coreboot-kgpe-d16/src/soc/mediatek/mt8183/rtc.c
Weiyi Lu e78d140b11 mediatek/mt8183: postpone dcxo low power mode setting
Consider the association between modem[1] and DCXO, this patch is a fix for
eb5e47d("mediatek/mt8183: update dcxo output buffer setting") [2]
We should not disable XO_CEL and block the bblpm request when modem is still ON.
For power-saving, we still could disable unused XO_CEL and
mask request to disable unused power mode when modem is no longer be used.

[1] https://review.coreboot.org/c/coreboot/+/32666
[2] https://review.coreboot.org/c/coreboot/+/32323

BRANCH=none
TEST=Boots correctly on Krane.

Change-Id: I047ebed615e874977ca211aafd52b5551c71b764
Signed-off-by: Weiyi Lu <weiyi.lu@mediatek.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/34777
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Hung-Te Lin <hungte@chromium.org>
2019-09-04 10:56:09 +00:00

458 lines
11 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright 2018 MediaTek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <delay.h>
#include <halt.h>
#include <soc/rtc_common.h>
#include <soc/rtc.h>
#include <soc/mt6358.h>
#include <soc/pmic_wrap.h>
#include <timer.h>
#define RTC_GPIO_USER_MASK ((1 << 13) - (1 << 8))
/* initialize rtc setting of using dcxo clock */
static int rtc_enable_dcxo(void)
{
u16 bbpu, con, osc32con, sec;
rtc_read(RTC_BBPU, &bbpu);
rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD);
rtc_write_trigger();
mdelay(1);
if (!rtc_writeif_unlock()) { /* Unlock for reload */
rtc_info("rtc_writeif_unlock() failed\n");
return 0;
}
rtc_read(RTC_OSC32CON, &osc32con);
osc32con &= ~(RTC_EMBCK_SRC_SEL | RTC_EMBCK_SEL_MODE_MASK
| RTC_GPS_CKOUT_EN);
osc32con |= RTC_XOSC32_ENB | RTC_REG_XOSC32_ENB
| RTC_EMB_K_EOSC32_MODE | RTC_EMBCK_SEL_OPTION;
if (!rtc_xosc_write(osc32con)) {
rtc_info("rtc_xosc_write() failed\n");
return 0;
}
rtc_read(RTC_CON, &con);
rtc_read(RTC_OSC32CON, &osc32con);
rtc_read(RTC_AL_SEC, &sec);
rtc_info("con=0x%x, osc32con=0x%x, sec=0x%x\n", con, osc32con, sec);
return 1;
}
/* initialize rtc related gpio */
static int rtc_gpio_init(void)
{
u16 con;
/* RTC_32K1V8 clock change from 128k div 4 source
* to RTC 32k source
*/
pwrap_write_field(PMIC_RG_TOP_CKSEL_CON0_SET, 0x1, 0x1, 3);
/* Export 32K clock RTC_32K1V8_1 */
pwrap_write_field(PMIC_RG_TOP_CKPDN_CON1_CLR, 0x1, 0x1, 1);
/* Export 32K clock RTC_32K2V8 */
rtc_read(RTC_CON, &con);
con &= (RTC_CON_LPSTA_RAW | RTC_CON_LPRST | RTC_CON_EOSC32_LPEN
| RTC_CON_XOSC32_LPEN);
con |= (RTC_CON_GPEN | RTC_CON_GOE);
con &= ~(RTC_CON_F32KOB);
rtc_write(RTC_CON, con);
return rtc_write_trigger();
}
static u16 rtc_get_frequency_meter(u16 val, u16 measure_src, u16 window_size)
{
u16 bbpu, osc32con;
u16 fqmtr_busy, fqmtr_data, fqmtr_rst, fqmtr_tcksel;
struct stopwatch sw;
if (val) {
rtc_read(RTC_BBPU, &bbpu);
rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD);
rtc_write_trigger();
rtc_read(RTC_OSC32CON, &osc32con);
rtc_xosc_write((osc32con & ~RTC_XOSCCALI_MASK) |
(val & RTC_XOSCCALI_MASK));
}
/* enable FQMTR clock */
pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_CLR, 1, 1,
PMIC_RG_FQMTR_32K_CK_PDN_SHIFT);
pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_CLR, 1, 1,
PMIC_RG_FQMTR_CK_PDN_SHIFT);
/* FQMTR reset */
pwrap_write_field(PMIC_RG_FQMTR_RST, 1, 1, PMIC_FQMTR_RST_SHIFT);
do {
rtc_read(PMIC_RG_FQMTR_DATA, &fqmtr_data);
rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_busy);
} while (fqmtr_data && (fqmtr_busy & PMIC_FQMTR_CON0_BUSY));
rtc_read(PMIC_RG_FQMTR_RST, &fqmtr_rst);
/* FQMTR normal */
pwrap_write_field(PMIC_RG_FQMTR_RST, 0, 1, PMIC_FQMTR_RST_SHIFT);
/* set frequency meter window value (0=1X32K(fixed clock)) */
rtc_write(PMIC_RG_FQMTR_WINSET, window_size);
/* enable 26M and set test clock source */
rtc_write(PMIC_RG_FQMTR_CON0, PMIC_FQMTR_CON0_DCXO26M_EN | measure_src);
/* enable 26M -> delay 100us -> enable FQMTR */
udelay(100);
rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel);
/* enable FQMTR */
rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel | PMIC_FQMTR_CON0_FQMTR_EN);
udelay(100);
stopwatch_init_usecs_expire(&sw, FQMTR_TIMEOUT_US);
/* FQMTR read until ready */
do {
rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_busy);
if (stopwatch_expired(&sw)) {
rtc_info("get frequency time out !!\n");
return 0;
}
} while (fqmtr_busy & PMIC_FQMTR_CON0_BUSY);
/* read data should be closed to 26M/32k = 794 */
rtc_read(PMIC_RG_FQMTR_DATA, &fqmtr_data);
rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel);
/* disable FQMTR */
rtc_write(PMIC_RG_FQMTR_CON0, fqmtr_tcksel & ~PMIC_FQMTR_CON0_FQMTR_EN);
/* disable FQMTR -> delay 100us -> disable 26M */
udelay(100);
/* disable 26M */
rtc_read(PMIC_RG_FQMTR_CON0, &fqmtr_tcksel);
rtc_write(PMIC_RG_FQMTR_CON0,
fqmtr_tcksel & ~PMIC_FQMTR_CON0_DCXO26M_EN);
rtc_info("input=0x%x, output=%d\n", val, fqmtr_data);
/* disable FQMTR clock */
pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_SET, 1, 1,
PMIC_RG_FQMTR_32K_CK_PDN_SHIFT);
pwrap_write_field(PMIC_RG_TOP_CKPDN_CON0_SET, 1, 1,
PMIC_RG_FQMTR_CK_PDN_SHIFT);
return fqmtr_data;
}
/* 32k clock calibration */
static u16 rtc_eosc_cali(void)
{
u16 middle, diff1, diff2, cksel;
u16 val = 0;
u16 left = RTC_XOSCCALI_START, right = RTC_XOSCCALI_END;
rtc_read(PMIC_RG_FQMTR_CKSEL, &cksel);
cksel &= ~PMIC_FQMTR_CKSEL_MASK;
/* select EOSC_32 as fixed clock */
rtc_write(PMIC_RG_FQMTR_CKSEL, cksel | PMIC_FQMTR_FIX_CLK_EOSC_32K);
rtc_read(PMIC_RG_FQMTR_CKSEL, &cksel);
rtc_info("PMIC_RG_FQMTR_CKSEL=0x%x\n", cksel);
while (left <= right) {
middle = (right + left) / 2;
if (middle == left)
break;
/* select 26M as target clock */
val = rtc_get_frequency_meter(middle, PMIC_FQMTR_CON0_FQM26M_CK, 0);
if (val >= RTC_FQMTR_LOW_BASE && val <= RTC_FQMTR_HIGH_BASE)
break;
if (val > RTC_FQMTR_HIGH_BASE)
right = middle;
else
left = middle;
}
if (val >= RTC_FQMTR_LOW_BASE && val <= RTC_FQMTR_HIGH_BASE)
return middle;
val = rtc_get_frequency_meter(left, PMIC_FQMTR_CON0_FQM26M_CK, 0);
if (val > RTC_FQMTR_LOW_BASE)
diff1 = val - RTC_FQMTR_LOW_BASE;
else
diff1 = RTC_FQMTR_LOW_BASE - val;
val = rtc_get_frequency_meter(right, PMIC_FQMTR_CON0_FQM26M_CK, 0);
if (val > RTC_FQMTR_LOW_BASE)
diff2 = val - RTC_FQMTR_LOW_BASE;
else
diff2 = RTC_FQMTR_LOW_BASE - val;
if (diff1 < diff2)
return left;
else
return right;
}
void rtc_osc_init(void)
{
u16 osc32con;
/* enable 32K export */
rtc_gpio_init();
/* Calibrate eosc32 for powerdown clock */
rtc_read(RTC_OSC32CON, &osc32con);
osc32con &= ~RTC_XOSCCALI_MASK;
osc32con |= rtc_eosc_cali() & RTC_XOSCCALI_MASK;
rtc_xosc_write(osc32con);
rtc_info("EOSC32 cali val = 0x%x\n", osc32con);
}
/* enable lpd subroutine */
static int rtc_lpen(u16 con)
{
con &= ~RTC_CON_LPRST;
rtc_write(RTC_CON, con);
if (!rtc_write_trigger())
return 0;
con |= RTC_CON_LPRST;
rtc_write(RTC_CON, con);
if (!rtc_write_trigger())
return 0;
con &= ~RTC_CON_LPRST;
rtc_write(RTC_CON, con);
if (!rtc_write_trigger())
return 0;
return 1;
}
/* low power detect setting */
static int rtc_lpd_init(void)
{
u16 con, sec;
/* set RTC_LPD_OPT */
rtc_read(RTC_AL_SEC, &sec);
sec |= RTC_LPD_OPT_F32K_CK_ALIVE;
rtc_write(RTC_AL_SEC, sec);
if (!rtc_write_trigger())
return 0;
/* init XOSC32 to detect 32k clock stop */
rtc_read(RTC_CON, &con);
con |= RTC_CON_XOSC32_LPEN;
if (!rtc_lpen(con))
return 0;
/* init EOSC32 to detect rtc low power */
rtc_read(RTC_CON, &con);
con |= RTC_CON_EOSC32_LPEN;
if (!rtc_lpen(con))
return 0;
rtc_read(RTC_CON, &con);
con &= ~RTC_CON_XOSC32_LPEN;
rtc_write(RTC_CON, con);
/* set RTC_LPD_OPT */
rtc_read(RTC_AL_SEC, &sec);
sec &= ~RTC_LPD_OPT_MASK;
sec |= RTC_LPD_OPT_EOSC_LPD;
rtc_write(RTC_AL_SEC, sec);
if (!rtc_write_trigger())
return 0;
return 1;
}
static bool rtc_hw_init(void)
{
u16 bbpu;
rtc_read(RTC_BBPU, &bbpu);
rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_INIT);
rtc_write_trigger();
udelay(500);
rtc_read(RTC_BBPU, &bbpu);
rtc_write(RTC_BBPU, bbpu | RTC_BBPU_KEY | RTC_BBPU_RELOAD);
rtc_write_trigger();
rtc_read(RTC_BBPU, &bbpu);
if (bbpu & RTC_BBPU_INIT) {
rtc_info("timeout\n");
return false;
}
return true;
}
/* write powerkeys to enable rtc functions */
static int rtc_powerkey_init(void)
{
rtc_write(RTC_POWERKEY1, RTC_POWERKEY1_KEY);
rtc_write(RTC_POWERKEY2, RTC_POWERKEY2_KEY);
return rtc_write_trigger();
}
/* rtc init check */
int rtc_init(u8 recover)
{
int ret;
rtc_info("recovery: %d\n", recover);
/* write powerkeys to enable rtc functions */
if (!rtc_powerkey_init()) {
ret = -RTC_STATUS_POWERKEY_INIT_FAIL;
goto err;
}
/* write interface unlock need to be set after powerkey match */
if (!rtc_writeif_unlock()) {
ret = -RTC_STATUS_WRITEIF_UNLOCK_FAIL;
goto err;
}
rtc_osc_init();
if (recover)
mdelay(20);
if (!rtc_gpio_init()) {
ret = -RTC_STATUS_GPIO_INIT_FAIL;
goto err;
}
if (!rtc_hw_init()) {
ret = -RTC_STATUS_HW_INIT_FAIL;
goto err;
}
if (!rtc_reg_init()) {
ret = -RTC_STATUS_REG_INIT_FAIL;
goto err;
}
if (!rtc_lpd_init()) {
ret = -RTC_STATUS_LPD_INIT_FAIL;
goto err;
}
/* After lpd init, powerkeys need to be written again to enable
* low power detect function.
*/
if (!rtc_powerkey_init()) {
ret = -RTC_STATUS_POWERKEY_INIT_FAIL;
goto err;
}
return RTC_STATUS_OK;
err:
rtc_info("init fail: ret=%d\n", ret);
return ret;
}
/* enable rtc bbpu */
void rtc_bbpu_power_on(void)
{
u16 bbpu;
int ret;
/* pull powerhold high, control by pmic */
pmic_set_power_hold(true);
/* pull PWRBB high */
bbpu = RTC_BBPU_KEY | RTC_BBPU_AUTO | RTC_BBPU_RELOAD | RTC_BBPU_PWREN;
rtc_write(RTC_BBPU, bbpu);
ret = rtc_write_trigger();
rtc_info("rtc_write_trigger=%d\n", ret);
rtc_read(RTC_BBPU, &bbpu);
rtc_info("done BBPU=%#x\n", bbpu);
}
void poweroff(void)
{
u16 bbpu;
if (!rtc_writeif_unlock())
rtc_info("rtc_writeif_unlock() failed\n");
/* pull PWRBB low */
bbpu = RTC_BBPU_KEY | RTC_BBPU_RELOAD | RTC_BBPU_PWREN;
rtc_write(RTC_BBPU, bbpu);
pmic_set_power_hold(false);
halt();
}
static void dcxo_init(void)
{
/* Buffer setting */
rtc_write(PMIC_RG_DCXO_CW15, 0xA2AA);
rtc_write(PMIC_RG_DCXO_CW13, 0x98E9);
rtc_write(PMIC_RG_DCXO_CW16, 0x9855);
/* 26M enable control */
/* Enable clock buffer XO_SOC, XO_CEL */
rtc_write(PMIC_RG_DCXO_CW00, 0x4805);
rtc_write(PMIC_RG_DCXO_CW11, 0x8000);
/* Load thermal coefficient */
rtc_write(PMIC_RG_TOP_TMA_KEY, 0x9CA7);
rtc_write(PMIC_RG_DCXO_CW21, 0x12A7);
rtc_write(PMIC_RG_DCXO_ELR0, 0xD004);
rtc_write(PMIC_RG_TOP_TMA_KEY, 0x0000);
/* Adjust OSC FPM setting */
rtc_write(PMIC_RG_DCXO_CW07, 0x8FFE);
/* Re-Calibrate OSC current */
rtc_write(PMIC_RG_DCXO_CW09, 0x008F);
udelay(100);
rtc_write(PMIC_RG_DCXO_CW09, 0x408F);
mdelay(5);
}
void mt6358_dcxo_disable_unused(void)
{
/* Disable clock buffer XO_CEL */
rtc_write(PMIC_RG_DCXO_CW00_CLR, 0x0800);
/* Mask bblpm */
rtc_write(PMIC_RG_DCXO_CW23, 0x0053);
}
/* the rtc boot flow entry */
void rtc_boot(void)
{
/* dcxo clock init settings */
dcxo_init();
/* dcxo 32k init settings */
pwrap_write_field(PMIC_RG_DCXO_CW02, 0xF, 0xF, 0);
pwrap_write_field(PMIC_RG_SCK_TOP_CON0, 0x1, 0x1, 0);
/* use dcxo 32K clock */
if (!rtc_enable_dcxo())
rtc_info("rtc_enable_dcxo() failed\n");
rtc_boot_common();
rtc_bbpu_power_on();
}