coreboot-kgpe-d16/src/southbridge/amd/rs690/gfx.c
stepan 836ae29ee3 first round name simplification. drop the <component>_ prefix.
the prefix was introduced in the early v2 tree many years ago
because our old build system "newconfig" could not handle two files with
the same name in different paths like /path/to/usb.c and
/another/path/to/usb.c correctly. Only one of the files would end up
being compiled into the final image.

Since Kconfig (actually since shortly before we switched to Kconfig) we
don't suffer from that problem anymore. So we could drop the sb700_
prefix from all those filenames (or, the <componentname>_ prefix in general)

- makes it easier to fork off a new chipset
- makes it easier to diff against other chipsets
- storing redundant information in filenames seems wrong

Signed-off-by: <stepan@coresystems.de>

Acked-by: Patrick Georgi <patrick@georgi-clan.de>
Acked-by: Peter Stuge <peter@stuge.se>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@6149 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2010-12-08 05:42:47 +00:00

625 lines
20 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* for rs690 internal graphics device
* device id of internal grphics:
* RS690M/T: 0x791f
* RS690: 0x791e
*/
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <delay.h>
#include "rs690.h"
#define CLK_CNTL_INDEX 0x8
#define CLK_CNTL_DATA 0xC
#ifdef UNUSED_CODE
static u32 clkind_read(device_t dev, u32 index)
{
u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF;
*(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index & 0x7F;
return *(u32*)(gfx_bar2+CLK_CNTL_DATA);
}
#endif
static void clkind_write(device_t dev, u32 index, u32 data)
{
u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF;
/* printk(BIOS_INFO, "gfx bar 2 %02x\n", gfx_bar2); */
*(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index | 1<<7;
*(u32*)(gfx_bar2+CLK_CNTL_DATA) = data;
}
/*
* pci_dev_read_resources thinks it is a IO type.
* We have to force it to mem type.
*/
static void rs690_gfx_read_resources(device_t dev)
{
printk(BIOS_INFO, "rs690_gfx_read_resources.\n");
/* The initial value of 0x24 is 0xFFFFFFFF, which is confusing.
Even if we write 0xFFFFFFFF into it, it will be 0xFFF00000,
which tells us it is a memory address base.
*/
pci_write_config32(dev, 0x24, 0x00000000);
/* Get the normal pci resources of this device */
pci_dev_read_resources(dev);
compact_resources(dev);
}
static void internal_gfx_pci_dev_init(struct device *dev)
{
u16 deviceid, vendorid;
deviceid = pci_read_config16(dev, PCI_DEVICE_ID);
vendorid = pci_read_config16(dev, PCI_VENDOR_ID);
printk(BIOS_INFO, "internal_gfx_pci_dev_init device=%x, vendor=%x.\n",
deviceid, vendorid);
pci_dev_init(dev);
/* clk ind */
clkind_write(dev, 0x08, 0x01);
clkind_write(dev, 0x0C, 0x22);
clkind_write(dev, 0x0F, 0x0);
clkind_write(dev, 0x11, 0x0);
clkind_write(dev, 0x12, 0x0);
clkind_write(dev, 0x14, 0x0);
clkind_write(dev, 0x15, 0x0);
clkind_write(dev, 0x16, 0x0);
clkind_write(dev, 0x17, 0x0);
clkind_write(dev, 0x18, 0x0);
clkind_write(dev, 0x19, 0x0);
clkind_write(dev, 0x1A, 0x0);
clkind_write(dev, 0x1B, 0x0);
clkind_write(dev, 0x1C, 0x0);
clkind_write(dev, 0x1D, 0x0);
clkind_write(dev, 0x1E, 0x0);
clkind_write(dev, 0x26, 0x0);
clkind_write(dev, 0x27, 0x0);
clkind_write(dev, 0x28, 0x0);
clkind_write(dev, 0x5C, 0x0);
}
/*
* Set registers in RS690 and CPU to enable the internal GFX.
* Please refer to CIM source code and BKDG.
*/
static void rs690_internal_gfx_enable(device_t dev)
{
u32 l_dword;
int i;
device_t k8_f0 = 0, k8_f2 = 0;
device_t nb_dev = dev_find_slot(0, 0);
printk(BIOS_INFO, "rs690_internal_gfx_enable dev=0x%p, nb_dev=0x%p.\n", dev,
nb_dev);
/* set APERTURE_SIZE, 128M. */
l_dword = pci_read_config32(nb_dev, 0x8c);
printk(BIOS_INFO, "nb_dev, 0x8c=0x%x\n", l_dword);
l_dword &= 0xffffff8f;
pci_write_config32(nb_dev, 0x8c, l_dword);
/* set TOM */
rs690_set_tom(nb_dev);
/* LPC DMA Deadlock workaround? */
k8_f0 = dev_find_slot(0, PCI_DEVFN(0x18, 0));
l_dword = pci_read_config32(k8_f0, 0x68);
l_dword &= ~(1 << 22);
l_dword |= (1 << 21);
pci_write_config32(k8_f0, 0x68, l_dword);
/* Enable 64bit mode. */
set_nbmc_enable_bits(nb_dev, 0x5f, 0, 1 << 9);
set_nbmc_enable_bits(nb_dev, 0xb0, 0, 1 << 8);
/* 64bit Latency. */
set_nbmc_enable_bits(nb_dev, 0x5f, 0x7c00, 0x800);
/* UMA dual channel control register. */
nbmc_write_index(nb_dev, 0x86, 0x3d);
/* check the setting later!! */
set_htiu_enable_bits(nb_dev, 0x07, 1 << 7, 0);
/* UMA mode, powerdown memory PLL. */
set_nbmc_enable_bits(nb_dev, 0x74, 0, 1 << 31);
/* Copy CPU DDR Controller to NB MC. */
/* Why K8_MC_REG80 is special? */
k8_f2 = dev_find_slot(0, PCI_DEVFN(0x18, 2));
for (i = 0; i <= (0x80 - 0x40) / 4; i++) {
l_dword = pci_read_config32(k8_f2, 0x40 + i * 4);
nbmc_write_index(nb_dev, 0x63 + i, l_dword);
}
/* Set K8 MC for UMA, Family F. */
l_dword = pci_read_config32(k8_f2, 0xa0);
l_dword |= 0x2c;
pci_write_config32(k8_f2, 0xa0, l_dword);
l_dword = pci_read_config32(k8_f2, 0x94);
l_dword &= 0xf0ffffff;
l_dword |= 0x07000000;
pci_write_config32(k8_f2, 0x94, l_dword);
/* set FB size and location. */
nbmc_write_index(nb_dev, 0x1b, 0x00);
l_dword = nbmc_read_index(nb_dev, 0x1c);
l_dword &= 0xffff0;
l_dword |= 0x400 << 20;
l_dword |= 0x4;
nbmc_write_index(nb_dev, 0x1c, l_dword);
l_dword = nbmc_read_index(nb_dev, 0x1d);
l_dword &= 0xfffff000;
l_dword |= 0x0400;
nbmc_write_index(nb_dev, 0x1d, l_dword);
nbmc_write_index(nb_dev, 0x100, 0x3fff3800);
/* Program MC table. */
set_nbmc_enable_bits(nb_dev, 0x00, 0, 1 << 31);
l_dword = nbmc_read_index(nb_dev, 0x91);
l_dword |= 0x5;
nbmc_write_index(nb_dev, 0x91, l_dword);
set_nbmc_enable_bits(nb_dev, 0xb1, 0, 1 << 6);
set_nbmc_enable_bits(nb_dev, 0xc3, 0, 1);
/* TODO: the optimization of voltage and frequency */
}
static struct pci_operations lops_pci = {
.set_subsystem = pci_dev_set_subsystem,
};
static struct device_operations pcie_ops = {
.read_resources = rs690_gfx_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = internal_gfx_pci_dev_init, /* The option ROM initializes the device. rs690_gfx_init, */
.scan_bus = 0,
.enable = rs690_internal_gfx_enable,
.ops_pci = &lops_pci,
};
/*
* The dev id of 690G is 791E, while the id of 690M, 690T is 791F.
* We should list both of them here.
* */
static const struct pci_driver pcie_driver_690t __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS690MT_INT_GFX,
};
static const struct pci_driver pcie_driver_690 __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS690_INT_GFX,
};
/* step 12 ~ step 14 from rpr */
static void single_port_configuration(device_t nb_dev, device_t dev)
{
u8 result, width;
u32 reg32;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration.\n");
/* step 12 training, releases hold training for GFX port 0 (device 2) */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0<<4);
PcieReleasePortTraining(nb_dev, dev, 2);
result = PcieTrainPort(nb_dev, dev, 2);
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration step12.\n");
/* step 13 Power Down Control */
/* step 13.1 Enables powering down transmitter and receiver pads along with PLL macros. */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0);
/* step 13.a Link Training was NOT successful */
if (!result) {
set_nbmisc_enable_bits(nb_dev, 0x8, 0, 0x3 << 4); /* prevent from training. */
set_nbmisc_enable_bits(nb_dev, 0xc, 0, 0x3 << 2); /* hide the GFX bridge. */
if (cfg->gfx_tmds)
nbpcie_ind_write_index(nb_dev, 0x65, 0xccf0f0);
else {
nbpcie_ind_write_index(nb_dev, 0x65, 0xffffffff);
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 3, 1 << 3);
}
} else { /* step 13.b Link Training was successful */
reg32 = nbpcie_p_read_index(dev, 0xa2);
width = (reg32 >> 4) & 0x7;
printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x7f7f : 0xccfefe);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x3f3f : 0xccfcfc);
break;
case 8:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0f0f : 0xccf0f0);
break;
}
}
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration step13.\n");
/* step 14 Reset Enumeration Timer, disables the shortening of the enumeration timer */
set_pcie_enable_bits(dev, 0x70, 1 << 19, 0 << 19);
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration step14.\n");
}
/* step 15 ~ step 18 from rpr */
static void dual_port_configuration(device_t nb_dev, device_t dev)
{
u8 result, width;
u32 reg32;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
/* step 15: Training for Device 2 */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0 << 4);
/* Releases hold training for GFX port 0 (device 2) */
PcieReleasePortTraining(nb_dev, dev, 2);
/* PCIE Link Training Sequence */
result = PcieTrainPort(nb_dev, dev, 2);
/* step 16: Power Down Control for Device 2 */
/* step 16.a Link Training was NOT successful */
if (!result) {
/* Powers down all lanes for port A */
nbpcie_ind_write_index(nb_dev, 0x65, 0x0f0f);
} else { /* step 16.b Link Training was successful */
reg32 = nbpcie_p_read_index(dev, 0xa2);
width = (reg32 >> 4) & 0x7;
printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0707 : 0x0e0e);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0303 : 0x0c0c);
break;
}
}
/* step 17: Training for Device 3 */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 5, 0 << 5);
/* Releases hold training for GFX port 0 (device 3) */
PcieReleasePortTraining(nb_dev, dev, 3);
/* PCIE Link Training Sequence */
result = PcieTrainPort(nb_dev, dev, 3);
/*step 18: Power Down Control for Device 3 */
/* step 18.a Link Training was NOT successful */
if (!result) {
/* Powers down all lanes for port B and PLL1 */
nbpcie_ind_write_index(nb_dev, 0x65, 0xccf0f0);
} else { /* step 18.b Link Training was successful */
reg32 = nbpcie_p_read_index(dev, 0xa2);
width = (reg32 >> 4) & 0x7;
printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x7070 : 0xe0e0);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x3030 : 0xc0c0);
break;
}
}
}
/* For single port GFX configuration Only
* width:
* 000 = x16
* 001 = x1
* 010 = x2
* 011 = x4
* 100 = x8
* 101 = x12 (not supported)
* 110 = x16
*/
static void dynamic_link_width_control(device_t nb_dev, device_t dev, u8 width)
{
u32 reg32;
device_t sb_dev;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
/* step 5.9.1.1 */
reg32 = nbpcie_p_read_index(dev, 0xa2);
/* step 5.9.1.2 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0);
/* step 5.9.1.3 */
set_pcie_enable_bits(dev, 0xa2, 3 << 0, width << 0);
/* step 5.9.1.4 */
set_pcie_enable_bits(dev, 0xa2, 1 << 8, 1 << 8);
/* step 5.9.2.4 */
if (0 == cfg->gfx_reconfiguration)
set_pcie_enable_bits(dev, 0xa2, 1 << 11, 1 << 11);
/* step 5.9.1.5 */
do {
reg32 = nbpcie_p_read_index(dev, 0xa2);
}
while (reg32 & 0x100);
/* step 5.9.1.6 */
sb_dev = dev_find_slot(0, PCI_DEVFN(8, 0));
do {
reg32 = pci_ext_read_config32(nb_dev, sb_dev,
PCIE_VC0_RESOURCE_STATUS);
} while (reg32 & VC_NEGOTIATION_PENDING);
/* step 5.9.1.7 */
reg32 = nbpcie_p_read_index(dev, 0xa2);
if (((reg32 & 0x70) >> 4) != 0x6) {
/* the unused lanes should be powered off. */
}
/* step 5.9.1.8 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 0 << 0);
}
/*
* GFX Core initialization, dev2, dev3
*/
void rs690_gfx_init(device_t nb_dev, device_t dev, u32 port)
{
u16 reg16;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
printk(BIOS_INFO, "rs690_gfx_init, nb_dev=0x%p, dev=0x%p, port=0x%x.\n",
nb_dev, dev, port);
/* step 0, REFCLK_SEL, skip A11 revision */
set_nbmisc_enable_bits(nb_dev, 0x6a, 1 << 9,
cfg->gfx_dev2_dev3 ? 1 << 9 : 0 << 9);
printk(BIOS_INFO, "rs690_gfx_init step0.\n");
/* step 1, lane reversal (only need if CMOS option is enabled) */
if (cfg->gfx_lane_reversal) {
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2);
if (cfg->gfx_dual_slot)
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 3, 1 << 3);
}
printk(BIOS_INFO, "rs690_gfx_init step1.\n");
/* step 1.1, dual-slot gfx configuration (only need if CMOS option is enabled) */
/* AMD calls the configuration CrossFire */
if (cfg->gfx_dual_slot)
set_nbmisc_enable_bits(nb_dev, 0x0, 0xf << 8, 5 << 8);
printk(BIOS_INFO, "rs690_gfx_init step2.\n");
/* step 2, TMDS, (only need if CMOS option is enabled) */
if (cfg->gfx_tmds) {
}
/* step 3, GFX overclocking, (only need if CMOS option is enabled) */
/* skip */
/* step 4, reset the GFX link */
/* step 4.1 asserts both calibration reset and global reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 0x3 << 14, 0x3 << 14);
/* step 4.2 de-asserts calibration reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 14, 0 << 14);
/* step 4.3 wait for at least 200us */
udelay(200);
/* step 4.4 de-asserts global reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 15, 0 << 15);
/* step 4.5 asserts both calibration reset and global reset */
/* a weird step in RPR, don't do that */
/* set_nbmisc_enable_bits(nb_dev, 0x8, 0x3 << 14, 0x3 << 14); */
/* step 4.6 bring external GFX device out of reset, wait for 1ms */
mdelay(1);
printk(BIOS_INFO, "rs690_gfx_init step4.\n");
/* step 5 program PCIE memory mapped configuration space */
/* done by enable_pci_bar3() before */
/* step 6 SBIOS compile flags */
if (cfg->gfx_tmds) {
/* step 6.2.2 Clock-Muxing Control */
/* step 6.2.2.1 */
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 16, 1 << 16);
/* step 6.2.2.2 */
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 8, 1 << 8);
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 10, 1 << 10);
/* step 6.2.2.3 */
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 26, 1 << 26);
/* step 6.2.3 Lane-Muxing Control */
/* step 6.2.3.1 */
set_nbmisc_enable_bits(nb_dev, 0x37, 0x3 << 8, 0x2 << 8);
/* step 6.2.4 Received Data Control */
/* step 6.2.4.1 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 16, 0x2 << 16);
/* step 6.2.4.2 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 18, 0x3 << 18);
/* step 6.2.4.3 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 20, 0x0 << 20);
/* step 6.2.4.4 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 22, 0x1 << 22);
/* step 6.2.5 PLL Power Down Control */
/* step 6.2.5.1 */
set_nbmisc_enable_bits(nb_dev, 0x35, 0x3 << 6, 0x0 << 6);
/* step 6.2.6 Driving Strength Control */
/* step 6.2.6.1 */
set_nbmisc_enable_bits(nb_dev, 0x34, 0x1 << 24, 0x0 << 24);
/* step 6.2.6.2 */
set_nbmisc_enable_bits(nb_dev, 0x35, 0x3 << 2, 0x3 << 2);
}
printk(BIOS_INFO, "rs690_gfx_init step6.\n");
/* step 7 compliance state, (only need if CMOS option is enabled) */
/* the compliance stete is just for test. refer to 4.2.5.2 of PCIe specification */
if (cfg->gfx_compliance) {
/* force compliance */
set_nbmisc_enable_bits(nb_dev, 0x32, 1 << 6, 1 << 6);
/* release hold training for device 2. GFX initialization is done. */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0 << 4);
dynamic_link_width_control(nb_dev, dev, cfg->gfx_link_width);
printk(BIOS_INFO, "rs690_gfx_init step7.\n");
return;
}
/* step 8 common initialization */
/* step 8.1 sets RCB timeout to be 25ms */
set_pcie_enable_bits(dev, 0x70, 7 << 16, 3 << 16);
printk(BIOS_INFO, "rs690_gfx_init step8.1.\n");
/* step 8.2 disables slave ordering logic */
set_pcie_enable_bits(nb_dev, 0x20, 1 << 8, 1 << 8);
printk(BIOS_INFO, "rs690_gfx_init step8.2.\n");
/* step 8.3 sets DMA payload size to 64 bytes */
set_pcie_enable_bits(nb_dev, 0x10, 7 << 10, 4 << 10);
printk(BIOS_INFO, "rs690_gfx_init step8.3.\n");
/* step 8.4 if the LTSSM could not see all 8 TS1 during Polling Active, it can still
* time out and go back to Detect Idle.*/
set_pcie_enable_bits(dev, 0x02, 1 << 14, 1 << 14);
printk(BIOS_INFO, "rs690_gfx_init step8.4.\n");
/* step 8.5 shortens the enumeration timer */
set_pcie_enable_bits(dev, 0x70, 1 << 19, 1 << 19);
printk(BIOS_INFO, "rs690_gfx_init step8.5.\n");
/* step 8.6 blocks DMA traffic during C3 state */
set_pcie_enable_bits(dev, 0x10, 1 << 0, 0 << 0);
printk(BIOS_INFO, "rs690_gfx_init step8.6.\n");
/* step 8.7 Do not gate the electrical idle form the PHY
* step 8.8 Enables the escape from L1L23 */
set_pcie_enable_bits(dev, 0xa0, 3 << 30, 3 << 30);
printk(BIOS_INFO, "rs690_gfx_init step8.8.\n");
/* step 8.9 Setting this register to 0x1 will workaround a PCI Compliance failure reported by Vista DTM.
* SLOT_IMPLEMENTED@PCIE_CAP */
reg16 = pci_read_config16(dev, 0x5a);
reg16 |= 0x100;
pci_write_config16(dev, 0x5a, reg16);
printk(BIOS_INFO, "rs690_gfx_init step8.9.\n");
/* step 8.10 Setting this register to 0x1 will hide the Advanced Error Rporting Capabilities in the PCIE Brider.
* This will workaround several failures reported by the PCI Compliance test under Vista DTM. */
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 31, 0 << 31);
printk(BIOS_INFO, "rs690_gfx_init step8.10.\n");
/* step 8.11 Sets REGS_DLP_IGNORE_IN_L1_EN to ignore DLLPs during L1 so that txclk can be turned off. */
set_pcie_enable_bits(nb_dev, 0x02, 1 << 0, 1 << 0);
printk(BIOS_INFO, "rs690_gfx_init step8.11.\n");
/* step 8.12 Sets REGS_LC_DONT_GO_TO_L0S_IF_L1_ARMED to prevent lc to go to from L0 to Rcv_L0s if L1 is armed. */
set_pcie_enable_bits(nb_dev, 0x02, 1 << 6, 1 << 6);
printk(BIOS_INFO, "rs690_gfx_init step8.12.\n");
/* step 8.13 Sets CMGOOD_OVERRIDE. */
set_nbmisc_enable_bits(nb_dev, 0x6a, 1 << 17, 1 << 17);
printk(BIOS_INFO, "rs690_gfx_init step8.13.\n");
/* step 9 Enable TLP Flushing, for non-AMD GFX devices and Hot-Plug devices only. */
/* skip */
/* step 10 Optional Features, only needed if CMOS option is enabled. */
/* step 10.a: L0s */
/* enabling L0s in the RS690 GFX port(s) */
set_pcie_enable_bits(nb_dev, 0xF9, 3 << 13, 2 << 13);
set_pcie_enable_bits(dev, 0xA0, 0xf << 8, 8 << 8);
reg16 = pci_read_config16(dev, 0x68);
reg16 |= 1 << 0;
/* L0s is intended as a power saving state */
/* pci_write_config16(dev, 0x68, reg16); */
/* enabling L0s in the External GFX Device(s) */
/* step 10.b: active state power management (ASPM L1) */
/* TO DO */
/* step 10.c: turning off PLL During L1/L23 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 3, 1 << 3);
set_pcie_enable_bits(nb_dev, 0x40, 1 << 9, 1 << 9);
/* step 10.d: TXCLK clock gating */
set_nbmisc_enable_bits(nb_dev, 0x7, 3, 3);
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 22, 1 << 22);
set_pcie_enable_bits(nb_dev, 0x11, 0xf << 4, 0xc << 4);
/* step 10.e: LCLK clock gating, done in rs690_config_misc_clk() */
/* step 11 Poll GPIO to determine whether it is single-port or dual-port configuration.
* While details will be added later in the document, for now assue the single-port configuration. */
/* skip */
/* Single-port/Dual-port configureation. */
switch (cfg->gfx_dual_slot) {
case 0:
single_port_configuration(nb_dev, dev);
break;
case 1:
dual_port_configuration(nb_dev, dev);
break;
default:
printk(BIOS_INFO, "Incorrect configuration of external gfx slot.\n");
break;
}
}