coreboot-kgpe-d16/src/lib/cbfs.c
Sergii Dmytruk 2710df765b treewide: stop calling custom TPM log "TCPA"
TCPA usually refers to log described by TPM 1.2 specification.

Change-Id: I896bd94f18b34d6c4b280f58b011d704df3d4022
Ticket: https://ticket.coreboot.org/issues/423
Signed-off-by: Sergii Dmytruk <sergii.dmytruk@3mdeb.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/69444
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Julius Werner <jwerner@chromium.org>
2023-01-11 16:00:55 +00:00

711 lines
20 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <boot_device.h>
#include <cbfs.h>
#include <cbmem.h>
#include <commonlib/bsd/cbfs_private.h>
#include <commonlib/bsd/compression.h>
#include <console/console.h>
#include <fmap.h>
#include <lib.h>
#include <list.h>
#include <metadata_hash.h>
#include <security/tpm/tspi/crtm.h>
#include <security/vboot/vboot_common.h>
#include <security/vboot/misc.h>
#include <stdlib.h>
#include <string.h>
#include <symbols.h>
#include <thread.h>
#include <timestamp.h>
#if ENV_HAS_DATA_SECTION
struct mem_pool cbfs_cache =
MEM_POOL_INIT(_cbfs_cache, REGION_SIZE(cbfs_cache), CONFIG_CBFS_CACHE_ALIGN);
#else
struct mem_pool cbfs_cache = MEM_POOL_INIT(NULL, 0, 0);
#endif
static void switch_to_postram_cache(int unused)
{
if (_preram_cbfs_cache != _postram_cbfs_cache)
mem_pool_init(&cbfs_cache, _postram_cbfs_cache, REGION_SIZE(postram_cbfs_cache),
CONFIG_CBFS_CACHE_ALIGN);
}
CBMEM_CREATION_HOOK(switch_to_postram_cache);
enum cb_err _cbfs_boot_lookup(const char *name, bool force_ro,
union cbfs_mdata *mdata, struct region_device *rdev)
{
const struct cbfs_boot_device *cbd = cbfs_get_boot_device(force_ro);
if (!cbd)
return CB_ERR;
size_t data_offset;
enum cb_err err = CB_CBFS_CACHE_FULL;
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size)
err = cbfs_mcache_lookup(cbd->mcache, cbd->mcache_size,
name, mdata, &data_offset);
if (err == CB_CBFS_CACHE_FULL) {
struct vb2_hash *metadata_hash = NULL;
if (CONFIG(TOCTOU_SAFETY)) {
if (ENV_SMM) /* Cannot provide TOCTOU safety for SMM */
dead_code();
if (!cbd->mcache_size)
die("Cannot access CBFS TOCTOU-safely in " ENV_STRING " before CBMEM init!\n");
/* We can only reach this for the RW CBFS -- an mcache overflow in the
RO CBFS would have been caught when building the mcache in cbfs_get
boot_device(). (Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */
assert(cbd == vboot_get_cbfs_boot_device());
if (!CONFIG(VBOOT)
|| vb2api_get_metadata_hash(vboot_get_context(), &metadata_hash)
!= VB2_SUCCESS)
die("Failed to get RW metadata hash");
}
err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset, metadata_hash);
}
if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro && err == CB_CBFS_NOT_FOUND) {
printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n", name);
return _cbfs_boot_lookup(name, true, mdata, rdev);
}
if (err) {
if (err == CB_CBFS_NOT_FOUND)
printk(BIOS_WARNING, "CBFS: '%s' not found.\n", name);
else if (err == CB_CBFS_HASH_MISMATCH)
printk(BIOS_ERR, "CBFS ERROR: metadata hash mismatch!\n");
else
printk(BIOS_ERR, "CBFS ERROR: error %d when looking up '%s'\n",
err, name);
return err;
}
if (rdev_chain(rdev, &cbd->rdev, data_offset, be32toh(mdata->h.len)))
return CB_ERR;
return CB_SUCCESS;
}
void cbfs_unmap(void *mapping)
{
/*
* This is save to call with mappings that weren't allocated in the cache (e.g. x86
* direct mappings) -- mem_pool_free() just does nothing for addresses it doesn't
* recognize. This hardcodes the assumption that if platforms implement an rdev_mmap()
* that requires a free() for the boot_device, they need to implement it via the
* cbfs_cache mem_pool.
*/
mem_pool_free(&cbfs_cache, mapping);
}
static inline bool fsps_env(void)
{
/* FSP-S is assumed to be loaded in ramstage. */
if (ENV_RAMSTAGE)
return true;
return false;
}
static inline bool fspm_env(void)
{
/* FSP-M is assumed to be loaded in romstage. */
if (ENV_RAMINIT)
return true;
return false;
}
static inline bool cbfs_lz4_enabled(void)
{
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZ4))
return true;
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZ4))
return true;
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(COMPRESS_PRERAM_STAGES))
return false;
if (ENV_SMM)
return false;
return true;
}
static inline bool cbfs_lzma_enabled(void)
{
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZMA))
return true;
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZMA))
return true;
/* We assume here romstage and postcar are never compressed. */
if (ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE)
return false;
if (ENV_ROMSTAGE && CONFIG(POSTCAR_STAGE))
return false;
if ((ENV_ROMSTAGE || ENV_POSTCAR) && !CONFIG(COMPRESS_RAMSTAGE_LZMA))
return false;
if (ENV_SMM)
return false;
return true;
}
static bool cbfs_file_hash_mismatch(const void *buffer, size_t size,
const union cbfs_mdata *mdata, bool skip_verification)
{
/* Avoid linking hash functions when verification and measurement are disabled. */
if (!CONFIG(CBFS_VERIFICATION) && !CONFIG(TPM_MEASURED_BOOT))
return false;
const struct vb2_hash *hash = NULL;
if (CONFIG(CBFS_VERIFICATION) && !skip_verification) {
hash = cbfs_file_hash(mdata);
if (!hash) {
ERROR("'%s' does not have a file hash!\n", mdata->h.filename);
return true;
}
vb2_error_t rv = vb2_hash_verify(vboot_hwcrypto_allowed(), buffer, size, hash);
if (rv != VB2_SUCCESS) {
ERROR("'%s' file hash mismatch!\n", mdata->h.filename);
if (CONFIG(VBOOT_CBFS_INTEGRATION) && !vboot_recovery_mode_enabled()
&& vboot_logic_executed())
vboot_fail_and_reboot(vboot_get_context(), VB2_RECOVERY_FW_BODY,
rv);
return true;
}
}
if (CONFIG(TPM_MEASURED_BOOT) && !ENV_SMM) {
struct vb2_hash calculated_hash;
/* No need to re-hash file if we already have it from verification. */
if (!hash || hash->algo != TPM_MEASURE_ALGO) {
if (vb2_hash_calculate(vboot_hwcrypto_allowed(), buffer, size,
TPM_MEASURE_ALGO, &calculated_hash))
hash = NULL;
else
hash = &calculated_hash;
}
if (!hash ||
tspi_cbfs_measurement(mdata->h.filename, be32toh(mdata->h.type), hash))
ERROR("failed to measure '%s' into TPM log\n", mdata->h.filename);
/* We intentionally continue to boot on measurement errors. */
}
return false;
}
static size_t cbfs_load_and_decompress(const struct region_device *rdev, void *buffer,
size_t buffer_size, uint32_t compression,
const union cbfs_mdata *mdata, bool skip_verification)
{
size_t in_size = region_device_sz(rdev);
size_t out_size = 0;
void *map;
DEBUG("Decompressing %zu bytes from '%s' to %p with algo %d\n",
in_size, mdata->h.filename, buffer, compression);
switch (compression) {
case CBFS_COMPRESS_NONE:
if (buffer_size < in_size)
return 0;
if (rdev_readat(rdev, buffer, 0, in_size) != in_size)
return 0;
if (cbfs_file_hash_mismatch(buffer, in_size, mdata, skip_verification))
return 0;
return in_size;
case CBFS_COMPRESS_LZ4:
if (!cbfs_lz4_enabled())
return 0;
/* cbfs_prog_stage_load() takes care of in-place LZ4 decompression by
setting up the rdev to be in memory. */
map = rdev_mmap_full(rdev);
if (map == NULL)
return 0;
if (!cbfs_file_hash_mismatch(map, in_size, mdata, skip_verification)) {
timestamp_add_now(TS_ULZ4F_START);
out_size = ulz4fn(map, in_size, buffer, buffer_size);
timestamp_add_now(TS_ULZ4F_END);
}
rdev_munmap(rdev, map);
return out_size;
case CBFS_COMPRESS_LZMA:
if (!cbfs_lzma_enabled())
return 0;
map = rdev_mmap_full(rdev);
if (map == NULL)
return 0;
if (!cbfs_file_hash_mismatch(map, in_size, mdata, skip_verification)) {
/* Note: timestamp not useful for memory-mapped media (x86) */
timestamp_add_now(TS_ULZMA_START);
out_size = ulzman(map, in_size, buffer, buffer_size);
timestamp_add_now(TS_ULZMA_END);
}
rdev_munmap(rdev, map);
return out_size;
default:
return 0;
}
}
struct cbfs_preload_context {
struct region_device rdev;
struct thread_handle handle;
struct list_node list_node;
void *buffer;
char name[];
};
static struct list_node cbfs_preload_context_list;
static struct cbfs_preload_context *alloc_cbfs_preload_context(size_t additional)
{
struct cbfs_preload_context *context;
size_t size = sizeof(*context) + additional;
context = mem_pool_alloc(&cbfs_cache, size);
if (!context)
return NULL;
memset(context, 0, size);
return context;
}
static void append_cbfs_preload_context(struct cbfs_preload_context *context)
{
list_append(&context->list_node, &cbfs_preload_context_list);
}
static void free_cbfs_preload_context(struct cbfs_preload_context *context)
{
list_remove(&context->list_node);
mem_pool_free(&cbfs_cache, context);
}
static enum cb_err cbfs_preload_thread_entry(void *arg)
{
struct cbfs_preload_context *context = arg;
if (rdev_read_full(&context->rdev, context->buffer) < 0) {
ERROR("%s(name='%s') readat failed\n", __func__, context->name);
return CB_ERR;
}
return CB_SUCCESS;
}
void cbfs_preload(const char *name)
{
struct region_device rdev;
union cbfs_mdata mdata;
struct cbfs_preload_context *context;
bool force_ro = false;
size_t size;
if (!CONFIG(CBFS_PRELOAD))
dead_code();
/* We don't want to cross the vboot boundary */
if (ENV_ROMSTAGE && CONFIG(VBOOT_STARTS_IN_ROMSTAGE))
return;
DEBUG("%s(name='%s')\n", __func__, name);
if (_cbfs_boot_lookup(name, force_ro, &mdata, &rdev))
return;
size = region_device_sz(&rdev);
context = alloc_cbfs_preload_context(strlen(name) + 1);
if (!context) {
ERROR("%s(name='%s') failed to allocate preload context\n", __func__, name);
return;
}
context->buffer = mem_pool_alloc(&cbfs_cache, size);
if (context->buffer == NULL) {
ERROR("%s(name='%s') failed to allocate %zu bytes for preload buffer\n",
__func__, name, size);
goto out;
}
context->rdev = rdev;
strcpy(context->name, name);
append_cbfs_preload_context(context);
if (thread_run(&context->handle, cbfs_preload_thread_entry, context) == 0)
return;
ERROR("%s(name='%s') failed to start preload thread\n", __func__, name);
mem_pool_free(&cbfs_cache, context->buffer);
out:
free_cbfs_preload_context(context);
}
static struct cbfs_preload_context *find_cbfs_preload_context(const char *name)
{
struct cbfs_preload_context *context;
list_for_each(context, cbfs_preload_context_list, list_node) {
if (strcmp(context->name, name) == 0)
return context;
}
return NULL;
}
static enum cb_err get_preload_rdev(struct region_device *rdev, const char *name)
{
enum cb_err err;
struct cbfs_preload_context *context;
if (!CONFIG(CBFS_PRELOAD) || !ENV_SUPPORTS_COOP)
return CB_ERR_ARG;
context = find_cbfs_preload_context(name);
if (!context)
return CB_ERR_ARG;
err = thread_join(&context->handle);
if (err != CB_SUCCESS) {
ERROR("%s(name='%s') Preload thread failed: %u\n", __func__, name, err);
goto out;
}
if (rdev_chain_mem(rdev, context->buffer, region_device_sz(&context->rdev)) != 0) {
ERROR("%s(name='%s') chaining failed\n", __func__, name);
err = CB_ERR;
goto out;
}
err = CB_SUCCESS;
DEBUG("%s(name='%s') preload successful\n", __func__, name);
out:
free_cbfs_preload_context(context);
return err;
}
static void *do_alloc(union cbfs_mdata *mdata, struct region_device *rdev,
cbfs_allocator_t allocator, void *arg, size_t *size_out,
bool skip_verification)
{
size_t size = region_device_sz(rdev);
void *loc = NULL;
uint32_t compression = CBFS_COMPRESS_NONE;
const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(mdata,
CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr));
if (cattr) {
compression = be32toh(cattr->compression);
size = be32toh(cattr->decompressed_size);
}
if (size_out)
*size_out = size;
/* allocator == NULL means do a cbfs_map() */
if (allocator) {
loc = allocator(arg, size, mdata);
} else if (compression == CBFS_COMPRESS_NONE) {
void *mapping = rdev_mmap_full(rdev);
if (!mapping)
return NULL;
if (cbfs_file_hash_mismatch(mapping, size, mdata, skip_verification)) {
rdev_munmap(rdev, mapping);
return NULL;
}
return mapping;
} else if (!cbfs_cache.size) {
/* In order to use the cbfs_cache you need to add a CBFS_CACHE to your
* memlayout. For stages that don't have .data sections (x86 pre-RAM),
* it is not possible to add a CBFS_CACHE. */
ERROR("Cannot map compressed file %s without cbfs_cache\n", mdata->h.filename);
return NULL;
} else {
loc = mem_pool_alloc(&cbfs_cache, size);
}
if (!loc) {
ERROR("'%s' allocation failure\n", mdata->h.filename);
return NULL;
}
size = cbfs_load_and_decompress(rdev, loc, size, compression, mdata, skip_verification);
if (!size)
return NULL;
return loc;
}
void *_cbfs_alloc(const char *name, cbfs_allocator_t allocator, void *arg,
size_t *size_out, bool force_ro, enum cbfs_type *type)
{
struct region_device rdev;
bool preload_successful = false;
union cbfs_mdata mdata;
DEBUG("%s(name='%s', alloc=%p(%p), force_ro=%s, type=%d)\n", __func__, name, allocator,
arg, force_ro ? "true" : "false", type ? *type : -1);
if (_cbfs_boot_lookup(name, force_ro, &mdata, &rdev))
return NULL;
if (type) {
const enum cbfs_type real_type = be32toh(mdata.h.type);
if (*type == CBFS_TYPE_QUERY)
*type = real_type;
else if (*type != real_type) {
ERROR("'%s' type mismatch (is %u, expected %u)\n",
mdata.h.filename, real_type, *type);
return NULL;
}
}
/* Update the rdev with the preload content */
if (!force_ro && get_preload_rdev(&rdev, name) == CB_SUCCESS)
preload_successful = true;
void *ret = do_alloc(&mdata, &rdev, allocator, arg, size_out, false);
/* When using cbfs_preload we need to free the preload buffer after populating the
* destination buffer. We know we must have a mem_rdev here, so extra mmap is fine. */
if (preload_successful)
cbfs_unmap(rdev_mmap_full(&rdev));
return ret;
}
void *_cbfs_unverified_area_alloc(const char *area, const char *name,
cbfs_allocator_t allocator, void *arg, size_t *size_out)
{
struct region_device area_rdev, file_rdev;
union cbfs_mdata mdata;
size_t data_offset;
DEBUG("%s(area='%s', name='%s', alloc=%p(%p))\n", __func__, area, name, allocator, arg);
if (fmap_locate_area_as_rdev(area, &area_rdev))
return NULL;
if (cbfs_lookup(&area_rdev, name, &mdata, &data_offset, NULL)) {
ERROR("'%s' not found in '%s'\n", name, area);
return NULL;
}
if (rdev_chain(&file_rdev, &area_rdev, data_offset, be32toh(mdata.h.len)))
return NULL;
return do_alloc(&mdata, &file_rdev, allocator, arg, size_out, true);
}
void *_cbfs_default_allocator(void *arg, size_t size, const union cbfs_mdata *unused)
{
struct _cbfs_default_allocator_arg *darg = arg;
if (size > darg->buf_size)
return NULL;
return darg->buf;
}
void *_cbfs_cbmem_allocator(void *arg, size_t size, const union cbfs_mdata *unused)
{
return cbmem_add((uintptr_t)arg, size);
}
enum cb_err cbfs_prog_stage_load(struct prog *pstage)
{
union cbfs_mdata mdata;
struct region_device rdev;
enum cb_err err;
prog_locate_hook(pstage);
if ((err = _cbfs_boot_lookup(prog_name(pstage), false, &mdata, &rdev)))
return err;
assert(be32toh(mdata.h.type) == CBFS_TYPE_STAGE);
pstage->cbfs_type = CBFS_TYPE_STAGE;
enum cbfs_compression compression = CBFS_COMPRESS_NONE;
const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(&mdata,
CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr));
if (cattr)
compression = be32toh(cattr->compression);
const struct cbfs_file_attr_stageheader *sattr = cbfs_find_attr(&mdata,
CBFS_FILE_ATTR_TAG_STAGEHEADER, sizeof(*sattr));
if (!sattr)
return CB_ERR;
prog_set_area(pstage, (void *)(uintptr_t)be64toh(sattr->loadaddr),
be32toh(sattr->memlen));
prog_set_entry(pstage, prog_start(pstage) +
be32toh(sattr->entry_offset), NULL);
/* Hacky way to not load programs over read only media. The stages
* that would hit this path initialize themselves. */
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) &&
!CONFIG(NO_XIP_EARLY_STAGES) && CONFIG(BOOT_DEVICE_MEMORY_MAPPED)) {
void *mapping = rdev_mmap_full(&rdev);
rdev_munmap(&rdev, mapping);
if (cbfs_file_hash_mismatch(mapping, region_device_sz(&rdev), &mdata, false))
return CB_CBFS_HASH_MISMATCH;
if (mapping == prog_start(pstage))
return CB_SUCCESS;
}
/* LZ4 stages can be decompressed in-place to save mapping scratch space. Load the
compressed data to the end of the buffer and point &rdev to that memory location. */
if (cbfs_lz4_enabled() && compression == CBFS_COMPRESS_LZ4) {
size_t in_size = region_device_sz(&rdev);
void *compr_start = prog_start(pstage) + prog_size(pstage) - in_size;
if (rdev_readat(&rdev, compr_start, 0, in_size) != in_size)
return CB_ERR;
rdev_chain_mem(&rdev, compr_start, in_size);
}
size_t fsize = cbfs_load_and_decompress(&rdev, prog_start(pstage), prog_size(pstage),
compression, &mdata, false);
if (!fsize)
return CB_ERR;
/* Clear area not covered by file. */
memset(prog_start(pstage) + fsize, 0, prog_size(pstage) - fsize);
prog_segment_loaded((uintptr_t)prog_start(pstage), prog_size(pstage),
SEG_FINAL);
return CB_SUCCESS;
}
void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id)
{
if (CONFIG(NO_CBFS_MCACHE) || ENV_SMM)
return;
if (cbd->mcache_size)
return;
const struct cbmem_entry *entry;
if (cbmem_possibly_online() &&
(entry = cbmem_entry_find(id))) {
cbd->mcache = cbmem_entry_start(entry);
cbd->mcache_size = cbmem_entry_size(entry);
} else if (ENV_ROMSTAGE_OR_BEFORE) {
u8 *boundary = _ecbfs_mcache - REGION_SIZE(cbfs_mcache) *
CONFIG_CBFS_MCACHE_RW_PERCENTAGE / 100;
boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary, CBFS_MCACHE_ALIGNMENT);
if (id == CBMEM_ID_CBFS_RO_MCACHE) {
cbd->mcache = _cbfs_mcache;
cbd->mcache_size = boundary - _cbfs_mcache;
} else if (id == CBMEM_ID_CBFS_RW_MCACHE) {
cbd->mcache = boundary;
cbd->mcache_size = _ecbfs_mcache - boundary;
}
}
}
enum cb_err cbfs_init_boot_device(const struct cbfs_boot_device *cbd,
struct vb2_hash *mdata_hash)
{
/* If we have an mcache, mcache_build() will also check mdata hash. */
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size > 0)
return cbfs_mcache_build(&cbd->rdev, cbd->mcache, cbd->mcache_size, mdata_hash);
/* No mcache and no verification means we have nothing special to do. */
if (!CONFIG(CBFS_VERIFICATION) || !mdata_hash)
return CB_SUCCESS;
/* Verification only: use cbfs_walk() without a walker() function to just run through
the CBFS once, will return NOT_FOUND by default. */
enum cb_err err = cbfs_walk(&cbd->rdev, NULL, NULL, mdata_hash, 0);
if (err == CB_CBFS_NOT_FOUND)
err = CB_SUCCESS;
return err;
}
const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro)
{
static struct cbfs_boot_device ro;
/* Ensure we always init RO mcache, even if the first file is from the RW CBFS.
Otherwise it may not be available when needed in later stages. */
if (ENV_INITIAL_STAGE && !force_ro && !region_device_sz(&ro.rdev))
cbfs_get_boot_device(true);
if (!force_ro) {
const struct cbfs_boot_device *rw = vboot_get_cbfs_boot_device();
/* This will return NULL if vboot isn't enabled, didn't run yet or decided to
boot into recovery mode. */
if (rw)
return rw;
}
/* In rare cases post-RAM stages may run this before cbmem_initialize(), so we can't
lock in the result of find_mcache() on the first try and should keep trying every
time until an mcache is found. */
cbfs_boot_device_find_mcache(&ro, CBMEM_ID_CBFS_RO_MCACHE);
if (region_device_sz(&ro.rdev))
return &ro;
if (fmap_locate_area_as_rdev("COREBOOT", &ro.rdev))
die("Cannot locate primary CBFS");
if (ENV_INITIAL_STAGE) {
enum cb_err err = cbfs_init_boot_device(&ro, metadata_hash_get());
if (err == CB_CBFS_HASH_MISMATCH)
die("RO CBFS metadata hash verification failure");
else if (CONFIG(TOCTOU_SAFETY) && err == CB_CBFS_CACHE_FULL)
die("RO mcache overflow breaks TOCTOU safety!\n");
else if (err && err != CB_CBFS_CACHE_FULL)
die("RO CBFS initialization error: %d", err);
}
return &ro;
}
#if !CONFIG(NO_CBFS_MCACHE)
static void mcache_to_cbmem(const struct cbfs_boot_device *cbd, u32 cbmem_id)
{
if (!cbd)
return;
size_t real_size = cbfs_mcache_real_size(cbd->mcache, cbd->mcache_size);
void *cbmem_mcache = cbmem_add(cbmem_id, real_size);
if (!cbmem_mcache) {
printk(BIOS_ERR, "Cannot allocate CBMEM mcache %#x (%#zx bytes)!\n",
cbmem_id, real_size);
return;
}
memcpy(cbmem_mcache, cbd->mcache, real_size);
}
static void cbfs_mcache_migrate(int unused)
{
mcache_to_cbmem(vboot_get_cbfs_boot_device(), CBMEM_ID_CBFS_RW_MCACHE);
mcache_to_cbmem(cbfs_get_boot_device(true), CBMEM_ID_CBFS_RO_MCACHE);
}
CBMEM_CREATION_HOOK(cbfs_mcache_migrate);
#endif