sized entries in the lb_cbmem_ref structures. This caused problems
|
|
* on 64bit x86 systems because coreboot is 32bit on those systems.
|
|
* When the problem was found, it was corrected, but there are a lot of
|
|
* systems out there with a firmware that does not produce the right
|
|
* lb_cbmem_ref structure. Hence we try to autocorrect this issue here.
|
|
*/
|
|
static struct lb_cbmem_ref parse_cbmem_ref(struct lb_cbmem_ref *cbmem_ref)
|
|
{
|
|
struct lb_cbmem_ref ret;
|
|
|
|
ret = *cbmem_ref;
|
|
|
|
if (cbmem_ref->size < sizeof(*cbmem_ref))
|
|
ret.cbmem_addr = (uint32_t)ret.cbmem_addr;
|
|
|
|
debug(" cbmem_addr = %" PRIx64 "\n", ret.cbmem_addr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int parse_cbtable(u64 address, size_t table_size)
|
|
{
|
|
int i, found = 0;
|
|
void *buf;
|
|
|
|
debug("Looking for coreboot table at %" PRIx64 " %zd bytes.\n",
|
|
address, table_size);
|
|
buf = map_memory_size(address, table_size);
|
|
|
|
/* look at every 16 bytes within 4K of the base */
|
|
|
|
for (i = 0; i < 0x1000; i += 0x10) {
|
|
struct lb_header *lbh;
|
|
struct lb_record* lbr_p;
|
|
void *lbtable;
|
|
int j;
|
|
|
|
lbh = (struct lb_header *)(buf + i);
|
|
if (memcmp(lbh->signature, "LBIO", sizeof(lbh->signature)) ||
|
|
!lbh->header_bytes ||
|
|
ipchcksum(lbh, sizeof(*lbh))) {
|
|
continue;
|
|
}
|
|
lbtable = buf + i + lbh->header_bytes;
|
|
|
|
if (ipchcksum(lbtable, lbh->table_bytes) !=
|
|
lbh->table_checksum) {
|
|
debug("Signature found, but wrong checksum.\n");
|
|
continue;
|
|
}
|
|
|
|
found = 1;
|
|
debug("Found!\n");
|
|
|
|
for (j = 0; j < lbh->table_bytes; j += lbr_p->size) {
|
|
lbr_p = (struct lb_record*) ((char *)lbtable + j);
|
|
debug(" coreboot table entry 0x%02x\n", lbr_p->tag);
|
|
switch (lbr_p->tag) {
|
|
case LB_TAG_MEMORY: {
|
|
int i = 0;
|
|
debug(" Found memory map.\n");
|
|
struct lb_memory *memory =
|
|
(struct lb_memory *)lbr_p;
|
|
while ((char *)&memory->map[i] < ((char *)lbr_p
|
|
+ lbr_p->size)) {
|
|
if (memory->map[i].type == LB_MEM_TABLE) {
|
|
debug(" LB_MEM_TABLE found.\n");
|
|
/* The last one found is CBMEM */
|
|
cbmem = memory->map[i];
|
|
}
|
|
i++;
|
|
}
|
|
continue;
|
|
}
|
|
case LB_TAG_TIMESTAMPS: {
|
|
debug(" Found timestamp table.\n");
|
|
timestamps = parse_cbmem_ref((struct lb_cbmem_ref *) lbr_p);
|
|
continue;
|
|
}
|
|
case LB_TAG_CBMEM_CONSOLE: {
|
|
debug(" Found cbmem console.\n");
|
|
console = parse_cbmem_ref((struct lb_cbmem_ref *) lbr_p);
|
|
continue;
|
|
}
|
|
case LB_TAG_FORWARD: {
|
|
/*
|
|
* This is a forwarding entry - repeat the
|
|
* search at the new address.
|
|
*/
|
|
struct lb_forward lbf_p =
|
|
*(struct lb_forward *) lbr_p;
|
|
debug(" Found forwarding entry.\n");
|
|
unmap_memory();
|
|
return parse_cbtable(lbf_p.forward, table_size);
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
unmap_memory();
|
|
|
|
return found;
|
|
}
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
/*
|
|
* read CPU frequency from a sysfs file, return an frequency in Kilohertz as
|
|
* an int or exit on any error.
|
|
*/
|
|
static u64 get_cpu_freq_KHz(void)
|
|
{
|
|
FILE *cpuf;
|
|
char freqs[100];
|
|
int size;
|
|
char *endp;
|
|
u64 rv;
|
|
|
|
const char* freq_file =
|
|
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";
|
|
|
|
cpuf = fopen(freq_file, "r");
|
|
if (!cpuf) {
|
|
fprintf(stderr, "Could not open %s: %s\n",
|
|
freq_file, strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
memset(freqs, 0, sizeof(freqs));
|
|
size = fread(freqs, 1, sizeof(freqs), cpuf);
|
|
if (!size || (size == sizeof(freqs))) {
|
|
fprintf(stderr, "Wrong number of bytes(%d) read from %s\n",
|
|
size, freq_file);
|
|
exit(1);
|
|
}
|
|
fclose(cpuf);
|
|
rv = strtoull(freqs, &endp, 10);
|
|
|
|
if (*endp == '\0' || *endp == '\n')
|
|
return rv;
|
|
fprintf(stderr, "Wrong formatted value ^%s^ read from %s\n",
|
|
freqs, freq_file);
|
|
exit(1);
|
|
}
|
|
|
|
/* On x86 platforms timestamps are stored
|
|
* in CPU cycles (from rdtsc). Hence the
|
|
* timestamp divider is the CPU frequency
|
|
* in MHz.
|
|
*/
|
|
u64 arch_convert_raw_ts_entry(u64 ts)
|
|
{
|
|
static u64 cpu_freq_mhz = 0;
|
|
|
|
if (!cpu_freq_mhz)
|
|
cpu_freq_mhz = get_cpu_freq_KHz() / 1000;
|
|
|
|
return ts / cpu_freq_mhz;
|
|
}
|
|
|
|
#else
|
|
|
|
/* On non-x86 platforms the timestamp entries
|
|
* are not in clock cycles but in usecs
|
|
*/
|
|
u64 arch_convert_raw_ts_entry(u64 ts)
|
|
{
|
|
return ts;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Print an integer in 'normalized' form - with commas separating every three
|
|
* decimal orders.
|
|
*/
|
|
static void print_norm(u64 v)
|
|
{
|
|
if (v >= 1000) {
|
|
/* print the higher order sections first */
|
|
print_norm(v / 1000);
|
|
printf(",%3.3u", (u32)(v % 1000));
|
|
} else {
|
|
printf("%u", (u32)(v % 1000));
|
|
}
|
|
}
|
|
|
|
enum additional_timestamp_id {
|
|
// Depthcharge entry IDs start at 1000.
|
|
TS_DC_START = 1000,
|
|
|
|
TS_RO_PARAMS_INIT = 1001,
|
|
TS_RO_VB_INIT = 1002,
|
|
TS_RO_VB_SELECT_FIRMWARE = 1003,
|
|
TS_RO_VB_SELECT_AND_LOAD_KERNEL = 1004,
|
|
|
|
TS_RW_VB_SELECT_AND_LOAD_KERNEL = 1010,
|
|
|
|
TS_VB_SELECT_AND_LOAD_KERNEL = 1020,
|
|
|
|
TS_CROSSYSTEM_DATA = 1100,
|
|
TS_START_KERNEL = 1101
|
|
};
|
|
|
|
static const struct timestamp_id_to_name {
|
|
u32 id;
|
|
const char *name;
|
|
} timestamp_ids[] = {
|
|
{ TS_START_ROMSTAGE, "start of rom stage" },
|
|
{ TS_BEFORE_INITRAM, "before ram initialization" },
|
|
{ TS_AFTER_INITRAM, "after ram initialization" },
|
|
{ TS_END_ROMSTAGE, "end of romstage" },
|
|
{ TS_START_VBOOT, "start of verified boot" },
|
|
{ TS_END_VBOOT, "end of verified boot" },
|
|
{ TS_START_COPYRAM, "starting to load ramstage" },
|
|
{ TS_END_COPYRAM, "finished loading ramstage" },
|
|
{ TS_START_RAMSTAGE, "start of ramstage" },
|
|
{ TS_START_BOOTBLOCK, "start of bootblock" },
|
|
{ TS_END_BOOTBLOCK, "end of bootblock" },
|
|
{ TS_START_COPYROM, "starting to load romstage" },
|
|
{ TS_END_COPYROM, "finished loading romstage" },
|
|
{ TS_START_ULZMA, "starting LZMA decompress (ignore for x86)" },
|
|
{ TS_END_ULZMA, "finished LZMA decompress (ignore for x86)" },
|
|
{ TS_DEVICE_ENUMERATE, "device enumeration" },
|
|
{ TS_DEVICE_CONFIGURE, "device configuration" },
|
|
{ TS_DEVICE_ENABLE, "device enable" },
|
|
{ TS_DEVICE_INITIALIZE, "device initialization" },
|
|
{ TS_DEVICE_DONE, "device setup done" },
|
|
{ TS_CBMEM_POST, "cbmem post" },
|
|
{ TS_WRITE_TABLES, "write tables" },
|
|
{ TS_LOAD_PAYLOAD, "load payload" },
|
|
{ TS_ACPI_WAKE_JUMP, "ACPI wake jump" },
|
|
{ TS_SELFBOOT_JUMP, "selfboot jump" },
|
|
|
|
{ TS_START_COPYVER, "starting to load verstage" },
|
|
{ TS_END_COPYVER, "finished loading verstage" },
|
|
{ TS_START_TPMINIT, "starting to initialize TPM" },
|
|
{ TS_END_TPMINIT, "finished TPM initialization" },
|
|
{ TS_START_VERIFY_SLOT, "starting to verify keyblock/preamble (RSA)" },
|
|
{ TS_END_VERIFY_SLOT, "finished verifying keyblock/preamble (RSA)" },
|
|
{ TS_START_HASH_BODY, "starting to verify body (load+SHA2+RSA) " },
|
|
{ TS_DONE_LOADING, "finished loading body (ignore for x86)" },
|
|
{ TS_DONE_HASHING, "finished calculating body hash (SHA2)" },
|
|
{ TS_END_HASH_BODY, "finished verifying body signature (RSA)" },
|
|
|
|
{ TS_DC_START, "depthcharge start" },
|
|
{ TS_RO_PARAMS_INIT, "RO parameter init" },
|
|
{ TS_RO_VB_INIT, "RO vboot init" },
|
|
{ TS_RO_VB_SELECT_FIRMWARE, "RO vboot select firmware" },
|
|
{ TS_RO_VB_SELECT_AND_LOAD_KERNEL, "RO vboot select&load kernel" },
|
|
{ TS_RW_VB_SELECT_AND_LOAD_KERNEL, "RW vboot select&load kernel" },
|
|
{ TS_VB_SELECT_AND_LOAD_KERNEL, "vboot select&load kernel" },
|
|
{ TS_CROSSYSTEM_DATA, "crossystem data" },
|
|
{ TS_START_KERNEL, "start kernel" }
|
|
};
|
|
|
|
void timestamp_print_entry(uint32_t id, uint64_t stamp, uint64_t prev_stamp)
|
|
{
|
|
int i;
|
|
const char *name;
|
|
|
|
name = "<unknown>";
|
|
for (i = 0; i < ARRAY_SIZE(timestamp_ids); i++) {
|
|
if (timestamp_ids[i].id == id) {
|
|
name = timestamp_ids[i].name;
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("%4d:", id);
|
|
printf("%-50s", name);
|
|
print_norm(arch_convert_raw_ts_entry(stamp));
|
|
if (prev_stamp) {
|
|
printf(" (");
|
|
print_norm(arch_convert_raw_ts_entry(stamp - prev_stamp));
|
|
printf(")");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
/* dump the timestamp table */
|
|
static void dump_timestamps(void)
|
|
{
|
|
int i;
|
|
struct timestamp_table *tst_p;
|
|
size_t size;
|
|
|
|
if (timestamps.tag != LB_TAG_TIMESTAMPS) {
|
|
fprintf(stderr, "No timestamps found in coreboot table.\n");
|
|
return;
|
|
}
|
|
|
|
size = sizeof(*tst_p);
|
|
tst_p = map_memory_size((unsigned long)timestamps.cbmem_addr, size);
|
|
|
|
printf("%d entries total:\n\n", tst_p->num_entries);
|
|
size += tst_p->num_entries * sizeof(tst_p->entries[0]);
|
|
|
|
unmap_memory();
|
|
tst_p = map_memory_size((unsigned long)timestamps.cbmem_addr, size);
|
|
|
|
for (i = 0; i < tst_p->num_entries; i++) {
|
|
const struct timestamp_entry *tse_p = tst_p->entries + i;
|
|
timestamp_print_entry(tse_p->entry_id, tse_p->entry_stamp,
|
|
i ? tse_p[-1].entry_stamp : 0);
|
|
}
|
|
|
|
unmap_memory();
|
|
}
|
|
|
|
/* dump the cbmem console */
|
|
static void dump_console(void)
|
|
{
|
|
void *console_p;
|
|
char *console_c;
|
|
uint32_t size;
|
|
uint32_t cursor;
|
|
|
|
if (console.tag != LB_TAG_CBMEM_CONSOLE) {
|
|
fprintf(stderr, "No console found in coreboot table.\n");
|
|
return;
|
|
}
|
|
|
|
console_p = map_memory_size((unsigned long)console.cbmem_addr,
|
|
2 * sizeof(uint32_t));
|
|
/* The in-memory format of the console area is:
|
|
* u32 size
|
|
* u32 cursor
|
|
* char console[size]
|
|
* Hence we have to add 8 to get to the actual console string.
|
|
*/
|
|
size = ((uint32_t *)console_p)[0];
|
|
cursor = ((uint32_t *)console_p)[1];
|
|
/* Cursor continues to go on even after no more data fits in
|
|
* the buffer but the data is dropped in this case.
|
|
*/
|
|
if (size > cursor)
|
|
size = cursor;
|
|
console_c = malloc(size + 1);
|
|
unmap_memory();
|
|
if (!console_c) {
|
|
fprintf(stderr, "Not enough memory for console.\n");
|
|
exit(1);
|
|
}
|
|
|
|
console_p = map_memory_size((unsigned long)console.cbmem_addr,
|
|
size + sizeof(size) + sizeof(cursor));
|
|
memcpy(console_c, console_p + 8, size);
|
|
console_c[size] = 0;
|
|
console_c[cursor] = 0;
|
|
|
|
printf("%s\n", console_c);
|
|
if (size < cursor)
|
|
printf("%d %s lost\n", cursor - size,
|
|
(cursor - size) == 1 ? "byte":"bytes");
|
|
|
|
free(console_c);
|
|
|
|
unmap_memory();
|
|
}
|
|
|
|
static void hexdump(unsigned long memory, int length)
|
|
{
|
|
int i;
|
|
uint8_t *m;
|
|
int all_zero = 0;
|
|
|
|
m = map_memory_size((intptr_t)memory, length);
|
|
|
|
if (length > MAP_BYTES) {
|
|
printf("Truncating hex dump from %d to %d bytes\n\n",
|
|
length, MAP_BYTES);
|
|
length = MAP_BYTES;
|
|
}
|
|
|
|
for (i = 0; i < length; i += 16) {
|
|
int j;
|
|
|
|
all_zero++;
|
|
for (j = 0; j < 16; j++) {
|
|
if(m[i+j] != 0) {
|
|
all_zero = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (all_zero < 2) {
|
|
printf("%08lx:", memory + i);
|
|
for (j = 0; j < 16; j++)
|
|
printf(" %02x", m[i+j]);
|
|
printf(" ");
|
|
for (j = 0; j < 16; j++)
|
|
printf("%c", isprint(m[i+j]) ? m[i+j] : '.');
|
|
printf("\n");
|
|
} else if (all_zero == 2) {
|
|
printf("...\n");
|
|
}
|
|
}
|
|
|
|
unmap_memory();
|
|
}
|
|
|
|
static void dump_cbmem_hex(void)
|
|
{
|
|
if (cbmem.type != LB_MEM_TABLE) {
|
|
fprintf(stderr, "No coreboot CBMEM area found!\n");
|
|
return;
|
|
}
|
|
|
|
hexdump(unpack_lb64(cbmem.start), unpack_lb64(cbmem.size));
|
|
}
|
|
|
|
/* The root region is at least DYN_CBMEM_ALIGN_SIZE . */
|
|
#define DYN_CBMEM_ALIGN_SIZE (4096)
|
|
#define ROOT_MIN_SIZE DYN_CBMEM_ALIGN_SIZE
|
|
#define CBMEM_POINTER_MAGIC 0xc0389479
|
|
#define CBMEM_ENTRY_MAGIC ~(CBMEM_POINTER_MAGIC)
|
|
|
|
struct cbmem_root_pointer {
|
|
uint32_t magic;
|
|
uint32_t root;
|
|
} __attribute__((packed));
|
|
|
|
struct dynamic_cbmem_entry {
|
|
uint32_t magic;
|
|
uint32_t start;
|
|
uint32_t size;
|
|
uint32_t id;
|
|
} __attribute__((packed));
|
|
|
|
struct cbmem_root {
|
|
uint32_t max_entries;
|
|
uint32_t num_entries;
|
|
uint32_t locked;
|
|
uint32_t size;
|
|
struct dynamic_cbmem_entry entries[0];
|
|
} __attribute__((packed));
|
|
|
|
#define CBMEM_MAGIC 0x434f5245
|
|
#define MAX_CBMEM_ENTRIES 16
|
|
|
|
struct cbmem_entry {
|
|
uint32_t magic;
|
|
uint32_t id;
|
|
uint64_t base;
|
|
uint64_t size;
|
|
} __attribute__((packed));
|
|
|
|
struct cbmem_id_to_name {
|
|
uint32_t id;
|
|
const char *name;
|
|
};
|
|
static const struct cbmem_id_to_name cbmem_ids[] = { CBMEM_ID_TO_NAME_TABLE };
|
|
|
|
void cbmem_print_entry(int n, uint32_t id, uint64_t base, uint64_t size)
|
|
{
|
|
int i;
|
|
const char *name;
|
|
|
|
name = NULL;
|
|
for (i = 0; i < ARRAY_SIZE(cbmem_ids); i++) {
|
|
if (cbmem_ids[i].id == id) {
|
|
name = cbmem_ids[i].name;
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("%2d. ", n);
|
|
if (name == NULL)
|
|
printf("%08x ", id);
|
|
else
|
|
printf("%s", name);
|
|
printf(" %08" PRIx64 " ", base);
|
|
printf(" %08" PRIx64 "\n", size);
|
|
}
|
|
|
|
static void dump_static_cbmem_toc(struct cbmem_entry *entries)
|
|
{
|
|
int i;
|
|
|
|
printf("CBMEM table of contents:\n");
|
|
printf(" ID START LENGTH\n");
|
|
|
|
for (i=0; i<MAX_CBMEM_ENTRIES; i++) {
|
|
if (entries[i].magic != CBMEM_MAGIC)
|
|
break;
|
|
cbmem_print_entry(i, entries[i].id,
|
|
entries[i].base, entries[i].size);
|
|
}
|
|
}
|
|
|
|
static void dump_dynamic_cbmem_toc(struct cbmem_root *root)
|
|
{
|
|
int i;
|
|
debug("CBMEM: max_entries=%d num_entries=%d locked=0x%x, size=%d\n\n",
|
|
root->max_entries, root->num_entries, root->locked, root->size);
|
|
|
|
printf("CBMEM table of contents:\n");
|
|
printf(" ID START LENGTH\n");
|
|
|
|
for (i = 0; i < root->num_entries; i++) {
|
|
if(root->entries[i].magic != CBMEM_ENTRY_MAGIC)
|
|
break;
|
|
cbmem_print_entry(i, root->entries[i].id,
|
|
root->entries[i].start, root->entries[i].size);
|
|
}
|
|
}
|
|
|
|
static void dump_cbmem_toc(void)
|
|
{
|
|
uint64_t start;
|
|
void *cbmem_area;
|
|
struct cbmem_entry *entries;
|
|
|
|
if (cbmem.type != LB_MEM_TABLE) {
|
|
fprintf(stderr, "No coreboot CBMEM area found!\n");
|
|
return;
|
|
}
|
|
|
|
start = unpack_lb64(cbmem.start);
|
|
|
|
cbmem_area = map_memory_size(start, unpack_lb64(cbmem.size));
|
|
entries = (struct cbmem_entry *)cbmem_area;
|
|
|
|
if (entries[0].magic == CBMEM_MAGIC) {
|
|
dump_static_cbmem_toc(entries);
|
|
} else {
|
|
uint64_t rootptr;
|
|
|
|
rootptr = unpack_lb64(cbmem.start) + unpack_lb64(cbmem.size);
|
|
rootptr &= ~(DYN_CBMEM_ALIGN_SIZE - 1);
|
|
rootptr -= sizeof(struct cbmem_root_pointer);
|
|
unmap_memory();
|
|
struct cbmem_root_pointer *r =
|
|
map_memory_size(rootptr, sizeof(*r));
|
|
if (r->magic == CBMEM_POINTER_MAGIC) {
|
|
struct cbmem_root *root;
|
|
uint64_t rootaddr = r->root;
|
|
unmap_memory();
|
|
root = map_memory_size(rootaddr, ROOT_MIN_SIZE);
|
|
dump_dynamic_cbmem_toc(root);
|
|
} else
|
|
fprintf(stderr, "No valid coreboot CBMEM root pointer found.\n");
|
|
}
|
|
|
|
unmap_memory();
|
|
}
|
|
|
|
#define COVERAGE_MAGIC 0x584d4153
|
|
struct file {
|
|
uint32_t magic;
|
|
uint32_t next;
|
|
uint32_t filename;
|
|
uint32_t data;
|
|
int offset;
|
|
int len;
|
|
};
|
|
|
|
static int mkpath(char *path, mode_t mode)
|
|
{
|
|
assert (path && *path);
|
|
char *p;
|
|
for (p = strchr(path+1, '/'); p; p = strchr(p + 1, '/')) {
|
|
*p = '\0';
|
|
if (mkdir(path, mode) == -1) {
|
|
if (errno != EEXIST) {
|
|
*p = '/';
|
|
return -1;
|
|
}
|
|
}
|
|
*p = '/';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void dump_coverage(void)
|
|
{
|
|
int i, found = 0;
|
|
uint64_t start;
|
|
struct cbmem_entry *entries;
|
|
void *coverage;
|
|
unsigned long phys_offset;
|
|
#define phys_to_virt(x) ((void *)(unsigned long)(x) + phys_offset)
|
|
|
|
if (cbmem.type != LB_MEM_TABLE) {
|
|
fprintf(stderr, "No coreboot table area found!\n");
|
|
return;
|
|
}
|
|
|
|
start = unpack_lb64(cbmem.start);
|
|
|
|
entries = (struct cbmem_entry *)map_memory(start);
|
|
|
|
for (i=0; i<MAX_CBMEM_ENTRIES; i++) {
|
|
if (entries[i].magic != CBMEM_MAGIC)
|
|
break;
|
|
if (entries[i].id == CBMEM_ID_COVERAGE) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
unmap_memory();
|
|
fprintf(stderr, "No coverage information found in"
|
|
" CBMEM area.\n");
|
|
return;
|
|
}
|
|
|
|
start = entries[i].base;
|
|
unmap_memory();
|
|
/* Map coverage area */
|
|
coverage = map_memory(start);
|
|
phys_offset = (unsigned long)coverage - (unsigned long)start;
|
|
|
|
printf("Dumping coverage data...\n");
|
|
|
|
struct file *file = (struct file *)coverage;
|
|
while (file && file->magic == COVERAGE_MAGIC) {
|
|
FILE *f;
|
|
char *filename;
|
|
|
|
debug(" -> %s\n", (char *)phys_to_virt(file->filename));
|
|
filename = strdup((char *)phys_to_virt(file->filename));
|
|
if (mkpath(filename, 0755) == -1) {
|
|
perror("Directory for coverage data could "
|
|
"not be created");
|
|
exit(1);
|
|
}
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
printf("Could not open %s: %s\n",
|
|
filename, strerror(errno));
|
|
exit(1);
|
|
}
|
|
if (fwrite((void *)phys_to_virt(file->data),
|
|
file->len, 1, f) != 1) {
|
|
printf("Could not write to %s: %s\n",
|
|
filename, strerror(errno));
|
|
exit(1);
|
|
}
|
|
fclose(f);
|
|
free(filename);
|
|
|
|
if (file->next)
|
|
file = (struct file *)phys_to_virt(file->next);
|
|
else
|
|
file = NULL;
|
|
}
|
|
unmap_memory();
|
|
}
|
|
|
|
static void print_version(void)
|
|
{
|
|
printf("cbmem v%s -- ", CBMEM_VERSION);
|
|
printf("Copyright (C) 2012 The ChromiumOS Authors. All rights reserved.\n\n");
|
|
printf(
|
|
"This program is free software: you can redistribute it and/or modify\n"
|
|
"it under the terms of the GNU General Public License as published by\n"
|
|
"the Free Software Foundation, version 2 of the License.\n\n"
|
|
"This program is distributed in the hope that it will be useful,\n"
|
|
"but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
|
|
"MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"
|
|
"GNU General Public License for more details.\n\n"
|
|
"You should have received a copy of the GNU General Public License\n"
|
|
"along with this program. If not, see <http://www.gnu.org/licenses/>.\n\n");
|
|
}
|
|
|
|
static void print_usage(const char *name)
|
|
{
|
|
printf("usage: %s [-cCltxVvh?]\n", name);
|
|
printf("\n"
|
|
" -c | --console: print cbmem console\n"
|
|
" -C | --coverage: dump coverage information\n"
|
|
" -l | --list: print cbmem table of contents\n"
|
|
" -x | --hexdump: print hexdump of cbmem area\n"
|
|
" -t | --timestamps: print timestamp information\n"
|
|
" -V | --verbose: verbose (debugging) output\n"
|
|
" -v | --version: print the version\n"
|
|
" -h | --help: print this help\n"
|
|
"\n");
|
|
exit(1);
|
|
}
|
|
|
|
#ifdef __arm__
|
|
static void dt_update_cells(const char *name, int *addr_cells_ptr,
|
|
int *size_cells_ptr)
|
|
{
|
|
if (*addr_cells_ptr >= 0 && *size_cells_ptr >= 0)
|
|
return;
|
|
|
|
int buffer;
|
|
size_t nlen = strlen(name);
|
|
char *prop = alloca(nlen + sizeof("/#address-cells"));
|
|
strcpy(prop, name);
|
|
|
|
if (*addr_cells_ptr < 0) {
|
|
strcpy(prop + nlen, "/#address-cells");
|
|
int fd = open(prop, O_RDONLY);
|
|
if (fd < 0 && errno != ENOENT) {
|
|
perror(prop);
|
|
} else if (fd >= 0) {
|
|
if (read(fd, &buffer, sizeof(int)) < 0)
|
|
perror(prop);
|
|
else
|
|
*addr_cells_ptr = ntohl(buffer);
|
|
close(fd);
|
|
}
|
|
}
|
|
|
|
if (*size_cells_ptr < 0) {
|
|
strcpy(prop + nlen, "/#size-cells");
|
|
int fd = open(prop, O_RDONLY);
|
|
if (fd < 0 && errno != ENOENT) {
|
|
perror(prop);
|
|
} else if (fd >= 0) {
|
|
if (read(fd, &buffer, sizeof(int)) < 0)
|
|
perror(prop);
|
|
else
|
|
*size_cells_ptr = ntohl(buffer);
|
|
close(fd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *dt_find_compat(const char *parent, const char *compat,
|
|
int *addr_cells_ptr, int *size_cells_ptr)
|
|
{
|
|
char *ret = NULL;
|
|
struct dirent *entry;
|
|
DIR *dir;
|
|
|
|
if (!(dir = opendir(parent))) {
|
|
perror(parent);
|
|
return NULL;
|
|
}
|
|
|
|
/* Loop through all files in the directory (DT node). */
|
|
while ((entry = readdir(dir))) {
|
|
/* We only care about compatible props or subnodes. */
|
|
if (entry->d_name[0] == '.' || !((entry->d_type & DT_DIR) ||
|
|
!strcmp(entry->d_name, "compatible")))
|
|
continue;
|
|
|
|
/* Assemble the file name (on the stack, for speed). */
|
|
size_t plen = strlen(parent);
|
|
char *name = alloca(plen + strlen(entry->d_name) + 2);
|
|
|
|
strcpy(name, parent);
|
|
name[plen] = '/';
|
|
strcpy(name + plen + 1, entry->d_name);
|
|
|
|
/* If it's a subnode, recurse. */
|
|
if (entry->d_type & DT_DIR) {
|
|
ret = dt_find_compat(name, compat, addr_cells_ptr,
|
|
size_cells_ptr);
|
|
|
|
/* There is only one matching node to find, abort. */
|
|
if (ret) {
|
|
/* Gather cells values on the way up. */
|
|
dt_update_cells(parent, addr_cells_ptr,
|
|
size_cells_ptr);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* If it's a compatible string, see if it's the right one. */
|
|
int fd = open(name, O_RDONLY);
|
|
int clen = strlen(compat);
|
|
char *buffer = alloca(clen + 1);
|
|
|
|
if (fd < 0) {
|
|
perror(name);
|
|
continue;
|
|
}
|
|
|
|
if (read(fd, buffer, clen + 1) < 0) {
|
|
perror(name);
|
|
close(fd);
|
|
continue;
|
|
}
|
|
close(fd);
|
|
|
|
if (!strcmp(compat, buffer)) {
|
|
/* Initialize these to "unset" for the way up. */
|
|
*addr_cells_ptr = *size_cells_ptr = -1;
|
|
|
|
/* Can't leave string on the stack or we'll lose it! */
|
|
ret = strdup(parent);
|
|
break;
|
|
}
|
|
}
|
|
|
|
closedir(dir);
|
|
return ret;
|
|
}
|
|
#endif /* __arm__ */
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
int print_defaults = 1;
|
|
int print_console = 0;
|
|
int print_coverage = 0;
|
|
int print_list = 0;
|
|
int print_hexdump = 0;
|
|
int print_timestamps = 0;
|
|
|
|
int opt, option_index = 0;
|
|
static struct option long_options[] = {
|
|
{"console", 0, 0, 'c'},
|
|
{"coverage", 0, 0, 'C'},
|
|
{"list", 0, 0, 'l'},
|
|
{"timestamps", 0, 0, 't'},
|
|
{"hexdump", 0, 0, 'x'},
|
|
{"verbose", 0, 0, 'V'},
|
|
{"version", 0, 0, 'v'},
|
|
{"help", 0, 0, 'h'},
|
|
{0, 0, 0, 0}
|
|
};
|
|
while ((opt = getopt_long(argc, argv, "cCltxVvh?",
|
|
long_options, &option_index)) != EOF) {
|
|
switch (opt) {
|
|
case 'c':
|
|
print_console = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'C':
|
|
print_coverage = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'l':
|
|
print_list = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'x':
|
|
print_hexdump = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 't':
|
|
print_timestamps = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'V':
|
|
verbose = 1;
|
|
break;
|
|
case 'v':
|
|
print_version();
|
|
exit(0);
|
|
break;
|
|
case 'h':
|
|
case '?':
|
|
default:
|
|
print_usage(argv[0]);
|
|
exit(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
mem_fd = open("/dev/mem", O_RDONLY, 0);
|
|
if (mem_fd < 0) {
|
|
fprintf(stderr, "Failed to gain memory access: %s\n",
|
|
strerror(errno));
|
|
return 1;
|
|
}
|
|
|
|
#ifdef __arm__
|
|
int addr_cells, size_cells;
|
|
char *coreboot_node = dt_find_compat("/proc/device-tree", "coreboot",
|
|
&addr_cells, &size_cells);
|
|
|
|
if (!coreboot_node) {
|
|
fprintf(stderr, "Could not find 'coreboot' compatible node!\n");
|
|
return 1;
|
|
}
|
|
|
|
if (addr_cells < 0) {
|
|
fprintf(stderr, "Warning: no #address-cells node in tree!\n");
|
|
addr_cells = 1;
|
|
}
|
|
|
|
int nlen = strlen(coreboot_node);
|
|
char *reg = alloca(nlen + sizeof("/reg"));
|
|
|
|
strcpy(reg, coreboot_node);
|
|
strcpy(reg + nlen, "/reg");
|
|
free(coreboot_node);
|
|
|
|
int fd = open(reg, O_RDONLY);
|
|
if (fd < 0) {
|
|
perror(reg);
|
|
return 1;
|
|
}
|
|
|
|
int i;
|
|
size_t size_to_read = addr_cells * 4 + size_cells * 4;
|
|
u8 *dtbuffer = alloca(size_to_read);
|
|
if (read(fd, dtbuffer, size_to_read) < 0) {
|
|
perror(reg);
|
|
return 1;
|
|
}
|
|
close(fd);
|
|
|
|
/* No variable-length byte swap function anywhere in C... how sad. */
|
|
u64 baseaddr = 0;
|
|
for (i = 0; i < addr_cells * 4; i++) {
|
|
baseaddr <<= 8;
|
|
baseaddr |= *dtbuffer;
|
|
dtbuffer++;
|
|
}
|
|
u64 cb_table_size = 0;
|
|
for (i = 0; i < size_cells * 4; i++) {
|
|
cb_table_size <<= 8;
|
|
cb_table_size |= *dtbuffer;
|
|
dtbuffer++;
|
|
}
|
|
|
|
parse_cbtable(baseaddr, cb_table_size);
|
|
#else
|
|
int j;
|
|
static const int possible_base_addresses[] = { 0, 0xf0000 };
|
|
|
|
/* Find and parse coreboot table */
|
|
for (j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) {
|
|
if (parse_cbtable(possible_base_addresses[j], MAP_BYTES))
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
if (print_console)
|
|
dump_console();
|
|
|
|
if (print_coverage)
|
|
dump_coverage();
|
|
|
|
if (print_list)
|
|
dump_cbmem_toc();
|
|
|
|
if (print_hexdump)
|
|
dump_cbmem_hex();
|
|
|
|
if (print_defaults || print_timestamps)
|
|
dump_timestamps();
|
|
|
|
close(mem_fd);
|
|
return 0;
|
|
}
|