coreboot-kgpe-d16/src/lib/cbfs.c
Julius Werner 69cc557cfb commonlib/bsd: Remove cb_err_t
cb_err_t was meant to be used in place of `enum cb_err` in all
situations, but the choice to use a typedef here seems to be
controversial. We should not be arbitrarily using two different
identifiers for the same thing across the codebase, so since there are
no use cases for serializing enum cb_err at the moment (which would be
the primary reason to typedef a fixed-width integer instead), remove
cb_err_t again for now.

Signed-off-by: Julius Werner <jwerner@chromium.org>
Change-Id: Iaec36210d129db26d51f0a105d3de070c03b686b
Reviewed-on: https://review.coreboot.org/c/coreboot/+/62600
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Yu-Ping Wu <yupingso@google.com>
Reviewed-by: Tim Wawrzynczak <twawrzynczak@chromium.org>
2022-03-09 02:18:21 +00:00

697 lines
20 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <boot_device.h>
#include <cbfs.h>
#include <cbmem.h>
#include <commonlib/bsd/cbfs_private.h>
#include <commonlib/bsd/compression.h>
#include <console/console.h>
#include <fmap.h>
#include <lib.h>
#include <list.h>
#include <metadata_hash.h>
#include <security/tpm/tspi/crtm.h>
#include <security/vboot/vboot_common.h>
#include <stdlib.h>
#include <string.h>
#include <symbols.h>
#include <thread.h>
#include <timestamp.h>
#if ENV_STAGE_HAS_DATA_SECTION
struct mem_pool cbfs_cache =
MEM_POOL_INIT(_cbfs_cache, REGION_SIZE(cbfs_cache), CONFIG_CBFS_CACHE_ALIGN);
#else
struct mem_pool cbfs_cache = MEM_POOL_INIT(NULL, 0, 0);
#endif
static void switch_to_postram_cache(int unused)
{
if (_preram_cbfs_cache != _postram_cbfs_cache)
mem_pool_init(&cbfs_cache, _postram_cbfs_cache, REGION_SIZE(postram_cbfs_cache),
CONFIG_CBFS_CACHE_ALIGN);
}
ROMSTAGE_CBMEM_INIT_HOOK(switch_to_postram_cache);
enum cb_err _cbfs_boot_lookup(const char *name, bool force_ro,
union cbfs_mdata *mdata, struct region_device *rdev)
{
const struct cbfs_boot_device *cbd = cbfs_get_boot_device(force_ro);
if (!cbd)
return CB_ERR;
size_t data_offset;
enum cb_err err = CB_CBFS_CACHE_FULL;
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size)
err = cbfs_mcache_lookup(cbd->mcache, cbd->mcache_size,
name, mdata, &data_offset);
if (err == CB_CBFS_CACHE_FULL) {
struct vb2_hash *metadata_hash = NULL;
if (CONFIG(TOCTOU_SAFETY)) {
if (ENV_SMM) /* Cannot provide TOCTOU safety for SMM */
dead_code();
if (!cbd->mcache_size)
die("Cannot access CBFS TOCTOU-safely in " ENV_STRING " before CBMEM init!\n");
/* We can only reach this for the RW CBFS -- an mcache overflow in the
RO CBFS would have been caught when building the mcache in cbfs_get
boot_device(). (Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */
assert(cbd == vboot_get_cbfs_boot_device());
die("TODO: set metadata_hash to RW metadata hash here.\n");
}
err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset, metadata_hash);
}
if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro && err == CB_CBFS_NOT_FOUND) {
printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n", name);
return _cbfs_boot_lookup(name, true, mdata, rdev);
}
if (err) {
if (err == CB_CBFS_NOT_FOUND)
printk(BIOS_WARNING, "CBFS: '%s' not found.\n", name);
else if (err == CB_CBFS_HASH_MISMATCH)
printk(BIOS_ERR, "CBFS ERROR: metadata hash mismatch!\n");
else
printk(BIOS_ERR, "CBFS ERROR: error %d when looking up '%s'\n",
err, name);
return err;
}
if (rdev_chain(rdev, &cbd->rdev, data_offset, be32toh(mdata->h.len)))
return CB_ERR;
return CB_SUCCESS;
}
void cbfs_unmap(void *mapping)
{
/*
* This is save to call with mappings that weren't allocated in the cache (e.g. x86
* direct mappings) -- mem_pool_free() just does nothing for addresses it doesn't
* recognize. This hardcodes the assumption that if platforms implement an rdev_mmap()
* that requires a free() for the boot_device, they need to implement it via the
* cbfs_cache mem_pool.
*/
mem_pool_free(&cbfs_cache, mapping);
}
static inline bool fsps_env(void)
{
/* FSP-S is assumed to be loaded in ramstage. */
if (ENV_RAMSTAGE)
return true;
return false;
}
static inline bool fspm_env(void)
{
/* FSP-M is assumed to be loaded in romstage. */
if (ENV_ROMSTAGE)
return true;
return false;
}
static inline bool cbfs_lz4_enabled(void)
{
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZ4))
return true;
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZ4))
return true;
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(COMPRESS_PRERAM_STAGES))
return false;
if (ENV_SMM)
return false;
return true;
}
static inline bool cbfs_lzma_enabled(void)
{
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZMA))
return true;
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZMA))
return true;
/* We assume here romstage and postcar are never compressed. */
if (ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE)
return false;
if (ENV_ROMSTAGE && CONFIG(POSTCAR_STAGE))
return false;
if ((ENV_ROMSTAGE || ENV_POSTCAR) && !CONFIG(COMPRESS_RAMSTAGE))
return false;
if (ENV_SMM)
return false;
return true;
}
static bool cbfs_file_hash_mismatch(const void *buffer, size_t size,
const union cbfs_mdata *mdata, bool skip_verification)
{
/* Avoid linking hash functions when verification and measurement are disabled. */
if (!CONFIG(CBFS_VERIFICATION) && !CONFIG(TPM_MEASURED_BOOT))
return false;
const struct vb2_hash *hash = NULL;
if (CONFIG(CBFS_VERIFICATION) && !skip_verification) {
hash = cbfs_file_hash(mdata);
if (!hash) {
ERROR("'%s' does not have a file hash!\n", mdata->h.filename);
return true;
}
if (vb2_hash_verify(buffer, size, hash) != VB2_SUCCESS) {
ERROR("'%s' file hash mismatch!\n", mdata->h.filename);
return true;
}
}
if (CONFIG(TPM_MEASURED_BOOT) && !ENV_SMM) {
struct vb2_hash calculated_hash;
/* No need to re-hash file if we already have it from verification. */
if (!hash || hash->algo != TPM_MEASURE_ALGO) {
vb2_hash_calculate(buffer, size, TPM_MEASURE_ALGO, &calculated_hash);
hash = &calculated_hash;
}
if (tspi_cbfs_measurement(mdata->h.filename, be32toh(mdata->h.type), hash))
ERROR("failed to measure '%s' into TCPA log\n", mdata->h.filename);
/* We intentionally continue to boot on measurement errors. */
}
return false;
}
static size_t cbfs_load_and_decompress(const struct region_device *rdev, void *buffer,
size_t buffer_size, uint32_t compression,
const union cbfs_mdata *mdata, bool skip_verification)
{
size_t in_size = region_device_sz(rdev);
size_t out_size = 0;
void *map;
DEBUG("Decompressing %zu bytes from '%s' to %p with algo %d\n",
in_size, mdata->h.filename, buffer, compression);
switch (compression) {
case CBFS_COMPRESS_NONE:
if (buffer_size < in_size)
return 0;
if (rdev_readat(rdev, buffer, 0, in_size) != in_size)
return 0;
if (cbfs_file_hash_mismatch(buffer, in_size, mdata, skip_verification))
return 0;
return in_size;
case CBFS_COMPRESS_LZ4:
if (!cbfs_lz4_enabled())
return 0;
/* cbfs_prog_stage_load() takes care of in-place LZ4 decompression by
setting up the rdev to be in memory. */
map = rdev_mmap_full(rdev);
if (map == NULL)
return 0;
if (!cbfs_file_hash_mismatch(map, in_size, mdata, skip_verification)) {
timestamp_add_now(TS_ULZ4F_START);
out_size = ulz4fn(map, in_size, buffer, buffer_size);
timestamp_add_now(TS_ULZ4F_END);
}
rdev_munmap(rdev, map);
return out_size;
case CBFS_COMPRESS_LZMA:
if (!cbfs_lzma_enabled())
return 0;
map = rdev_mmap_full(rdev);
if (map == NULL)
return 0;
if (!cbfs_file_hash_mismatch(map, in_size, mdata, skip_verification)) {
/* Note: timestamp not useful for memory-mapped media (x86) */
timestamp_add_now(TS_ULZMA_START);
out_size = ulzman(map, in_size, buffer, buffer_size);
timestamp_add_now(TS_ULZMA_END);
}
rdev_munmap(rdev, map);
return out_size;
default:
return 0;
}
}
struct cbfs_preload_context {
struct region_device rdev;
struct thread_handle handle;
struct list_node list_node;
void *buffer;
char name[];
};
static struct list_node cbfs_preload_context_list;
static struct cbfs_preload_context *alloc_cbfs_preload_context(size_t additional)
{
struct cbfs_preload_context *context;
size_t size = sizeof(*context) + additional;
context = mem_pool_alloc(&cbfs_cache, size);
if (!context)
return NULL;
memset(context, 0, size);
return context;
}
static void append_cbfs_preload_context(struct cbfs_preload_context *context)
{
list_append(&context->list_node, &cbfs_preload_context_list);
}
static void free_cbfs_preload_context(struct cbfs_preload_context *context)
{
list_remove(&context->list_node);
mem_pool_free(&cbfs_cache, context);
}
static enum cb_err cbfs_preload_thread_entry(void *arg)
{
struct cbfs_preload_context *context = arg;
if (rdev_read_full(&context->rdev, context->buffer) < 0) {
ERROR("%s(name='%s') readat failed\n", __func__, context->name);
return CB_ERR;
}
return CB_SUCCESS;
}
void cbfs_preload(const char *name)
{
struct region_device rdev;
union cbfs_mdata mdata;
struct cbfs_preload_context *context;
bool force_ro = false;
size_t size;
if (!CONFIG(CBFS_PRELOAD))
dead_code();
/* We don't want to cross the vboot boundary */
if (ENV_ROMSTAGE && CONFIG(VBOOT_STARTS_IN_ROMSTAGE))
return;
DEBUG("%s(name='%s')\n", __func__, name);
if (_cbfs_boot_lookup(name, force_ro, &mdata, &rdev))
return;
size = region_device_sz(&rdev);
context = alloc_cbfs_preload_context(strlen(name) + 1);
if (!context) {
ERROR("%s(name='%s') failed to allocate preload context\n", __func__, name);
return;
}
context->buffer = mem_pool_alloc(&cbfs_cache, size);
if (context->buffer == NULL) {
ERROR("%s(name='%s') failed to allocate %zu bytes for preload buffer\n",
__func__, name, size);
goto out;
}
context->rdev = rdev;
strcpy(context->name, name);
append_cbfs_preload_context(context);
if (thread_run(&context->handle, cbfs_preload_thread_entry, context) == 0)
return;
ERROR("%s(name='%s') failed to start preload thread\n", __func__, name);
mem_pool_free(&cbfs_cache, context->buffer);
out:
free_cbfs_preload_context(context);
}
static struct cbfs_preload_context *find_cbfs_preload_context(const char *name)
{
struct cbfs_preload_context *context;
list_for_each(context, cbfs_preload_context_list, list_node) {
if (strcmp(context->name, name) == 0)
return context;
}
return NULL;
}
static enum cb_err get_preload_rdev(struct region_device *rdev, const char *name)
{
enum cb_err err;
struct cbfs_preload_context *context;
if (!CONFIG(CBFS_PRELOAD) || !ENV_STAGE_SUPPORTS_COOP)
return CB_ERR_ARG;
context = find_cbfs_preload_context(name);
if (!context)
return CB_ERR_ARG;
err = thread_join(&context->handle);
if (err != CB_SUCCESS) {
ERROR("%s(name='%s') Preload thread failed: %u\n", __func__, name, err);
goto out;
}
if (rdev_chain_mem(rdev, context->buffer, region_device_sz(&context->rdev)) != 0) {
ERROR("%s(name='%s') chaining failed\n", __func__, name);
err = CB_ERR;
goto out;
}
err = CB_SUCCESS;
DEBUG("%s(name='%s') preload successful\n", __func__, name);
out:
free_cbfs_preload_context(context);
return err;
}
static void *do_alloc(union cbfs_mdata *mdata, struct region_device *rdev,
cbfs_allocator_t allocator, void *arg, size_t *size_out,
bool skip_verification)
{
size_t size = region_device_sz(rdev);
void *loc = NULL;
uint32_t compression = CBFS_COMPRESS_NONE;
const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(mdata,
CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr));
if (cattr) {
compression = be32toh(cattr->compression);
size = be32toh(cattr->decompressed_size);
}
if (size_out)
*size_out = size;
/* allocator == NULL means do a cbfs_map() */
if (allocator) {
loc = allocator(arg, size, mdata);
} else if (compression == CBFS_COMPRESS_NONE) {
void *mapping = rdev_mmap_full(rdev);
if (!mapping)
return NULL;
if (cbfs_file_hash_mismatch(mapping, size, mdata, skip_verification)) {
rdev_munmap(rdev, mapping);
return NULL;
}
return mapping;
} else if (!cbfs_cache.size) {
/* In order to use the cbfs_cache you need to add a CBFS_CACHE to your
* memlayout. For stages that don't have .data sections (x86 pre-RAM),
* it is not possible to add a CBFS_CACHE. */
ERROR("Cannot map compressed file %s without cbfs_cache\n", mdata->h.filename);
return NULL;
} else {
loc = mem_pool_alloc(&cbfs_cache, size);
}
if (!loc) {
ERROR("'%s' allocation failure\n", mdata->h.filename);
return NULL;
}
size = cbfs_load_and_decompress(rdev, loc, size, compression, mdata, skip_verification);
if (!size)
return NULL;
return loc;
}
void *_cbfs_alloc(const char *name, cbfs_allocator_t allocator, void *arg,
size_t *size_out, bool force_ro, enum cbfs_type *type)
{
struct region_device rdev;
bool preload_successful = false;
union cbfs_mdata mdata;
DEBUG("%s(name='%s', alloc=%p(%p), force_ro=%s, type=%d)\n", __func__, name, allocator,
arg, force_ro ? "true" : "false", type ? *type : -1);
if (_cbfs_boot_lookup(name, force_ro, &mdata, &rdev))
return NULL;
if (type) {
const enum cbfs_type real_type = be32toh(mdata.h.type);
if (*type == CBFS_TYPE_QUERY)
*type = real_type;
else if (*type != real_type) {
ERROR("'%s' type mismatch (is %u, expected %u)\n",
mdata.h.filename, real_type, *type);
return NULL;
}
}
/* Update the rdev with the preload content */
if (!force_ro && get_preload_rdev(&rdev, name) == CB_SUCCESS)
preload_successful = true;
void *ret = do_alloc(&mdata, &rdev, allocator, arg, size_out, false);
/* When using cbfs_preload we need to free the preload buffer after populating the
* destination buffer. We know we must have a mem_rdev here, so extra mmap is fine. */
if (preload_successful)
cbfs_unmap(rdev_mmap_full(&rdev));
return ret;
}
void *_cbfs_unverified_area_alloc(const char *area, const char *name,
cbfs_allocator_t allocator, void *arg, size_t *size_out)
{
struct region_device area_rdev, file_rdev;
union cbfs_mdata mdata;
size_t data_offset;
DEBUG("%s(area='%s', name='%s', alloc=%p(%p))\n", __func__, area, name, allocator, arg);
if (fmap_locate_area_as_rdev(area, &area_rdev))
return NULL;
if (cbfs_lookup(&area_rdev, name, &mdata, &data_offset, NULL)) {
ERROR("'%s' not found in '%s'\n", name, area);
return NULL;
}
if (rdev_chain(&file_rdev, &area_rdev, data_offset, be32toh(mdata.h.len)))
return NULL;
return do_alloc(&mdata, &file_rdev, allocator, arg, size_out, true);
}
void *_cbfs_default_allocator(void *arg, size_t size, const union cbfs_mdata *unused)
{
struct _cbfs_default_allocator_arg *darg = arg;
if (size > darg->buf_size)
return NULL;
return darg->buf;
}
void *_cbfs_cbmem_allocator(void *arg, size_t size, const union cbfs_mdata *unused)
{
return cbmem_add((uintptr_t)arg, size);
}
enum cb_err cbfs_prog_stage_load(struct prog *pstage)
{
union cbfs_mdata mdata;
struct region_device rdev;
enum cb_err err;
prog_locate_hook(pstage);
if ((err = _cbfs_boot_lookup(prog_name(pstage), false, &mdata, &rdev)))
return err;
assert(be32toh(mdata.h.type) == CBFS_TYPE_STAGE);
pstage->cbfs_type = CBFS_TYPE_STAGE;
enum cbfs_compression compression = CBFS_COMPRESS_NONE;
const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(&mdata,
CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr));
if (cattr)
compression = be32toh(cattr->compression);
const struct cbfs_file_attr_stageheader *sattr = cbfs_find_attr(&mdata,
CBFS_FILE_ATTR_TAG_STAGEHEADER, sizeof(*sattr));
if (!sattr)
return CB_ERR;
prog_set_area(pstage, (void *)(uintptr_t)be64toh(sattr->loadaddr),
be32toh(sattr->memlen));
prog_set_entry(pstage, prog_start(pstage) +
be32toh(sattr->entry_offset), NULL);
/* Hacky way to not load programs over read only media. The stages
* that would hit this path initialize themselves. */
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) &&
!CONFIG(NO_XIP_EARLY_STAGES) && CONFIG(BOOT_DEVICE_MEMORY_MAPPED)) {
void *mapping = rdev_mmap_full(&rdev);
rdev_munmap(&rdev, mapping);
if (cbfs_file_hash_mismatch(mapping, region_device_sz(&rdev), &mdata, false))
return CB_CBFS_HASH_MISMATCH;
if (mapping == prog_start(pstage))
return CB_SUCCESS;
}
/* LZ4 stages can be decompressed in-place to save mapping scratch space. Load the
compressed data to the end of the buffer and point &rdev to that memory location. */
if (cbfs_lz4_enabled() && compression == CBFS_COMPRESS_LZ4) {
size_t in_size = region_device_sz(&rdev);
void *compr_start = prog_start(pstage) + prog_size(pstage) - in_size;
if (rdev_readat(&rdev, compr_start, 0, in_size) != in_size)
return CB_ERR;
rdev_chain_mem(&rdev, compr_start, in_size);
}
size_t fsize = cbfs_load_and_decompress(&rdev, prog_start(pstage), prog_size(pstage),
compression, &mdata, false);
if (!fsize)
return CB_ERR;
/* Clear area not covered by file. */
memset(prog_start(pstage) + fsize, 0, prog_size(pstage) - fsize);
prog_segment_loaded((uintptr_t)prog_start(pstage), prog_size(pstage),
SEG_FINAL);
return CB_SUCCESS;
}
void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id)
{
if (CONFIG(NO_CBFS_MCACHE) || ENV_SMM)
return;
if (cbd->mcache_size)
return;
const struct cbmem_entry *entry;
if (cbmem_possibly_online() &&
(entry = cbmem_entry_find(id))) {
cbd->mcache = cbmem_entry_start(entry);
cbd->mcache_size = cbmem_entry_size(entry);
} else if (ENV_ROMSTAGE_OR_BEFORE) {
u8 *boundary = _ecbfs_mcache - REGION_SIZE(cbfs_mcache) *
CONFIG_CBFS_MCACHE_RW_PERCENTAGE / 100;
boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary, CBFS_MCACHE_ALIGNMENT);
if (id == CBMEM_ID_CBFS_RO_MCACHE) {
cbd->mcache = _cbfs_mcache;
cbd->mcache_size = boundary - _cbfs_mcache;
} else if (id == CBMEM_ID_CBFS_RW_MCACHE) {
cbd->mcache = boundary;
cbd->mcache_size = _ecbfs_mcache - boundary;
}
}
}
enum cb_err cbfs_init_boot_device(const struct cbfs_boot_device *cbd,
struct vb2_hash *mdata_hash)
{
/* If we have an mcache, mcache_build() will also check mdata hash. */
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size > 0)
return cbfs_mcache_build(&cbd->rdev, cbd->mcache, cbd->mcache_size, mdata_hash);
/* No mcache and no verification means we have nothing special to do. */
if (!CONFIG(CBFS_VERIFICATION) || !mdata_hash)
return CB_SUCCESS;
/* Verification only: use cbfs_walk() without a walker() function to just run through
the CBFS once, will return NOT_FOUND by default. */
enum cb_err err = cbfs_walk(&cbd->rdev, NULL, NULL, mdata_hash, 0);
if (err == CB_CBFS_NOT_FOUND)
err = CB_SUCCESS;
return err;
}
const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro)
{
static struct cbfs_boot_device ro;
/* Ensure we always init RO mcache, even if the first file is from the RW CBFS.
Otherwise it may not be available when needed in later stages. */
if (ENV_INITIAL_STAGE && !force_ro && !region_device_sz(&ro.rdev))
cbfs_get_boot_device(true);
if (!force_ro) {
const struct cbfs_boot_device *rw = vboot_get_cbfs_boot_device();
/* This will return NULL if vboot isn't enabled, didn't run yet or decided to
boot into recovery mode. */
if (rw)
return rw;
}
/* In rare cases post-RAM stages may run this before cbmem_initialize(), so we can't
lock in the result of find_mcache() on the first try and should keep trying every
time until an mcache is found. */
cbfs_boot_device_find_mcache(&ro, CBMEM_ID_CBFS_RO_MCACHE);
if (region_device_sz(&ro.rdev))
return &ro;
if (fmap_locate_area_as_rdev("COREBOOT", &ro.rdev))
die("Cannot locate primary CBFS");
if (ENV_INITIAL_STAGE) {
enum cb_err err = cbfs_init_boot_device(&ro, metadata_hash_get());
if (err == CB_CBFS_HASH_MISMATCH)
die("RO CBFS metadata hash verification failure");
else if (CONFIG(TOCTOU_SAFETY) && err == CB_CBFS_CACHE_FULL)
die("RO mcache overflow breaks TOCTOU safety!\n");
else if (err && err != CB_CBFS_CACHE_FULL)
die("RO CBFS initialization error: %d", err);
}
return &ro;
}
#if !CONFIG(NO_CBFS_MCACHE)
static void mcache_to_cbmem(const struct cbfs_boot_device *cbd, u32 cbmem_id)
{
if (!cbd)
return;
size_t real_size = cbfs_mcache_real_size(cbd->mcache, cbd->mcache_size);
void *cbmem_mcache = cbmem_add(cbmem_id, real_size);
if (!cbmem_mcache) {
printk(BIOS_ERR, "Cannot allocate CBMEM mcache %#x (%#zx bytes)!\n",
cbmem_id, real_size);
return;
}
memcpy(cbmem_mcache, cbd->mcache, real_size);
}
static void cbfs_mcache_migrate(int unused)
{
mcache_to_cbmem(vboot_get_cbfs_boot_device(), CBMEM_ID_CBFS_RW_MCACHE);
mcache_to_cbmem(cbfs_get_boot_device(true), CBMEM_ID_CBFS_RO_MCACHE);
}
ROMSTAGE_CBMEM_INIT_HOOK(cbfs_mcache_migrate)
#endif