coreboot-kgpe-d16/payloads/libpayload/arch/arm64/mmu.c
Yi Chou df327f4a88 libpayload: Move back the ttb_buffer section
Moving it into the .ttb_buffer section will accidentally set the LOAD
flag. So, move it back to .bss.ttb_buffer section to prevent the binary
size bloating.

BUG=b:248610274
TEST=Make sure the device is still bootable with this change.
BRANCH=none

Cq-Depend: chromium:5173448
Change-Id: I9bb08878dd4be01d9ed3f96933f774dd6296f76e
Signed-off-by: Yi Chou <yich@google.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/79800
Reviewed-by: Julius Werner <jwerner@chromium.org>
Reviewed-by: Paul Menzel <paulepanter@mailbox.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2024-01-11 21:02:30 +00:00

717 lines
20 KiB
C

/*
*
* Copyright 2014 Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <arch/mmu.h>
#include <arch/lib_helpers.h>
#include <arch/cache.h>
/* Maximum number of XLAT Tables available based on ttb buffer size */
static unsigned int max_tables;
/* Address of ttb buffer */
static uint64_t *xlat_addr;
static int free_idx;
/* We refer to this in the linker script for ChormeOS's depthcharge payload
* and to please not change the name without discussing with us.
* Please contact: jwerner@chromium.org or yich@chromium.org */
static uint8_t ttb_buffer[TTB_DEFAULT_SIZE] __aligned(GRANULE_SIZE);
static const char * const tag_to_string[] = {
[TYPE_NORMAL_MEM] = "normal",
[TYPE_DEV_MEM] = "device",
[TYPE_DMA_MEM] = "uncached",
};
/*
* The usedmem_ranges is used to describe all the memory ranges that are
* actually used by payload i.e. _start -> _end in linker script and the
* coreboot tables. This is required for two purposes:
* 1) During the pre_sysinfo_scan_mmu_setup, these are the only ranges
* initialized in the page table as we do not know the entire memory map.
* 2) During the post_sysinfo_scan_mmu_setup, these ranges are used to check if
* the DMA buffer is being placed in a sane location and does not overlap any of
* the used mem ranges.
*/
static struct mmu_ranges usedmem_ranges;
static void __attribute__((noreturn)) mmu_error(void)
{
halt();
}
/* Func : get_block_attr
* Desc : Get block descriptor attributes based on the value of tag in memrange
* region
*/
static uint64_t get_block_attr(unsigned long tag)
{
uint64_t attr;
/* We should be in EL2(which is non-secure only) or EL1(non-secure) */
attr = BLOCK_NS;
/* Assuming whole memory is read-write */
attr |= BLOCK_AP_RW;
attr |= BLOCK_ACCESS;
switch (tag) {
case TYPE_NORMAL_MEM:
attr |= BLOCK_SH_INNER_SHAREABLE;
attr |= (BLOCK_INDEX_MEM_NORMAL << BLOCK_INDEX_SHIFT);
break;
case TYPE_DEV_MEM:
attr |= BLOCK_INDEX_MEM_DEV_NGNRNE << BLOCK_INDEX_SHIFT;
attr |= BLOCK_XN;
break;
case TYPE_DMA_MEM:
attr |= BLOCK_INDEX_MEM_NORMAL_NC << BLOCK_INDEX_SHIFT;
break;
}
return attr;
}
/* Func : table_desc_valid
* Desc : Check if a table entry contains valid desc
*/
static uint64_t table_desc_valid(uint64_t desc)
{
return((desc & TABLE_DESC) == TABLE_DESC);
}
/* Func : setup_new_table
* Desc : Get next free table from TTB and set it up to match old parent entry.
*/
static uint64_t *setup_new_table(uint64_t desc, size_t xlat_size)
{
uint64_t *new, *entry;
assert(free_idx < max_tables);
new = (uint64_t*)((unsigned char *)xlat_addr + free_idx * GRANULE_SIZE);
free_idx++;
if (!desc) {
memset(new, 0, GRANULE_SIZE);
} else {
/* Can reuse old parent entry, but may need to adjust type. */
if (xlat_size == L3_XLAT_SIZE)
desc |= PAGE_DESC;
for (entry = new; (u8 *)entry < (u8 *)new + GRANULE_SIZE;
entry++, desc += xlat_size)
*entry = desc;
}
return new;
}
/* Func : get_table_from_desc
* Desc : Get next level table address from table descriptor
*/
static uint64_t *get_table_from_desc(uint64_t desc)
{
uint64_t *ptr = (uint64_t*)(desc & XLAT_TABLE_MASK);
return ptr;
}
/* Func: get_next_level_table
* Desc: Check if the table entry is a valid descriptor. If not, initialize new
* table, update the entry and return the table addr. If valid, return the addr.
*/
static uint64_t *get_next_level_table(uint64_t *ptr, size_t xlat_size)
{
uint64_t desc = *ptr;
if (!table_desc_valid(desc)) {
uint64_t *new_table = setup_new_table(desc, xlat_size);
desc = ((uint64_t)new_table) | TABLE_DESC;
*ptr = desc;
}
return get_table_from_desc(desc);
}
/* Func : init_xlat_table
* Desc : Given a base address and size, it identifies the indices within
* different level XLAT tables which map the given base addr. Similar to table
* walk, except that all invalid entries during the walk are updated
* accordingly. On success, it returns the size of the block/page addressed by
* the final table.
*/
static uint64_t init_xlat_table(uint64_t base_addr,
uint64_t size,
uint64_t tag)
{
uint64_t l0_index = (base_addr & L0_ADDR_MASK) >> L0_ADDR_SHIFT;
uint64_t l1_index = (base_addr & L1_ADDR_MASK) >> L1_ADDR_SHIFT;
uint64_t l2_index = (base_addr & L2_ADDR_MASK) >> L2_ADDR_SHIFT;
uint64_t l3_index = (base_addr & L3_ADDR_MASK) >> L3_ADDR_SHIFT;
uint64_t *table = xlat_addr;
uint64_t desc;
uint64_t attr = get_block_attr(tag);
/* L0 entry stores a table descriptor (doesn't support blocks) */
table = get_next_level_table(&table[l0_index], L1_XLAT_SIZE);
/* L1 table lookup */
if ((size >= L1_XLAT_SIZE) &&
IS_ALIGNED(base_addr, (1UL << L1_ADDR_SHIFT))) {
/* If block address is aligned and size is greater than
* or equal to size addressed by each L1 entry, we can
* directly store a block desc */
desc = base_addr | BLOCK_DESC | attr;
table[l1_index] = desc;
/* L2 lookup is not required */
return L1_XLAT_SIZE;
}
/* L1 entry stores a table descriptor */
table = get_next_level_table(&table[l1_index], L2_XLAT_SIZE);
/* L2 table lookup */
if ((size >= L2_XLAT_SIZE) &&
IS_ALIGNED(base_addr, (1UL << L2_ADDR_SHIFT))) {
/* If block address is aligned and size is greater than
* or equal to size addressed by each L2 entry, we can
* directly store a block desc */
desc = base_addr | BLOCK_DESC | attr;
table[l2_index] = desc;
/* L3 lookup is not required */
return L2_XLAT_SIZE;
}
/* L2 entry stores a table descriptor */
table = get_next_level_table(&table[l2_index], L3_XLAT_SIZE);
/* L3 table lookup */
desc = base_addr | PAGE_DESC | attr;
table[l3_index] = desc;
return L3_XLAT_SIZE;
}
/* Func : sanity_check
* Desc : Check address/size alignment of a table or page.
*/
static void sanity_check(uint64_t addr, uint64_t size)
{
assert(!(addr & GRANULE_SIZE_MASK) &&
!(size & GRANULE_SIZE_MASK) &&
(addr + size < (1UL << BITS_PER_VA)) &&
size >= GRANULE_SIZE);
}
/* Func : mmu_config_range
* Desc : This function repeatedly calls init_xlat_table with the base
* address. Based on size returned from init_xlat_table, base_addr is updated
* and subsequent calls are made for initializing the xlat table until the whole
* region is initialized.
*/
void mmu_config_range(void *start, size_t size, uint64_t tag)
{
uint64_t base_addr = (uintptr_t)start;
uint64_t temp_size = size;
assert(tag < ARRAY_SIZE(tag_to_string));
printf("Libpayload: ARM64 MMU: Mapping address range [%p:%p) as %s\n",
start, start + size, tag_to_string[tag]);
sanity_check(base_addr, temp_size);
while (temp_size)
temp_size -= init_xlat_table(base_addr + (size - temp_size),
temp_size, tag);
/* ARMv8 MMUs snoop L1 data cache, no need to flush it. */
dsb();
tlbiall_el2();
dsb();
isb();
}
/* Func : mmu_init
* Desc : Initialize mmu based on the mmu_memrange passed. ttb_buffer is used as
* the base address for xlat tables. TTB_DEFAULT_SIZE defines the max number of
* tables that can be used
* Assuming that memory 0-4GiB is device memory.
*/
uint64_t mmu_init(struct mmu_ranges *mmu_ranges)
{
int i = 0;
xlat_addr = (uint64_t *)&ttb_buffer;
memset((void*)xlat_addr, 0, GRANULE_SIZE);
max_tables = (TTB_DEFAULT_SIZE >> GRANULE_SIZE_SHIFT);
free_idx = 1;
printf("Libpayload ARM64: TTB_BUFFER: %p Max Tables: %d\n",
(void*)xlat_addr, max_tables);
/*
* To keep things simple we start with mapping the entire base 4GB as
* device memory. This accommodates various architectures' default
* settings (for instance rk3399 mmio starts at 0xf8000000); it is
* fine tuned (e.g. mapping DRAM areas as write-back) later in the
* boot process.
*/
mmu_config_range(NULL, 0x100000000, TYPE_DEV_MEM);
for (; i < mmu_ranges->used; i++)
mmu_config_range((void *)mmu_ranges->entries[i].base,
mmu_ranges->entries[i].size,
mmu_ranges->entries[i].type);
printf("Libpayload ARM64: MMU init done\n");
return 0;
}
static uint32_t is_mmu_enabled(void)
{
uint32_t sctlr;
sctlr = raw_read_sctlr_el2();
return (sctlr & SCTLR_M);
}
/*
* Func: mmu_enable
* Desc: Initialize MAIR, TCR, TTBR and enable MMU by setting appropriate bits
* in SCTLR
*/
void mmu_enable(void)
{
uint32_t sctlr;
/* Initialize MAIR indices */
raw_write_mair_el2(MAIR_ATTRIBUTES);
/* Invalidate TLBs */
tlbiall_el2();
/* Initialize TCR flags */
raw_write_tcr_el2(TCR_TOSZ | TCR_IRGN0_NM_WBWAC | TCR_ORGN0_NM_WBWAC |
TCR_SH0_IS | TCR_TG0_4KB | TCR_PS_256TB |
TCR_TBI_USED);
/* Initialize TTBR */
raw_write_ttbr0_el2((uintptr_t)xlat_addr);
/* Ensure system register writes are committed before enabling MMU */
isb();
/* Enable MMU */
sctlr = raw_read_sctlr_el2();
sctlr |= SCTLR_C | SCTLR_M | SCTLR_I;
raw_write_sctlr_el2(sctlr);
isb();
if(is_mmu_enabled())
printf("ARM64: MMU enable done\n");
else
printf("ARM64: MMU enable failed\n");
}
/*
* Func: mmu_add_memrange
* Desc: Adds a new memory range
*/
static struct mmu_memrange *mmu_add_memrange(struct mmu_ranges *r,
uint64_t base, uint64_t size,
uint64_t type)
{
struct mmu_memrange *curr = NULL;
int i = r->used;
if (i < ARRAY_SIZE(r->entries)) {
curr = &r->entries[i];
curr->base = base;
curr->size = size;
curr->type = type;
r->used = i + 1;
}
return curr;
}
/* Structure to define properties of new memrange request */
struct mmu_new_range_prop {
/* Type of memrange */
uint64_t type;
/* Size of the range */
uint64_t size;
/*
* If any restrictions on the max addr limit(This addr is exclusive for
* the range), else 0
*/
uint64_t lim_excl;
/* If any restrictions on alignment of the range base, else 0 */
uint64_t align;
/*
* Function to test whether selected range is fine.
* NULL=any range is fine
* Return value 1=valid range, 0=otherwise
*/
int (*is_valid_range)(uint64_t, uint64_t);
/* From what type of source range should this range be extracted */
uint64_t src_type;
};
/*
* Func: mmu_is_range_free
* Desc: We need to ensure that the new range being allocated doesn't overlap
* with any used memory range. Basically:
* 1. Memory ranges used by the payload (usedmem_ranges)
* 2. Any area that falls below _end symbol in linker script (Kernel needs to be
* loaded in lower areas of memory, So, the payload linker script can have
* kernel memory below _start and _end. Thus, we want to make sure we do not
* step in those areas as well.
* Returns: 1 on success, 0 on error
* ASSUMPTION: All the memory used by payload resides below the program
* proper. If there is any memory used above the _end symbol, then it should be
* marked as used memory in usedmem_ranges during the presysinfo_scan.
*/
static int mmu_is_range_free(uint64_t r_base,
uint64_t r_end)
{
uint64_t payload_end = (uint64_t)&_end;
uint64_t i;
struct mmu_memrange *r = &usedmem_ranges.entries[0];
/* Allocate memranges only above payload */
if ((r_base <= payload_end) || (r_end <= payload_end))
return 0;
for (i = 0; i < usedmem_ranges.used; i++) {
uint64_t start = r[i].base;
uint64_t end = start + r[i].size;
if ((start < r_end) && (end > r_base))
return 0;
}
return 1;
}
/*
* Func: mmu_get_new_range
* Desc: Add a requested new memrange. We take as input set of all memranges and
* a structure to define the new memrange properties i.e. its type, size,
* max_addr it can grow upto, alignment restrictions, source type to take range
* from and finally a function pointer to check if the chosen range is valid.
*/
static struct mmu_memrange *mmu_get_new_range(struct mmu_ranges *mmu_ranges,
struct mmu_new_range_prop *new)
{
int i = 0;
struct mmu_memrange *r = &mmu_ranges->entries[0];
if (new->size == 0) {
printf("MMU Error: Invalid range size\n");
return NULL;
}
for (; i < mmu_ranges->used; i++) {
if ((r[i].type != new->src_type) ||
(r[i].size < new->size) ||
(new->lim_excl && (r[i].base >= new->lim_excl)))
continue;
uint64_t base_addr;
uint64_t range_end_addr = r[i].base + r[i].size;
uint64_t end_addr = range_end_addr;
/* Make sure we do not go above max if it is non-zero */
if (new->lim_excl && (end_addr >= new->lim_excl))
end_addr = new->lim_excl;
while (1) {
/*
* In case of alignment requirement,
* if end_addr is aligned, then base_addr will be too.
*/
if (new->align)
end_addr = ALIGN_DOWN(end_addr, new->align);
base_addr = end_addr - new->size;
if (base_addr < r[i].base)
break;
/*
* If the selected range is not used and valid for the
* user, move ahead with it
*/
if (mmu_is_range_free(base_addr, end_addr) &&
((new->is_valid_range == NULL) ||
new->is_valid_range(base_addr, end_addr)))
break;
/* Drop to the next address. */
end_addr -= 1;
}
if (base_addr < r[i].base)
continue;
if (end_addr != range_end_addr) {
/* Add a new memrange since we split up one
* range crossing the 4GiB boundary or doing an
* ALIGN_DOWN on end_addr.
*/
r[i].size -= (range_end_addr - end_addr);
if (mmu_add_memrange(mmu_ranges, end_addr,
range_end_addr - end_addr,
r[i].type) == NULL)
mmu_error();
}
if (r[i].size == new->size) {
r[i].type = new->type;
return &r[i];
}
r[i].size -= new->size;
r = mmu_add_memrange(mmu_ranges, base_addr, new->size,
new->type);
if (r == NULL)
mmu_error();
return r;
}
/* Should never reach here if everything went fine */
printf("ARM64 ERROR: No region allocated\n");
return NULL;
}
/*
* Func: mmu_alloc_range
* Desc: Call get_new_range to get a new memrange which is unused and mark it as
* used to avoid same range being allocated for different purposes.
*/
static struct mmu_memrange *mmu_alloc_range(struct mmu_ranges *mmu_ranges,
struct mmu_new_range_prop *p)
{
struct mmu_memrange *r = mmu_get_new_range(mmu_ranges, p);
if (r == NULL)
return NULL;
/*
* Mark this memrange as used memory. Important since function
* can be called multiple times and we do not want to reuse some
* range already allocated.
*/
if (mmu_add_memrange(&usedmem_ranges, r->base, r->size, r->type)
== NULL)
mmu_error();
return r;
}
/*
* Func: mmu_add_dma_range
* Desc: Add a memrange for dma operations. This is special because we want to
* initialize this memory as non-cacheable. We have a constraint that the DMA
* buffer should be below 4GiB(32-bit only). So, we lookup a TYPE_NORMAL_MEM
* from the lowest available addresses and align it to page size i.e. 64KiB.
*/
static struct mmu_memrange *mmu_add_dma_range(struct mmu_ranges *mmu_ranges)
{
struct mmu_new_range_prop prop;
prop.type = TYPE_DMA_MEM;
/* DMA_DEFAULT_SIZE is multiple of GRANULE_SIZE */
assert((DMA_DEFAULT_SIZE % GRANULE_SIZE) == 0);
prop.size = DMA_DEFAULT_SIZE;
prop.lim_excl = (uint64_t)CONFIG_LP_DMA_LIM_EXCL * MiB;
prop.align = GRANULE_SIZE;
prop.is_valid_range = NULL;
prop.src_type = TYPE_NORMAL_MEM;
return mmu_alloc_range(mmu_ranges, &prop);
}
static struct mmu_memrange *_mmu_add_fb_range(
uint32_t size,
struct mmu_ranges *mmu_ranges)
{
struct mmu_new_range_prop prop;
prop.type = TYPE_DMA_MEM;
prop.size = size;
prop.lim_excl = MIN_64_BIT_ADDR;
prop.align = MB_SIZE;
prop.is_valid_range = NULL;
prop.src_type = TYPE_NORMAL_MEM;
return mmu_alloc_range(mmu_ranges, &prop);
}
/*
* Func: mmu_extract_ranges
* Desc: Assumption is that coreboot tables have memranges in sorted
* order. So, if there is an opportunity to combine ranges, we do that as
* well. Memranges are initialized for both CB_MEM_RAM and CB_MEM_TABLE as
* TYPE_NORMAL_MEM.
*/
static void mmu_extract_ranges(struct memrange *cb_ranges,
uint64_t ncb,
struct mmu_ranges *mmu_ranges)
{
int i = 0;
struct mmu_memrange *prev_range = NULL;
/* Extract memory ranges to be mapped */
for (; i < ncb; i++) {
switch (cb_ranges[i].type) {
case CB_MEM_RAM:
case CB_MEM_TABLE:
if (prev_range && (prev_range->base + prev_range->size
== cb_ranges[i].base)) {
prev_range->size += cb_ranges[i].size;
} else {
prev_range = mmu_add_memrange(mmu_ranges,
cb_ranges[i].base,
cb_ranges[i].size,
TYPE_NORMAL_MEM);
if (prev_range == NULL)
mmu_error();
}
break;
default:
break;
}
}
}
static void mmu_add_fb_range(struct mmu_ranges *mmu_ranges)
{
struct mmu_memrange *fb_range;
struct cb_framebuffer *framebuffer = &lib_sysinfo.framebuffer;
uint32_t fb_size;
/* Check whether framebuffer is needed */
fb_size = framebuffer->bytes_per_line * framebuffer->y_resolution;
if (!fb_size)
return;
/* make sure to allocate a size of multiple of GRANULE_SIZE */
fb_size = ALIGN_UP(fb_size, GRANULE_SIZE);
/* framebuffer address has been set already, so just add it as DMA */
if (framebuffer->physical_address) {
if (mmu_add_memrange(mmu_ranges,
framebuffer->physical_address,
fb_size,
TYPE_DMA_MEM) == NULL)
mmu_error();
return;
}
/* Allocate framebuffer */
fb_range = _mmu_add_fb_range(fb_size, mmu_ranges);
if (fb_range == NULL)
mmu_error();
framebuffer->physical_address = fb_range->base;
}
/*
* Func: mmu_init_ranges
* Desc: Initialize mmu_memranges based on the memranges obtained from coreboot
* tables. Also, initialize dma memrange and xlat_addr for ttb buffer.
*/
struct mmu_memrange *mmu_init_ranges_from_sysinfo(struct memrange *cb_ranges,
uint64_t ncb,
struct mmu_ranges *mmu_ranges)
{
struct mmu_memrange *dma_range;
/* Initialize mmu_ranges to contain no entries. */
mmu_ranges->used = 0;
/* Extract ranges from memrange in lib_sysinfo */
mmu_extract_ranges(cb_ranges, ncb, mmu_ranges);
/* Get a range for dma */
dma_range = mmu_add_dma_range(mmu_ranges);
/* Get a range for framebuffer */
mmu_add_fb_range(mmu_ranges);
if (dma_range == NULL)
mmu_error();
return dma_range;
}
/*
* Func: mmu_presysinfo_memory_used
* Desc: Initializes all the memory used for presysinfo page table
* initialization and enabling of MMU. All these ranges are stored in
* usedmem_ranges. usedmem_ranges plays an important role in selecting the dma
* buffer as well since we check the dma buffer range against the used memory
* ranges to prevent any overstepping.
*/
void mmu_presysinfo_memory_used(uint64_t base, uint64_t size)
{
uint64_t range_base;
range_base = ALIGN_DOWN(base, GRANULE_SIZE);
size += (base - range_base);
size = ALIGN_UP(size, GRANULE_SIZE);
mmu_add_memrange(&usedmem_ranges, range_base, size, TYPE_NORMAL_MEM);
}
void mmu_presysinfo_enable(void)
{
mmu_init(&usedmem_ranges);
mmu_enable();
}
const struct mmu_ranges *mmu_get_used_ranges(void)
{
return &usedmem_ranges;
}