7cb01e0bcf
On ARM platforms the TPM is not attached through LPC but through I2C. This patch adds an I2C TPM driver that supports the following chips: * Infineon SLB9635 * Infineon SLB9645 In order to select the correct TPM implementation cleanly, CONFIG_TPM is moved to src/Kconfig and does the correct choice. Old-Change-Id: I2def0e0f86a869d6fcf56fc4ccab0bc935de2bf1 Signed-off-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: https://chromium-review.googlesource.com/167543 Reviewed-by: ron minnich <rminnich@chromium.org> (cherry picked from commit b4049a0e96f6335a93877e1e884f9a440487c421) i2c tpm: Remove mostly useless delay code/tables. I assume from the code in the TPM driver that the TPM spec defines different types of delays and timeouts which each have a particular duration, and that the TPM can tell you how long each type is if you ask it. There was a large table, some members of a data structure, and a function or two which managed the timeouts and figured their value for different operations. The timeout values for the various "ordinals" were never set in the vendor specific data structure, however, and always defaulted to 2 minutes. Similarly the timeouts a, b, c, and d were never overridden from their defaults. This change gets rid of all the timeout management code and makes the "ordinal" timeout 2 minutes and the a, b, c, and d timeouts 2 seconds, the larger of the two default values. This is a port from depthcharge to coreboot, original change: https://chromium-review.googlesource.com/#/c/168363/ Signed-off-by: Gabe Black <gabeblack@google.com> Signed-off-by: Stefan Reinauer <reinauer@google.com> Old-Change-Id: I79696d6329184ca07f6a1be4f6ca85e1655a7aaf Reviewed-on: https://chromium-review.googlesource.com/168583 Reviewed-by: Gabe Black <gabeblack@chromium.org> Tested-by: Stefan Reinauer <reinauer@google.com> Commit-Queue: Stefan Reinauer <reinauer@google.com> (cherry picked from commit b22395a73f361c38626911808332a3706b2334fe) TPM: Stop requesting/releasing the TPM locality. The locality is requested when the TPM is initialized and released when it's cleaned up. There's no reason to set it to the same thing again and restore it back to the same value before and after every transaction. forward ported from https://chromium-review.googlesource.com/#/c/168400 Old-Change-Id: I291d1f86f220ef0eff6809c6cb00459bf95aa5e0 Signed-off-by: Gabe Black <gabeblack@google.com> Signed-off-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: https://chromium-review.googlesource.com/168584 Reviewed-by: Gabe Black <gabeblack@chromium.org> (cherry picked from commit cc866c20c6f936f349d2f1773dd492dca9bbf0c1) Squashed three commits for the i2c tpm driver. Change-Id: Ie7a50c50fda8ee986c02de7fe27551666998229d Signed-off-by: Isaac Christensen <isaac.christensen@se-eng.com> Reviewed-on: http://review.coreboot.org/6519 Tested-by: build bot (Jenkins) Reviewed-by: Ronald G. Minnich <rminnich@gmail.com> |
||
---|---|---|
3rdparty@45f0c04fd7 | ||
documentation | ||
payloads | ||
src | ||
util | ||
.gitignore | ||
.gitmodules | ||
.gitreview | ||
COPYING | ||
Makefile | ||
Makefile.inc | ||
README | ||
toolchain.inc |
README
------------------------------------------------------------------------------- coreboot README ------------------------------------------------------------------------------- coreboot is a Free Software project aimed at replacing the proprietary BIOS (firmware) found in most computers. coreboot performs a little bit of hardware initialization and then executes additional boot logic, called a payload. With the separation of hardware initialization and later boot logic, coreboot can scale from specialized applications that run directly firmware, run operating systems in flash, load custom bootloaders, or implement firmware standards, like PC BIOS services or UEFI. This allows for systems to only include the features necessary in the target application, reducing the amount of code and flash space required. coreboot was formerly known as LinuxBIOS. Payloads -------- After the basic initialization of the hardware has been performed, any desired "payload" can be started by coreboot. See http://www.coreboot.org/Payloads for a list of supported payloads. Supported Hardware ------------------ coreboot supports a wide range of chipsets, devices, and mainboards. For details please consult: * http://www.coreboot.org/Supported_Motherboards * http://www.coreboot.org/Supported_Chipsets_and_Devices Build Requirements ------------------ * gcc / g++ * make Optional: * doxygen (for generating/viewing documentation) * iasl (for targets with ACPI support) * gdb (for better debugging facilities on some targets) * ncurses (for 'make menuconfig') * flex and bison (for regenerating parsers) Building coreboot ----------------- Please consult http://www.coreboot.org/Build_HOWTO for details. Testing coreboot Without Modifying Your Hardware ------------------------------------------------ If you want to test coreboot without any risks before you really decide to use it on your hardware, you can use the QEMU system emulator to run coreboot virtually in QEMU. Please see http://www.coreboot.org/QEMU for details. Website and Mailing List ------------------------ Further details on the project, a FAQ, many HOWTOs, news, development guidelines and more can be found on the coreboot website: http://www.coreboot.org You can contact us directly on the coreboot mailing list: http://www.coreboot.org/Mailinglist Copyright and License --------------------- The copyright on coreboot is owned by quite a large number of individual developers and companies. Please check the individual source files for details. coreboot is licensed under the terms of the GNU General Public License (GPL). Some files are licensed under the "GPL (version 2, or any later version)", and some files are licensed under the "GPL, version 2". For some parts, which were derived from other projects, other (GPL-compatible) licenses may apply. Please check the individual source files for details. This makes the resulting coreboot images licensed under the GPL, version 2.