8a1ad13822
Move this function to pci_ops.c, which is already included in the smm build. This is required to use this function in elog functionality, which is called from SMM. Signed-off-by: Tim Wawrzynczak <twawrzynczak@chromium.org> Change-Id: Ie5583c04366c9a16bc1b00a6892d39eeafe5da49 Reviewed-on: https://review.coreboot.org/c/coreboot/+/47260 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Furquan Shaikh <furquan@google.com> Reviewed-by: Karthik Ramasubramanian <kramasub@google.com>
1650 lines
47 KiB
C
1650 lines
47 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
/*
|
|
* Originally based on the Linux kernel (drivers/pci/pci.c).
|
|
* PCI Bus Services, see include/linux/pci.h for further explanation.
|
|
*/
|
|
|
|
#include <acpi/acpi.h>
|
|
#include <device/pci_ops.h>
|
|
#include <bootmode.h>
|
|
#include <console/console.h>
|
|
#include <cpu/cpu.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <delay.h>
|
|
#include <device/cardbus.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <device/pci_ids.h>
|
|
#include <device/pcix.h>
|
|
#include <device/pciexp.h>
|
|
#include <device/hypertransport.h>
|
|
#include <pc80/i8259.h>
|
|
#include <security/vboot/vbnv.h>
|
|
#include <timestamp.h>
|
|
#include <types.h>
|
|
|
|
u8 pci_moving_config8(struct device *dev, unsigned int reg)
|
|
{
|
|
u8 value, ones, zeroes;
|
|
|
|
value = pci_read_config8(dev, reg);
|
|
|
|
pci_write_config8(dev, reg, 0xff);
|
|
ones = pci_read_config8(dev, reg);
|
|
|
|
pci_write_config8(dev, reg, 0x00);
|
|
zeroes = pci_read_config8(dev, reg);
|
|
|
|
pci_write_config8(dev, reg, value);
|
|
|
|
return ones ^ zeroes;
|
|
}
|
|
|
|
u16 pci_moving_config16(struct device *dev, unsigned int reg)
|
|
{
|
|
u16 value, ones, zeroes;
|
|
|
|
value = pci_read_config16(dev, reg);
|
|
|
|
pci_write_config16(dev, reg, 0xffff);
|
|
ones = pci_read_config16(dev, reg);
|
|
|
|
pci_write_config16(dev, reg, 0x0000);
|
|
zeroes = pci_read_config16(dev, reg);
|
|
|
|
pci_write_config16(dev, reg, value);
|
|
|
|
return ones ^ zeroes;
|
|
}
|
|
|
|
u32 pci_moving_config32(struct device *dev, unsigned int reg)
|
|
{
|
|
u32 value, ones, zeroes;
|
|
|
|
value = pci_read_config32(dev, reg);
|
|
|
|
pci_write_config32(dev, reg, 0xffffffff);
|
|
ones = pci_read_config32(dev, reg);
|
|
|
|
pci_write_config32(dev, reg, 0x00000000);
|
|
zeroes = pci_read_config32(dev, reg);
|
|
|
|
pci_write_config32(dev, reg, value);
|
|
|
|
return ones ^ zeroes;
|
|
}
|
|
|
|
/**
|
|
* Given a device and register, read the size of the BAR for that register.
|
|
*
|
|
* @param dev Pointer to the device structure.
|
|
* @param index Address of the PCI configuration register.
|
|
* @return TODO
|
|
*/
|
|
struct resource *pci_get_resource(struct device *dev, unsigned long index)
|
|
{
|
|
struct resource *resource;
|
|
unsigned long value, attr;
|
|
resource_t moving, limit;
|
|
|
|
/* Initialize the resources to nothing. */
|
|
resource = new_resource(dev, index);
|
|
|
|
/* Get the initial value. */
|
|
value = pci_read_config32(dev, index);
|
|
|
|
/* See which bits move. */
|
|
moving = pci_moving_config32(dev, index);
|
|
|
|
/* Initialize attr to the bits that do not move. */
|
|
attr = value & ~moving;
|
|
|
|
/* If it is a 64bit resource look at the high half as well. */
|
|
if (((attr & PCI_BASE_ADDRESS_SPACE_IO) == 0) &&
|
|
((attr & PCI_BASE_ADDRESS_MEM_LIMIT_MASK) ==
|
|
PCI_BASE_ADDRESS_MEM_LIMIT_64)) {
|
|
/* Find the high bits that move. */
|
|
moving |=
|
|
((resource_t) pci_moving_config32(dev, index + 4)) << 32;
|
|
}
|
|
|
|
/* Find the resource constraints.
|
|
* Start by finding the bits that move. From there:
|
|
* - Size is the least significant bit of the bits that move.
|
|
* - Limit is all of the bits that move plus all of the lower bits.
|
|
* See PCI Spec 6.2.5.1.
|
|
*/
|
|
limit = 0;
|
|
if (moving) {
|
|
resource->size = 1;
|
|
resource->align = resource->gran = 0;
|
|
while (!(moving & resource->size)) {
|
|
resource->size <<= 1;
|
|
resource->align += 1;
|
|
resource->gran += 1;
|
|
}
|
|
resource->limit = limit = moving | (resource->size - 1);
|
|
|
|
if (pci_base_address_is_memory_space(attr)) {
|
|
/* Page-align to allow individual mapping of devices. */
|
|
if (resource->align < 12)
|
|
resource->align = 12;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some broken hardware has read-only registers that do not
|
|
* really size correctly.
|
|
*
|
|
* Example: the Acer M7229 has BARs 1-4 normally read-only,
|
|
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
|
|
* by writing 0xffffffff to it, it will read back as 0x1f1 -- which
|
|
* is a violation of the spec.
|
|
*
|
|
* We catch this case and ignore it by observing which bits move.
|
|
*
|
|
* This also catches the common case of unimplemented registers
|
|
* that always read back as 0.
|
|
*/
|
|
if (moving == 0) {
|
|
if (value != 0) {
|
|
printk(BIOS_DEBUG, "%s register %02lx(%08lx), "
|
|
"read-only ignoring it\n",
|
|
dev_path(dev), index, value);
|
|
}
|
|
resource->flags = 0;
|
|
} else if (attr & PCI_BASE_ADDRESS_SPACE_IO) {
|
|
/* An I/O mapped base address. */
|
|
resource->flags |= IORESOURCE_IO;
|
|
/* I don't want to deal with 32bit I/O resources. */
|
|
resource->limit = 0xffff;
|
|
} else {
|
|
/* A Memory mapped base address. */
|
|
attr &= PCI_BASE_ADDRESS_MEM_ATTR_MASK;
|
|
resource->flags |= IORESOURCE_MEM;
|
|
if (attr & PCI_BASE_ADDRESS_MEM_PREFETCH)
|
|
resource->flags |= IORESOURCE_PREFETCH;
|
|
attr &= PCI_BASE_ADDRESS_MEM_LIMIT_MASK;
|
|
if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_32) {
|
|
/* 32bit limit. */
|
|
resource->limit = 0xffffffffUL;
|
|
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_1M) {
|
|
/* 1MB limit. */
|
|
resource->limit = 0x000fffffUL;
|
|
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_64) {
|
|
/* 64bit limit. */
|
|
resource->limit = 0xffffffffffffffffULL;
|
|
resource->flags |= IORESOURCE_PCI64;
|
|
} else {
|
|
/* Invalid value. */
|
|
printk(BIOS_ERR, "Broken BAR with value %lx\n", attr);
|
|
printk(BIOS_ERR, " on dev %s at index %02lx\n",
|
|
dev_path(dev), index);
|
|
resource->flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Don't let the limit exceed which bits can move. */
|
|
if (resource->limit > limit)
|
|
resource->limit = limit;
|
|
|
|
return resource;
|
|
}
|
|
|
|
/**
|
|
* Given a device and an index, read the size of the BAR for that register.
|
|
*
|
|
* @param dev Pointer to the device structure.
|
|
* @param index Address of the PCI configuration register.
|
|
*/
|
|
static void pci_get_rom_resource(struct device *dev, unsigned long index)
|
|
{
|
|
struct resource *resource;
|
|
unsigned long value;
|
|
resource_t moving;
|
|
|
|
/* Initialize the resources to nothing. */
|
|
resource = new_resource(dev, index);
|
|
|
|
/* Get the initial value. */
|
|
value = pci_read_config32(dev, index);
|
|
|
|
/* See which bits move. */
|
|
moving = pci_moving_config32(dev, index);
|
|
|
|
/* Clear the Enable bit. */
|
|
moving = moving & ~PCI_ROM_ADDRESS_ENABLE;
|
|
|
|
/* Find the resource constraints.
|
|
* Start by finding the bits that move. From there:
|
|
* - Size is the least significant bit of the bits that move.
|
|
* - Limit is all of the bits that move plus all of the lower bits.
|
|
* See PCI Spec 6.2.5.1.
|
|
*/
|
|
if (moving) {
|
|
resource->size = 1;
|
|
resource->align = resource->gran = 0;
|
|
while (!(moving & resource->size)) {
|
|
resource->size <<= 1;
|
|
resource->align += 1;
|
|
resource->gran += 1;
|
|
}
|
|
resource->limit = moving | (resource->size - 1);
|
|
resource->flags |= IORESOURCE_MEM | IORESOURCE_READONLY;
|
|
} else {
|
|
if (value != 0) {
|
|
printk(BIOS_DEBUG, "%s register %02lx(%08lx), "
|
|
"read-only ignoring it\n",
|
|
dev_path(dev), index, value);
|
|
}
|
|
resource->flags = 0;
|
|
}
|
|
compact_resources(dev);
|
|
}
|
|
|
|
/**
|
|
* Given a device, read the size of the MSI-X table.
|
|
*
|
|
* @param dev Pointer to the device structure.
|
|
* @return MSI-X table size or 0 if not MSI-X capable device
|
|
*/
|
|
size_t pci_msix_table_size(struct device *dev)
|
|
{
|
|
const size_t pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
|
|
if (!pos)
|
|
return 0;
|
|
|
|
const u16 control = pci_read_config16(dev, pos + PCI_MSIX_FLAGS);
|
|
return (control & PCI_MSIX_FLAGS_QSIZE) + 1;
|
|
}
|
|
|
|
/**
|
|
* Given a device, return the table offset and bar the MSI-X tables resides in.
|
|
*
|
|
* @param dev Pointer to the device structure.
|
|
* @param offset Returned value gives the offset in bytes inside the PCI BAR.
|
|
* @param idx The returned value is the index of the PCI_BASE_ADDRESS register
|
|
* the MSI-X table is located in.
|
|
* @return Zero on success
|
|
*/
|
|
int pci_msix_table_bar(struct device *dev, u32 *offset, u8 *idx)
|
|
{
|
|
const size_t pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
|
|
if (!pos || !offset || !idx)
|
|
return 1;
|
|
|
|
*offset = pci_read_config32(dev, pos + PCI_MSIX_TABLE);
|
|
*idx = (u8)(*offset & PCI_MSIX_PBA_BIR);
|
|
*offset &= PCI_MSIX_PBA_OFFSET;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Given a device, return a msix_entry pointer or NULL if no table was found.
|
|
*
|
|
* @param dev Pointer to the device structure.
|
|
*
|
|
* @return NULL on error
|
|
*/
|
|
struct msix_entry *pci_msix_get_table(struct device *dev)
|
|
{
|
|
struct resource *res;
|
|
u32 offset;
|
|
u8 idx;
|
|
|
|
if (pci_msix_table_bar(dev, &offset, &idx))
|
|
return NULL;
|
|
|
|
if (idx > 5)
|
|
return NULL;
|
|
|
|
res = probe_resource(dev, idx * 4 + PCI_BASE_ADDRESS_0);
|
|
if (!res || !res->base || offset >= res->size)
|
|
return NULL;
|
|
|
|
if ((res->flags & IORESOURCE_PCI64) &&
|
|
(uintptr_t)res->base != res->base)
|
|
return NULL;
|
|
|
|
return (struct msix_entry *)((uintptr_t)res->base + offset);
|
|
}
|
|
|
|
/**
|
|
* Read the base address registers for a given device.
|
|
*
|
|
* @param dev Pointer to the dev structure.
|
|
* @param howmany How many registers to read (6 for device, 2 for bridge).
|
|
*/
|
|
static void pci_read_bases(struct device *dev, unsigned int howmany)
|
|
{
|
|
unsigned long index;
|
|
|
|
for (index = PCI_BASE_ADDRESS_0;
|
|
(index < PCI_BASE_ADDRESS_0 + (howmany << 2));) {
|
|
struct resource *resource;
|
|
resource = pci_get_resource(dev, index);
|
|
index += (resource->flags & IORESOURCE_PCI64) ? 8 : 4;
|
|
}
|
|
|
|
compact_resources(dev);
|
|
}
|
|
|
|
static void pci_record_bridge_resource(struct device *dev, resource_t moving,
|
|
unsigned int index, unsigned long type)
|
|
{
|
|
struct resource *resource;
|
|
unsigned long gran;
|
|
resource_t step;
|
|
|
|
resource = NULL;
|
|
|
|
if (!moving)
|
|
return;
|
|
|
|
/* Initialize the constraints on the current bus. */
|
|
resource = new_resource(dev, index);
|
|
resource->size = 0;
|
|
gran = 0;
|
|
step = 1;
|
|
while ((moving & step) == 0) {
|
|
gran += 1;
|
|
step <<= 1;
|
|
}
|
|
resource->gran = gran;
|
|
resource->align = gran;
|
|
resource->limit = moving | (step - 1);
|
|
resource->flags = type | IORESOURCE_PCI_BRIDGE |
|
|
IORESOURCE_BRIDGE;
|
|
}
|
|
|
|
static void pci_bridge_read_bases(struct device *dev)
|
|
{
|
|
resource_t moving_base, moving_limit, moving;
|
|
|
|
/* See if the bridge I/O resources are implemented. */
|
|
moving_base = ((u32) pci_moving_config8(dev, PCI_IO_BASE)) << 8;
|
|
moving_base |=
|
|
((u32) pci_moving_config16(dev, PCI_IO_BASE_UPPER16)) << 16;
|
|
|
|
moving_limit = ((u32) pci_moving_config8(dev, PCI_IO_LIMIT)) << 8;
|
|
moving_limit |=
|
|
((u32) pci_moving_config16(dev, PCI_IO_LIMIT_UPPER16)) << 16;
|
|
|
|
moving = moving_base & moving_limit;
|
|
|
|
/* Initialize the I/O space constraints on the current bus. */
|
|
pci_record_bridge_resource(dev, moving, PCI_IO_BASE, IORESOURCE_IO);
|
|
|
|
/* See if the bridge prefmem resources are implemented. */
|
|
moving_base =
|
|
((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_BASE)) << 16;
|
|
moving_base |=
|
|
((resource_t) pci_moving_config32(dev, PCI_PREF_BASE_UPPER32)) << 32;
|
|
|
|
moving_limit =
|
|
((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_LIMIT)) << 16;
|
|
moving_limit |=
|
|
((resource_t) pci_moving_config32(dev, PCI_PREF_LIMIT_UPPER32)) << 32;
|
|
|
|
moving = moving_base & moving_limit;
|
|
/* Initialize the prefetchable memory constraints on the current bus. */
|
|
pci_record_bridge_resource(dev, moving, PCI_PREF_MEMORY_BASE,
|
|
IORESOURCE_MEM | IORESOURCE_PREFETCH);
|
|
|
|
/* See if the bridge mem resources are implemented. */
|
|
moving_base = ((u32) pci_moving_config16(dev, PCI_MEMORY_BASE)) << 16;
|
|
moving_limit = ((u32) pci_moving_config16(dev, PCI_MEMORY_LIMIT)) << 16;
|
|
|
|
moving = moving_base & moving_limit;
|
|
|
|
/* Initialize the memory resources on the current bus. */
|
|
pci_record_bridge_resource(dev, moving, PCI_MEMORY_BASE,
|
|
IORESOURCE_MEM);
|
|
|
|
compact_resources(dev);
|
|
}
|
|
|
|
void pci_dev_read_resources(struct device *dev)
|
|
{
|
|
pci_read_bases(dev, 6);
|
|
pci_get_rom_resource(dev, PCI_ROM_ADDRESS);
|
|
}
|
|
|
|
void pci_bus_read_resources(struct device *dev)
|
|
{
|
|
pci_bridge_read_bases(dev);
|
|
pci_read_bases(dev, 2);
|
|
pci_get_rom_resource(dev, PCI_ROM_ADDRESS1);
|
|
}
|
|
|
|
void pci_domain_read_resources(struct device *dev)
|
|
{
|
|
struct resource *res;
|
|
|
|
/* Initialize the system-wide I/O space constraints. */
|
|
res = new_resource(dev, IOINDEX_SUBTRACTIVE(0, 0));
|
|
res->limit = 0xffffUL;
|
|
res->flags = IORESOURCE_IO | IORESOURCE_SUBTRACTIVE |
|
|
IORESOURCE_ASSIGNED;
|
|
|
|
/* Initialize the system-wide memory resources constraints. */
|
|
res = new_resource(dev, IOINDEX_SUBTRACTIVE(1, 0));
|
|
res->limit = (1ULL << cpu_phys_address_size()) - 1;
|
|
res->flags = IORESOURCE_MEM | IORESOURCE_SUBTRACTIVE |
|
|
IORESOURCE_ASSIGNED;
|
|
}
|
|
|
|
void pci_domain_set_resources(struct device *dev)
|
|
{
|
|
assign_resources(dev->link_list);
|
|
}
|
|
|
|
static void pci_store_resource(const struct device *const dev,
|
|
const struct resource *const resource)
|
|
{
|
|
unsigned long base_lo, base_hi;
|
|
|
|
base_lo = resource->base & 0xffffffff;
|
|
base_hi = (resource->base >> 32) & 0xffffffff;
|
|
|
|
/*
|
|
* Some chipsets allow us to set/clear the I/O bit
|
|
* (e.g. VIA 82C686A). So set it to be safe.
|
|
*/
|
|
if (resource->flags & IORESOURCE_IO)
|
|
base_lo |= PCI_BASE_ADDRESS_SPACE_IO;
|
|
|
|
pci_write_config32(dev, resource->index, base_lo);
|
|
if (resource->flags & IORESOURCE_PCI64)
|
|
pci_write_config32(dev, resource->index + 4, base_hi);
|
|
}
|
|
|
|
static void pci_store_bridge_resource(const struct device *const dev,
|
|
struct resource *const resource)
|
|
{
|
|
resource_t base, end;
|
|
|
|
/*
|
|
* PCI bridges have no enable bit. They are disabled if the base of
|
|
* the range is greater than the limit. If the size is zero, disable
|
|
* by setting the base = limit and end = limit - 2^gran.
|
|
*/
|
|
if (resource->size == 0) {
|
|
base = resource->limit;
|
|
end = resource->limit - (1 << resource->gran);
|
|
resource->base = base;
|
|
} else {
|
|
base = resource->base;
|
|
end = resource_end(resource);
|
|
}
|
|
|
|
if (resource->index == PCI_IO_BASE) {
|
|
/* Set the I/O ranges. */
|
|
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
|
|
pci_write_config16(dev, PCI_IO_BASE_UPPER16, base >> 16);
|
|
pci_write_config8(dev, PCI_IO_LIMIT, end >> 8);
|
|
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, end >> 16);
|
|
} else if (resource->index == PCI_MEMORY_BASE) {
|
|
/* Set the memory range. */
|
|
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
|
|
pci_write_config16(dev, PCI_MEMORY_LIMIT, end >> 16);
|
|
} else if (resource->index == PCI_PREF_MEMORY_BASE) {
|
|
/* Set the prefetchable memory range. */
|
|
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
|
|
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, base >> 32);
|
|
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, end >> 16);
|
|
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, end >> 32);
|
|
} else {
|
|
/* Don't let me think I stored the resource. */
|
|
resource->flags &= ~IORESOURCE_STORED;
|
|
printk(BIOS_ERR, "ERROR: invalid resource->index %lx\n", resource->index);
|
|
}
|
|
}
|
|
|
|
static void pci_set_resource(struct device *dev, struct resource *resource)
|
|
{
|
|
/* Make certain the resource has actually been assigned a value. */
|
|
if (!(resource->flags & IORESOURCE_ASSIGNED)) {
|
|
if (resource->flags & IORESOURCE_BRIDGE) {
|
|
/* If a bridge resource has no value assigned,
|
|
we can treat it like an empty resource. */
|
|
resource->size = 0;
|
|
} else {
|
|
printk(BIOS_ERR, "ERROR: %s %02lx %s size: 0x%010llx not "
|
|
"assigned\n", dev_path(dev), resource->index,
|
|
resource_type(resource), resource->size);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If this resource is fixed don't worry about it. */
|
|
if (resource->flags & IORESOURCE_FIXED)
|
|
return;
|
|
|
|
/* If I have already stored this resource don't worry about it. */
|
|
if (resource->flags & IORESOURCE_STORED)
|
|
return;
|
|
|
|
/* If the resource is subtractive don't worry about it. */
|
|
if (resource->flags & IORESOURCE_SUBTRACTIVE)
|
|
return;
|
|
|
|
/* Only handle PCI memory and I/O resources for now. */
|
|
if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
|
|
return;
|
|
|
|
/* Enable the resources in the command register. */
|
|
if (resource->size) {
|
|
if (resource->flags & IORESOURCE_MEM)
|
|
dev->command |= PCI_COMMAND_MEMORY;
|
|
if (resource->flags & IORESOURCE_IO)
|
|
dev->command |= PCI_COMMAND_IO;
|
|
if (resource->flags & IORESOURCE_PCI_BRIDGE)
|
|
dev->command |= PCI_COMMAND_MASTER;
|
|
}
|
|
|
|
/* Now store the resource. */
|
|
resource->flags |= IORESOURCE_STORED;
|
|
|
|
if (resource->flags & IORESOURCE_PCI_BRIDGE)
|
|
pci_store_bridge_resource(dev, resource);
|
|
else
|
|
pci_store_resource(dev, resource);
|
|
|
|
report_resource_stored(dev, resource, "");
|
|
}
|
|
|
|
void pci_dev_set_resources(struct device *dev)
|
|
{
|
|
struct resource *res;
|
|
struct bus *bus;
|
|
u8 line;
|
|
|
|
for (res = dev->resource_list; res; res = res->next)
|
|
pci_set_resource(dev, res);
|
|
|
|
for (bus = dev->link_list; bus; bus = bus->next) {
|
|
if (bus->children)
|
|
assign_resources(bus);
|
|
}
|
|
|
|
/* Set a default latency timer. */
|
|
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
|
|
|
|
/* Set a default secondary latency timer. */
|
|
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE)
|
|
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
|
|
|
|
/* Zero the IRQ settings. */
|
|
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
|
|
if (line)
|
|
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
|
|
|
|
/* Set the cache line size, so far 64 bytes is good for everyone. */
|
|
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
|
|
}
|
|
|
|
void pci_dev_enable_resources(struct device *dev)
|
|
{
|
|
const struct pci_operations *ops = NULL;
|
|
u16 command;
|
|
|
|
/* Set the subsystem vendor and device ID for mainboard devices. */
|
|
if (dev->ops)
|
|
ops = dev->ops->ops_pci;
|
|
if (dev->on_mainboard && ops && ops->set_subsystem) {
|
|
if (CONFIG_SUBSYSTEM_VENDOR_ID)
|
|
dev->subsystem_vendor = CONFIG_SUBSYSTEM_VENDOR_ID;
|
|
else if (!dev->subsystem_vendor)
|
|
dev->subsystem_vendor = pci_read_config16(dev,
|
|
PCI_VENDOR_ID);
|
|
if (CONFIG_SUBSYSTEM_DEVICE_ID)
|
|
dev->subsystem_device = CONFIG_SUBSYSTEM_DEVICE_ID;
|
|
else if (!dev->subsystem_device)
|
|
dev->subsystem_device = pci_read_config16(dev,
|
|
PCI_DEVICE_ID);
|
|
|
|
printk(BIOS_DEBUG, "%s subsystem <- %04x/%04x\n",
|
|
dev_path(dev), dev->subsystem_vendor,
|
|
dev->subsystem_device);
|
|
ops->set_subsystem(dev, dev->subsystem_vendor,
|
|
dev->subsystem_device);
|
|
}
|
|
command = pci_read_config16(dev, PCI_COMMAND);
|
|
command |= dev->command;
|
|
|
|
/* v3 has
|
|
* command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); // Error check.
|
|
*/
|
|
|
|
printk(BIOS_DEBUG, "%s cmd <- %02x\n", dev_path(dev), command);
|
|
pci_write_config16(dev, PCI_COMMAND, command);
|
|
}
|
|
|
|
void pci_bus_enable_resources(struct device *dev)
|
|
{
|
|
u16 ctrl;
|
|
|
|
/*
|
|
* Enable I/O in command register if there is VGA card
|
|
* connected with (even it does not claim I/O resource).
|
|
*/
|
|
if (dev->link_list->bridge_ctrl & PCI_BRIDGE_CTL_VGA)
|
|
dev->command |= PCI_COMMAND_IO;
|
|
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
|
|
ctrl |= dev->link_list->bridge_ctrl;
|
|
ctrl |= (PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR); /* Error check. */
|
|
printk(BIOS_DEBUG, "%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
|
|
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
|
|
|
|
pci_dev_enable_resources(dev);
|
|
}
|
|
|
|
void pci_bus_reset(struct bus *bus)
|
|
{
|
|
u16 ctl;
|
|
|
|
ctl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
|
|
ctl |= PCI_BRIDGE_CTL_BUS_RESET;
|
|
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
|
|
mdelay(10);
|
|
|
|
ctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
|
|
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
|
|
delay(1);
|
|
}
|
|
|
|
void pci_dev_set_subsystem(struct device *dev, unsigned int vendor,
|
|
unsigned int device)
|
|
{
|
|
uint8_t offset;
|
|
|
|
/* Header type */
|
|
switch (dev->hdr_type & 0x7f) {
|
|
case PCI_HEADER_TYPE_NORMAL:
|
|
offset = PCI_SUBSYSTEM_VENDOR_ID;
|
|
break;
|
|
case PCI_HEADER_TYPE_BRIDGE:
|
|
offset = pci_find_capability(dev, PCI_CAP_ID_SSVID);
|
|
if (!offset)
|
|
return;
|
|
offset += 4; /* Vendor ID at offset 4 */
|
|
break;
|
|
case PCI_HEADER_TYPE_CARDBUS:
|
|
offset = PCI_CB_SUBSYSTEM_VENDOR_ID;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (!vendor || !device) {
|
|
pci_write_config32(dev, offset,
|
|
pci_read_config32(dev, PCI_VENDOR_ID));
|
|
} else {
|
|
pci_write_config32(dev, offset,
|
|
((device & 0xffff) << 16) | (vendor & 0xffff));
|
|
}
|
|
}
|
|
|
|
static int should_run_oprom(struct device *dev, struct rom_header *rom)
|
|
{
|
|
static int should_run = -1;
|
|
|
|
if (CONFIG(VENDORCODE_ELTAN_VBOOT))
|
|
if (rom != NULL)
|
|
if (!verified_boot_should_run_oprom(rom))
|
|
return 0;
|
|
|
|
if (should_run >= 0)
|
|
return should_run;
|
|
|
|
if (CONFIG(ALWAYS_RUN_OPROM)) {
|
|
should_run = 1;
|
|
return should_run;
|
|
}
|
|
|
|
/* Don't run VGA option ROMs, unless we have to print
|
|
* something on the screen before the kernel is loaded.
|
|
*/
|
|
should_run = display_init_required();
|
|
|
|
if (!should_run)
|
|
printk(BIOS_DEBUG, "Not running VGA Option ROM\n");
|
|
return should_run;
|
|
}
|
|
|
|
static int should_load_oprom(struct device *dev)
|
|
{
|
|
/* If S3_VGA_ROM_RUN is disabled, skip running VGA option
|
|
* ROMs when coming out of an S3 resume.
|
|
*/
|
|
if (!CONFIG(S3_VGA_ROM_RUN) && acpi_is_wakeup_s3() &&
|
|
((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA))
|
|
return 0;
|
|
if (CONFIG(ALWAYS_LOAD_OPROM))
|
|
return 1;
|
|
if (should_run_oprom(dev, NULL))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Default handler: only runs the relevant PCI BIOS. */
|
|
void pci_dev_init(struct device *dev)
|
|
{
|
|
struct rom_header *rom, *ram;
|
|
|
|
if (!CONFIG(VGA_ROM_RUN))
|
|
return;
|
|
|
|
/* Only execute VGA ROMs. */
|
|
if (((dev->class >> 8) != PCI_CLASS_DISPLAY_VGA))
|
|
return;
|
|
|
|
if (!should_load_oprom(dev))
|
|
return;
|
|
timestamp_add_now(TS_OPROM_INITIALIZE);
|
|
|
|
rom = pci_rom_probe(dev);
|
|
if (rom == NULL)
|
|
return;
|
|
|
|
ram = pci_rom_load(dev, rom);
|
|
if (ram == NULL)
|
|
return;
|
|
timestamp_add_now(TS_OPROM_COPY_END);
|
|
|
|
if (!should_run_oprom(dev, rom))
|
|
return;
|
|
|
|
run_bios(dev, (unsigned long)ram);
|
|
|
|
gfx_set_init_done(1);
|
|
printk(BIOS_DEBUG, "VGA Option ROM was run\n");
|
|
timestamp_add_now(TS_OPROM_END);
|
|
}
|
|
|
|
/** Default device operation for PCI devices */
|
|
struct pci_operations pci_dev_ops_pci = {
|
|
.set_subsystem = pci_dev_set_subsystem,
|
|
};
|
|
|
|
struct device_operations default_pci_ops_dev = {
|
|
.read_resources = pci_dev_read_resources,
|
|
.set_resources = pci_dev_set_resources,
|
|
.enable_resources = pci_dev_enable_resources,
|
|
#if CONFIG(HAVE_ACPI_TABLES)
|
|
.write_acpi_tables = pci_rom_write_acpi_tables,
|
|
.acpi_fill_ssdt = pci_rom_ssdt,
|
|
#endif
|
|
.init = pci_dev_init,
|
|
.ops_pci = &pci_dev_ops_pci,
|
|
};
|
|
|
|
/** Default device operations for PCI bridges */
|
|
struct device_operations default_pci_ops_bus = {
|
|
.read_resources = pci_bus_read_resources,
|
|
.set_resources = pci_dev_set_resources,
|
|
.enable_resources = pci_bus_enable_resources,
|
|
.scan_bus = pci_scan_bridge,
|
|
.reset_bus = pci_bus_reset,
|
|
};
|
|
|
|
/** Default device operations for PCI devices marked 'hidden' */
|
|
static struct device_operations default_hidden_pci_ops_dev = {
|
|
.read_resources = noop_read_resources,
|
|
.set_resources = noop_set_resources,
|
|
.scan_bus = scan_static_bus,
|
|
};
|
|
|
|
/**
|
|
* Check for compatibility to route legacy VGA cycles through a bridge.
|
|
*
|
|
* Originally, when decoding i/o ports for legacy VGA cycles, bridges
|
|
* should only consider the 10 least significant bits of the port address.
|
|
* This means all VGA registers were aliased every 1024 ports!
|
|
* e.g. 0x3b0 was also decoded as 0x7b0, 0xbb0 etc.
|
|
*
|
|
* To avoid this mess, a bridge control bit (VGA16) was introduced in
|
|
* 2003 to enable decoding of 16-bit port addresses. As we don't want
|
|
* to make this any more complex for now, we use this bit if possible
|
|
* and only warn if it's not supported (in set_vga_bridge_bits()).
|
|
*/
|
|
static void pci_bridge_vga_compat(struct bus *const bus)
|
|
{
|
|
uint16_t bridge_ctrl;
|
|
|
|
bridge_ctrl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
|
|
|
|
/* Ensure VGA decoding is disabled during probing (it should
|
|
be by default, but we run blobs nowadays) */
|
|
bridge_ctrl &= ~PCI_BRIDGE_CTL_VGA;
|
|
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, bridge_ctrl);
|
|
|
|
/* If the upstream bridge doesn't support VGA16, we don't have to check */
|
|
bus->no_vga16 |= bus->dev->bus->no_vga16;
|
|
if (bus->no_vga16)
|
|
return;
|
|
|
|
/* Test if we can enable 16-bit decoding */
|
|
bridge_ctrl |= PCI_BRIDGE_CTL_VGA16;
|
|
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, bridge_ctrl);
|
|
bridge_ctrl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
|
|
|
|
bus->no_vga16 = !(bridge_ctrl & PCI_BRIDGE_CTL_VGA16);
|
|
}
|
|
|
|
/**
|
|
* Detect the type of downstream bridge.
|
|
*
|
|
* This function is a heuristic to detect which type of bus is downstream
|
|
* of a PCI-to-PCI bridge. This functions by looking for various capability
|
|
* blocks to figure out the type of downstream bridge. PCI-X, PCI-E, and
|
|
* Hypertransport all seem to have appropriate capabilities.
|
|
*
|
|
* When only a PCI-Express capability is found the type is examined to see
|
|
* which type of bridge we have.
|
|
*
|
|
* @param dev Pointer to the device structure of the bridge.
|
|
* @return Appropriate bridge operations.
|
|
*/
|
|
static struct device_operations *get_pci_bridge_ops(struct device *dev)
|
|
{
|
|
#if CONFIG(PCIX_PLUGIN_SUPPORT)
|
|
unsigned int pcixpos;
|
|
pcixpos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
|
|
if (pcixpos) {
|
|
printk(BIOS_DEBUG, "%s subordinate bus PCI-X\n", dev_path(dev));
|
|
return &default_pcix_ops_bus;
|
|
}
|
|
#endif
|
|
#if CONFIG(HYPERTRANSPORT_PLUGIN_SUPPORT)
|
|
unsigned int htpos = 0;
|
|
while ((htpos = pci_find_next_capability(dev, PCI_CAP_ID_HT, htpos))) {
|
|
u16 flags;
|
|
flags = pci_read_config16(dev, htpos + PCI_CAP_FLAGS);
|
|
if ((flags >> 13) == 1) {
|
|
/* Host or Secondary Interface */
|
|
printk(BIOS_DEBUG, "%s subordinate bus HT\n",
|
|
dev_path(dev));
|
|
return &default_ht_ops_bus;
|
|
}
|
|
}
|
|
#endif
|
|
#if CONFIG(PCIEXP_PLUGIN_SUPPORT)
|
|
unsigned int pciexpos;
|
|
pciexpos = pci_find_capability(dev, PCI_CAP_ID_PCIE);
|
|
if (pciexpos) {
|
|
u16 flags;
|
|
flags = pci_read_config16(dev, pciexpos + PCI_EXP_FLAGS);
|
|
switch ((flags & PCI_EXP_FLAGS_TYPE) >> 4) {
|
|
case PCI_EXP_TYPE_ROOT_PORT:
|
|
case PCI_EXP_TYPE_UPSTREAM:
|
|
case PCI_EXP_TYPE_DOWNSTREAM:
|
|
printk(BIOS_DEBUG, "%s subordinate bus PCI Express\n",
|
|
dev_path(dev));
|
|
#if CONFIG(PCIEXP_HOTPLUG)
|
|
u16 sltcap;
|
|
sltcap = pci_read_config16(dev, pciexpos + PCI_EXP_SLTCAP);
|
|
if (sltcap & PCI_EXP_SLTCAP_HPC) {
|
|
printk(BIOS_DEBUG, "%s hot-plug capable\n", dev_path(dev));
|
|
return &default_pciexp_hotplug_ops_bus;
|
|
}
|
|
#endif /* CONFIG(PCIEXP_HOTPLUG) */
|
|
return &default_pciexp_ops_bus;
|
|
case PCI_EXP_TYPE_PCI_BRIDGE:
|
|
printk(BIOS_DEBUG, "%s subordinate PCI\n",
|
|
dev_path(dev));
|
|
return &default_pci_ops_bus;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
return &default_pci_ops_bus;
|
|
}
|
|
|
|
/**
|
|
* Check if a device id matches a PCI driver entry.
|
|
*
|
|
* The driver entry can either point at a zero terminated array of acceptable
|
|
* device IDs, or include a single device ID.
|
|
*
|
|
* @param driver pointer to the PCI driver entry being checked
|
|
* @param device_id PCI device ID of the device being matched
|
|
*/
|
|
static int device_id_match(struct pci_driver *driver, unsigned short device_id)
|
|
{
|
|
if (driver->devices) {
|
|
unsigned short check_id;
|
|
const unsigned short *device_list = driver->devices;
|
|
while ((check_id = *device_list++) != 0)
|
|
if (check_id == device_id)
|
|
return 1;
|
|
}
|
|
|
|
return (driver->device == device_id);
|
|
}
|
|
|
|
/**
|
|
* Set up PCI device operation.
|
|
*
|
|
* Check if it already has a driver. If not, use find_device_operations(),
|
|
* or set to a default based on type.
|
|
*
|
|
* @param dev Pointer to the device whose pci_ops you want to set.
|
|
* @see pci_drivers
|
|
*/
|
|
static void set_pci_ops(struct device *dev)
|
|
{
|
|
struct pci_driver *driver;
|
|
|
|
if (dev->ops)
|
|
return;
|
|
|
|
/*
|
|
* Look through the list of setup drivers and find one for
|
|
* this PCI device.
|
|
*/
|
|
for (driver = &_pci_drivers[0]; driver != &_epci_drivers[0]; driver++) {
|
|
if ((driver->vendor == dev->vendor) &&
|
|
device_id_match(driver, dev->device)) {
|
|
dev->ops = (struct device_operations *)driver->ops;
|
|
printk(BIOS_SPEW, "%s [%04x/%04x] %sops\n",
|
|
dev_path(dev), driver->vendor, driver->device,
|
|
(driver->ops->scan_bus ? "bus " : ""));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* If I don't have a specific driver use the default operations. */
|
|
switch (dev->hdr_type & 0x7f) { /* Header type */
|
|
case PCI_HEADER_TYPE_NORMAL:
|
|
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
|
|
goto bad;
|
|
dev->ops = &default_pci_ops_dev;
|
|
break;
|
|
case PCI_HEADER_TYPE_BRIDGE:
|
|
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
|
|
goto bad;
|
|
dev->ops = get_pci_bridge_ops(dev);
|
|
break;
|
|
#if CONFIG(CARDBUS_PLUGIN_SUPPORT)
|
|
case PCI_HEADER_TYPE_CARDBUS:
|
|
dev->ops = &default_cardbus_ops_bus;
|
|
break;
|
|
#endif
|
|
default:
|
|
bad:
|
|
if (dev->enabled) {
|
|
printk(BIOS_ERR, "%s [%04x/%04x/%06x] has unknown "
|
|
"header type %02x, ignoring.\n", dev_path(dev),
|
|
dev->vendor, dev->device,
|
|
dev->class >> 8, dev->hdr_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* See if we have already allocated a device structure for a given devfn.
|
|
*
|
|
* Given a PCI bus structure and a devfn number, find the device structure
|
|
* corresponding to the devfn, if present. Then move the device structure
|
|
* as the last child on the bus.
|
|
*
|
|
* @param bus Pointer to the bus structure.
|
|
* @param devfn A device/function number.
|
|
* @return Pointer to the device structure found or NULL if we have not
|
|
* allocated a device for this devfn yet.
|
|
*/
|
|
static struct device *pci_scan_get_dev(struct bus *bus, unsigned int devfn)
|
|
{
|
|
struct device *dev, **prev;
|
|
|
|
prev = &bus->children;
|
|
for (dev = bus->children; dev; dev = dev->sibling) {
|
|
if (dev->path.type == DEVICE_PATH_PCI && dev->path.pci.devfn == devfn) {
|
|
/* Unlink from the list. */
|
|
*prev = dev->sibling;
|
|
dev->sibling = NULL;
|
|
break;
|
|
}
|
|
prev = &dev->sibling;
|
|
}
|
|
|
|
/*
|
|
* Just like alloc_dev() add the device to the list of devices on the
|
|
* bus. When the list of devices was formed we removed all of the
|
|
* parents children, and now we are interleaving static and dynamic
|
|
* devices in order on the bus.
|
|
*/
|
|
if (dev) {
|
|
struct device *child;
|
|
|
|
/* Find the last child on the bus. */
|
|
for (child = bus->children; child && child->sibling;)
|
|
child = child->sibling;
|
|
|
|
/* Place the device as last on the bus. */
|
|
if (child)
|
|
child->sibling = dev;
|
|
else
|
|
bus->children = dev;
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
/**
|
|
* Scan a PCI bus.
|
|
*
|
|
* Determine the existence of a given PCI device. Allocate a new struct device
|
|
* if dev==NULL was passed in and the device exists in hardware.
|
|
*
|
|
* @param dev Pointer to the dev structure.
|
|
* @param bus Pointer to the bus structure.
|
|
* @param devfn A device/function number to look at.
|
|
* @return The device structure for the device (if found), NULL otherwise.
|
|
*/
|
|
struct device *pci_probe_dev(struct device *dev, struct bus *bus,
|
|
unsigned int devfn)
|
|
{
|
|
u32 id, class;
|
|
u8 hdr_type;
|
|
|
|
/* Detect if a device is present. */
|
|
if (!dev) {
|
|
struct device dummy;
|
|
|
|
dummy.bus = bus;
|
|
dummy.path.type = DEVICE_PATH_PCI;
|
|
dummy.path.pci.devfn = devfn;
|
|
|
|
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
|
|
/*
|
|
* Have we found something? Some broken boards return 0 if a
|
|
* slot is empty, but the expected answer is 0xffffffff.
|
|
*/
|
|
if (id == 0xffffffff)
|
|
return NULL;
|
|
|
|
if ((id == 0x00000000) || (id == 0x0000ffff) ||
|
|
(id == 0xffff0000)) {
|
|
printk(BIOS_SPEW, "%s, bad id 0x%x\n",
|
|
dev_path(&dummy), id);
|
|
return NULL;
|
|
}
|
|
dev = alloc_dev(bus, &dummy.path);
|
|
} else {
|
|
/*
|
|
* Enable/disable the device. Once we have found the device-
|
|
* specific operations this operations we will disable the
|
|
* device with those as well.
|
|
*
|
|
* This is geared toward devices that have subfunctions
|
|
* that do not show up by default.
|
|
*
|
|
* If a device is a stuff option on the motherboard
|
|
* it may be absent and enable_dev() must cope.
|
|
*/
|
|
/* Run the magic enable sequence for the device. */
|
|
if (dev->chip_ops && dev->chip_ops->enable_dev)
|
|
dev->chip_ops->enable_dev(dev);
|
|
|
|
/* Now read the vendor and device ID. */
|
|
id = pci_read_config32(dev, PCI_VENDOR_ID);
|
|
|
|
/*
|
|
* If the device does not have a PCI ID disable it. Possibly
|
|
* this is because we have already disabled the device. But
|
|
* this also handles optional devices that may not always
|
|
* show up.
|
|
*/
|
|
/* If the chain is fully enumerated quit */
|
|
if ((id == 0xffffffff) || (id == 0x00000000) ||
|
|
(id == 0x0000ffff) || (id == 0xffff0000)) {
|
|
if (dev->enabled) {
|
|
printk(BIOS_INFO, "PCI: Static device %s not "
|
|
"found, disabling it.\n", dev_path(dev));
|
|
dev->enabled = 0;
|
|
}
|
|
return dev;
|
|
}
|
|
}
|
|
|
|
/* Read the rest of the PCI configuration information. */
|
|
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
|
|
class = pci_read_config32(dev, PCI_CLASS_REVISION);
|
|
|
|
/* Store the interesting information in the device structure. */
|
|
dev->vendor = id & 0xffff;
|
|
dev->device = (id >> 16) & 0xffff;
|
|
dev->hdr_type = hdr_type;
|
|
|
|
/* Class code, the upper 3 bytes of PCI_CLASS_REVISION. */
|
|
dev->class = class >> 8;
|
|
|
|
/* Architectural/System devices always need to be bus masters. */
|
|
if ((dev->class >> 16) == PCI_BASE_CLASS_SYSTEM)
|
|
dev->command |= PCI_COMMAND_MASTER;
|
|
|
|
/*
|
|
* Look at the vendor and device ID, or at least the header type and
|
|
* class and figure out which set of configuration methods to use.
|
|
* Unless we already have some PCI ops.
|
|
*/
|
|
set_pci_ops(dev);
|
|
|
|
/* Now run the magic enable/disable sequence for the device. */
|
|
if (dev->ops && dev->ops->enable)
|
|
dev->ops->enable(dev);
|
|
|
|
/* Display the device. */
|
|
printk(BIOS_DEBUG, "%s [%04x/%04x] %s%s\n", dev_path(dev),
|
|
dev->vendor, dev->device, dev->enabled ? "enabled" : "disabled",
|
|
dev->ops ? "" : " No operations");
|
|
|
|
return dev;
|
|
}
|
|
|
|
/**
|
|
* Test for match between romstage and ramstage device instance.
|
|
*
|
|
* @param dev Pointer to the device structure.
|
|
* @param sdev Simple device model identifier, created with PCI_DEV().
|
|
* @return Non-zero if bus:dev.fn of device matches.
|
|
*/
|
|
unsigned int pci_match_simple_dev(struct device *dev, pci_devfn_t sdev)
|
|
{
|
|
return dev->bus->secondary == PCI_DEV2SEGBUS(sdev) &&
|
|
dev->path.pci.devfn == PCI_DEV2DEVFN(sdev);
|
|
}
|
|
|
|
/**
|
|
* PCI devices that are marked as "hidden" do not get probed. However, the same
|
|
* initialization logic is still performed as if it were. This is useful when
|
|
* devices would like to be described in the devicetree.cb file, and/or present
|
|
* static PCI resources to the allocator, but the platform firmware hides the
|
|
* device (makes the device invisible to PCI enumeration) before PCI enumeration
|
|
* takes place.
|
|
*
|
|
* The expected semantics of PCI devices marked as 'hidden':
|
|
* 1) The device is actually present under the specified BDF
|
|
* 2) The device config space can still be accessed somehow, but the Vendor ID
|
|
* indicates there is no device there (it reads as 0xffffffff).
|
|
* 3) The device may still consume PCI resources. Typically, these would have
|
|
* been hardcoded elsewhere.
|
|
*
|
|
* @param dev Pointer to the device structure.
|
|
*/
|
|
static void pci_scan_hidden_device(struct device *dev)
|
|
{
|
|
if (dev->chip_ops && dev->chip_ops->enable_dev)
|
|
dev->chip_ops->enable_dev(dev);
|
|
|
|
/*
|
|
* If chip_ops->enable_dev did not set dev->ops, then set to a default
|
|
* .ops, because PCI enumeration is effectively being skipped, therefore
|
|
* no PCI driver will bind to this device. However, children may want to
|
|
* be enumerated, so this provides scan_static_bus for the .scan_bus
|
|
* callback.
|
|
*/
|
|
if (dev->ops == NULL)
|
|
dev->ops = &default_hidden_pci_ops_dev;
|
|
|
|
if (dev->ops->enable)
|
|
dev->ops->enable(dev);
|
|
|
|
/* Display the device almost as if it were probed normally */
|
|
printk(BIOS_DEBUG, "%s [0000/%04x] hidden%s\n", dev_path(dev),
|
|
dev->device, dev->ops ? "" : " No operations");
|
|
}
|
|
|
|
/**
|
|
* Scan a PCI bus.
|
|
*
|
|
* Determine the existence of devices and bridges on a PCI bus. If there are
|
|
* bridges on the bus, recursively scan the buses behind the bridges.
|
|
*
|
|
* @param bus Pointer to the bus structure.
|
|
* @param min_devfn Minimum devfn to look at in the scan, usually 0x00.
|
|
* @param max_devfn Maximum devfn to look at in the scan, usually 0xff.
|
|
*/
|
|
void pci_scan_bus(struct bus *bus, unsigned int min_devfn,
|
|
unsigned int max_devfn)
|
|
{
|
|
unsigned int devfn;
|
|
struct device *dev, **prev;
|
|
int once = 0;
|
|
|
|
printk(BIOS_DEBUG, "PCI: pci_scan_bus for bus %02x\n", bus->secondary);
|
|
|
|
/* Maximum sane devfn is 0xFF. */
|
|
if (max_devfn > 0xff) {
|
|
printk(BIOS_ERR, "PCI: pci_scan_bus limits devfn %x - "
|
|
"devfn %x\n", min_devfn, max_devfn);
|
|
printk(BIOS_ERR, "PCI: pci_scan_bus upper limit too big. "
|
|
"Using 0xff.\n");
|
|
max_devfn=0xff;
|
|
}
|
|
|
|
post_code(0x24);
|
|
|
|
/*
|
|
* Probe all devices/functions on this bus with some optimization for
|
|
* non-existence and single function devices.
|
|
*/
|
|
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
|
|
if (CONFIG(MINIMAL_PCI_SCANNING)) {
|
|
dev = pcidev_path_behind(bus, devfn);
|
|
if (!dev || !dev->mandatory)
|
|
continue;
|
|
}
|
|
|
|
/* First thing setup the device structure. */
|
|
dev = pci_scan_get_dev(bus, devfn);
|
|
|
|
/* Devices marked 'hidden' do not get probed */
|
|
if (dev && dev->hidden) {
|
|
pci_scan_hidden_device(dev);
|
|
|
|
/* Skip pci_probe_dev, go to next devfn */
|
|
continue;
|
|
}
|
|
|
|
/* See if a device is present and setup the device structure. */
|
|
dev = pci_probe_dev(dev, bus, devfn);
|
|
|
|
/*
|
|
* If this is not a multi function device, or the device is
|
|
* not present don't waste time probing another function.
|
|
* Skip to next device.
|
|
*/
|
|
if ((PCI_FUNC(devfn) == 0x00) && (!dev
|
|
|| (dev->enabled && ((dev->hdr_type & 0x80) != 0x80)))) {
|
|
devfn += 0x07;
|
|
}
|
|
}
|
|
|
|
post_code(0x25);
|
|
|
|
/*
|
|
* Warn if any leftover static devices are are found.
|
|
* There's probably a problem in devicetree.cb.
|
|
*/
|
|
|
|
prev = &bus->children;
|
|
for (dev = bus->children; dev; dev = dev->sibling) {
|
|
|
|
/*
|
|
* If static device is not PCI then enable it here and don't
|
|
* treat it as a leftover device.
|
|
*/
|
|
if (dev->path.type != DEVICE_PATH_PCI) {
|
|
enable_static_device(dev);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The device is only considered leftover if it is not hidden
|
|
* and it has a Vendor ID of 0 (the default for a device that
|
|
* could not be probed).
|
|
*/
|
|
if (dev->vendor != 0 || dev->hidden) {
|
|
prev = &dev->sibling;
|
|
continue;
|
|
}
|
|
|
|
/* Unlink it from list. */
|
|
*prev = dev->sibling;
|
|
|
|
if (!once++)
|
|
printk(BIOS_WARNING, "PCI: Leftover static devices:\n");
|
|
printk(BIOS_WARNING, "%s\n", dev_path(dev));
|
|
}
|
|
|
|
if (once)
|
|
printk(BIOS_WARNING, "PCI: Check your devicetree.cb.\n");
|
|
|
|
/*
|
|
* For all children that implement scan_bus() (i.e. bridges)
|
|
* scan the bus behind that child.
|
|
*/
|
|
|
|
scan_bridges(bus);
|
|
|
|
/*
|
|
* We've scanned the bus and so we know all about what's on the other
|
|
* side of any bridges that may be on this bus plus any devices.
|
|
* Return how far we've got finding sub-buses.
|
|
*/
|
|
post_code(0x55);
|
|
}
|
|
|
|
typedef enum {
|
|
PCI_ROUTE_CLOSE,
|
|
PCI_ROUTE_SCAN,
|
|
PCI_ROUTE_FINAL,
|
|
} scan_state;
|
|
|
|
static void pci_bridge_route(struct bus *link, scan_state state)
|
|
{
|
|
struct device *dev = link->dev;
|
|
struct bus *parent = dev->bus;
|
|
u32 reg, buses = 0;
|
|
|
|
if (state == PCI_ROUTE_SCAN) {
|
|
link->secondary = parent->subordinate + 1;
|
|
link->subordinate = link->secondary + dev->hotplug_buses;
|
|
}
|
|
|
|
if (state == PCI_ROUTE_CLOSE) {
|
|
buses |= 0xfeff << 8;
|
|
} else if (state == PCI_ROUTE_SCAN) {
|
|
buses |= parent->secondary & 0xff;
|
|
buses |= ((u32) link->secondary & 0xff) << 8;
|
|
buses |= 0xff << 16; /* MAX PCI_BUS number here */
|
|
} else if (state == PCI_ROUTE_FINAL) {
|
|
buses |= parent->secondary & 0xff;
|
|
buses |= ((u32) link->secondary & 0xff) << 8;
|
|
buses |= ((u32) link->subordinate & 0xff) << 16;
|
|
}
|
|
|
|
if (state == PCI_ROUTE_SCAN) {
|
|
/* Clear all status bits and turn off memory, I/O and master enables. */
|
|
link->bridge_cmd = pci_read_config16(dev, PCI_COMMAND);
|
|
pci_write_config16(dev, PCI_COMMAND, 0x0000);
|
|
pci_write_config16(dev, PCI_STATUS, 0xffff);
|
|
}
|
|
|
|
/*
|
|
* Configure the bus numbers for this bridge: the configuration
|
|
* transactions will not be propagated by the bridge if it is not
|
|
* correctly configured.
|
|
*/
|
|
|
|
reg = pci_read_config32(dev, PCI_PRIMARY_BUS);
|
|
reg &= 0xff000000;
|
|
reg |= buses;
|
|
pci_write_config32(dev, PCI_PRIMARY_BUS, reg);
|
|
|
|
if (state == PCI_ROUTE_FINAL) {
|
|
pci_write_config16(dev, PCI_COMMAND, link->bridge_cmd);
|
|
parent->subordinate = link->subordinate;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Scan a PCI bridge and the buses behind the bridge.
|
|
*
|
|
* Determine the existence of buses behind the bridge. Set up the bridge
|
|
* according to the result of the scan.
|
|
*
|
|
* This function is the default scan_bus() method for PCI bridge devices.
|
|
*
|
|
* @param dev Pointer to the bridge device.
|
|
* @param do_scan_bus TODO
|
|
*/
|
|
void do_pci_scan_bridge(struct device *dev,
|
|
void (*do_scan_bus) (struct bus * bus,
|
|
unsigned int min_devfn,
|
|
unsigned int max_devfn))
|
|
{
|
|
struct bus *bus;
|
|
|
|
printk(BIOS_SPEW, "%s for %s\n", __func__, dev_path(dev));
|
|
|
|
if (dev->link_list == NULL) {
|
|
struct bus *link;
|
|
link = malloc(sizeof(*link));
|
|
if (link == NULL)
|
|
die("Couldn't allocate a link!\n");
|
|
memset(link, 0, sizeof(*link));
|
|
link->dev = dev;
|
|
dev->link_list = link;
|
|
}
|
|
|
|
bus = dev->link_list;
|
|
|
|
pci_bridge_vga_compat(bus);
|
|
|
|
pci_bridge_route(bus, PCI_ROUTE_SCAN);
|
|
|
|
do_scan_bus(bus, 0x00, 0xff);
|
|
|
|
pci_bridge_route(bus, PCI_ROUTE_FINAL);
|
|
}
|
|
|
|
/**
|
|
* Scan a PCI bridge and the buses behind the bridge.
|
|
*
|
|
* Determine the existence of buses behind the bridge. Set up the bridge
|
|
* according to the result of the scan.
|
|
*
|
|
* This function is the default scan_bus() method for PCI bridge devices.
|
|
*
|
|
* @param dev Pointer to the bridge device.
|
|
*/
|
|
void pci_scan_bridge(struct device *dev)
|
|
{
|
|
do_pci_scan_bridge(dev, pci_scan_bus);
|
|
}
|
|
|
|
/**
|
|
* Scan a PCI domain.
|
|
*
|
|
* This function is the default scan_bus() method for PCI domains.
|
|
*
|
|
* @param dev Pointer to the domain.
|
|
*/
|
|
void pci_domain_scan_bus(struct device *dev)
|
|
{
|
|
struct bus *link = dev->link_list;
|
|
pci_scan_bus(link, PCI_DEVFN(0, 0), 0xff);
|
|
}
|
|
|
|
/**
|
|
* Take an INT_PIN number (0, 1 - 4) and convert
|
|
* it to a string ("NO PIN", "PIN A" - "PIN D")
|
|
*
|
|
* @param pin PCI Interrupt Pin number (0, 1 - 4)
|
|
* @return A string corresponding to the pin number or "Invalid"
|
|
*/
|
|
const char *pin_to_str(int pin)
|
|
{
|
|
const char *str[5] = {
|
|
"NO PIN",
|
|
"PIN A",
|
|
"PIN B",
|
|
"PIN C",
|
|
"PIN D",
|
|
};
|
|
|
|
if (pin >= 0 && pin <= 4)
|
|
return str[pin];
|
|
else
|
|
return "Invalid PIN, not 0 - 4";
|
|
}
|
|
|
|
/**
|
|
* Get the PCI INT_PIN swizzle for a device defined as:
|
|
* pin_parent = (pin_child + devn_child) % 4 + 1
|
|
* where PIN A = 1 ... PIN_D = 4
|
|
*
|
|
* Given a PCI device structure 'dev', find the interrupt pin
|
|
* that will be triggered on its parent bridge device when
|
|
* generating an interrupt. For example: Device 1:3.2 may
|
|
* use INT_PIN A but will trigger PIN D on its parent bridge
|
|
* device. In this case, this function will return 4 (PIN D).
|
|
*
|
|
* @param dev A PCI device structure to swizzle interrupt pins for
|
|
* @param *parent_bridge The PCI device structure for the bridge
|
|
* device 'dev' is attached to
|
|
* @return The interrupt pin number (1 - 4) that 'dev' will
|
|
* trigger when generating an interrupt
|
|
*/
|
|
static int swizzle_irq_pins(struct device *dev, struct device **parent_bridge)
|
|
{
|
|
struct device *parent; /* Our current device's parent device */
|
|
struct device *child; /* The child device of the parent */
|
|
uint8_t parent_bus = 0; /* Parent Bus number */
|
|
uint16_t parent_devfn = 0; /* Parent Device and Function number */
|
|
uint16_t child_devfn = 0; /* Child Device and Function number */
|
|
uint8_t swizzled_pin = 0; /* Pin swizzled across a bridge */
|
|
|
|
/* Start with PIN A = 0 ... D = 3 */
|
|
swizzled_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN) - 1;
|
|
|
|
/* While our current device has parent devices */
|
|
child = dev;
|
|
for (parent = child->bus->dev; parent; parent = parent->bus->dev) {
|
|
parent_bus = parent->bus->secondary;
|
|
parent_devfn = parent->path.pci.devfn;
|
|
child_devfn = child->path.pci.devfn;
|
|
|
|
/* Swizzle the INT_PIN for any bridges not on root bus */
|
|
swizzled_pin = (PCI_SLOT(child_devfn) + swizzled_pin) % 4;
|
|
printk(BIOS_SPEW, "\tWith INT_PIN swizzled to %s\n"
|
|
"\tAttached to bridge device %01X:%02Xh.%02Xh\n",
|
|
pin_to_str(swizzled_pin + 1), parent_bus,
|
|
PCI_SLOT(parent_devfn), PCI_FUNC(parent_devfn));
|
|
|
|
/* Continue until we find the root bus */
|
|
if (parent_bus > 0) {
|
|
/*
|
|
* We will go on to the next parent so this parent
|
|
* becomes the child
|
|
*/
|
|
child = parent;
|
|
continue;
|
|
} else {
|
|
/*
|
|
* Found the root bridge device,
|
|
* fill in the structure and exit
|
|
*/
|
|
*parent_bridge = parent;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* End with PIN A = 1 ... D = 4 */
|
|
return swizzled_pin + 1;
|
|
}
|
|
|
|
/**
|
|
* Given a device structure 'dev', find its interrupt pin
|
|
* and its parent bridge 'parent_bdg' device structure.
|
|
* If it is behind a bridge, it will return the interrupt
|
|
* pin number (1 - 4) of the parent bridge that the device
|
|
* interrupt pin has been swizzled to, otherwise it will
|
|
* return the interrupt pin that is programmed into the
|
|
* PCI config space of the target device. If 'dev' is
|
|
* behind a bridge, it will fill in 'parent_bdg' with the
|
|
* device structure of the bridge it is behind, otherwise
|
|
* it will copy 'dev' into 'parent_bdg'.
|
|
*
|
|
* @param dev A PCI device structure to get interrupt pins for.
|
|
* @param *parent_bdg The PCI device structure for the bridge
|
|
* device 'dev' is attached to.
|
|
* @return The interrupt pin number (1 - 4) that 'dev' will
|
|
* trigger when generating an interrupt.
|
|
* Errors: -1 is returned if the device is not enabled
|
|
* -2 is returned if a parent bridge could not be found.
|
|
*/
|
|
int get_pci_irq_pins(struct device *dev, struct device **parent_bdg)
|
|
{
|
|
uint8_t bus = 0; /* The bus this device is on */
|
|
uint16_t devfn = 0; /* This device's device and function numbers */
|
|
uint8_t int_pin = 0; /* Interrupt pin used by the device */
|
|
uint8_t target_pin = 0; /* Interrupt pin we want to assign an IRQ to */
|
|
|
|
/* Make sure this device is enabled */
|
|
if (!(dev->enabled && (dev->path.type == DEVICE_PATH_PCI)))
|
|
return -1;
|
|
|
|
bus = dev->bus->secondary;
|
|
devfn = dev->path.pci.devfn;
|
|
|
|
/* Get and validate the interrupt pin used. Only 1-4 are allowed */
|
|
int_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN);
|
|
if (int_pin < 1 || int_pin > 4)
|
|
return -1;
|
|
|
|
printk(BIOS_SPEW, "PCI IRQ: Found device %01X:%02X.%02X using %s\n",
|
|
bus, PCI_SLOT(devfn), PCI_FUNC(devfn), pin_to_str(int_pin));
|
|
|
|
/* If this device is on a bridge, swizzle its INT_PIN */
|
|
if (bus) {
|
|
/* Swizzle its INT_PINs */
|
|
target_pin = swizzle_irq_pins(dev, parent_bdg);
|
|
|
|
/* Make sure the swizzle returned valid structures */
|
|
if (parent_bdg == NULL) {
|
|
printk(BIOS_WARNING,
|
|
"Warning: Could not find parent bridge for this device!\n");
|
|
return -2;
|
|
}
|
|
} else { /* Device is not behind a bridge */
|
|
target_pin = int_pin; /* Return its own interrupt pin */
|
|
*parent_bdg = dev; /* Return its own structure */
|
|
}
|
|
|
|
/* Target pin is the interrupt pin we want to assign an IRQ to */
|
|
return target_pin;
|
|
}
|
|
|
|
#if CONFIG(PC80_SYSTEM)
|
|
/**
|
|
* Assign IRQ numbers.
|
|
*
|
|
* This function assigns IRQs for all functions contained within the indicated
|
|
* device address. If the device does not exist or does not require interrupts
|
|
* then this function has no effect.
|
|
*
|
|
* This function should be called for each PCI slot in your system.
|
|
*
|
|
* @param dev Pointer to dev structure.
|
|
* @param pIntAtoD An array of IRQ #s that are assigned to PINTA through PINTD
|
|
* of this slot. The particular IRQ #s that are passed in depend on the
|
|
* routing inside your southbridge and on your board.
|
|
*/
|
|
void pci_assign_irqs(struct device *dev, const unsigned char pIntAtoD[4])
|
|
{
|
|
u8 slot, line, irq;
|
|
|
|
/* Each device may contain up to eight functions. */
|
|
slot = dev->path.pci.devfn >> 3;
|
|
|
|
for (; dev ; dev = dev->sibling) {
|
|
|
|
if (dev->path.pci.devfn >> 3 != slot)
|
|
break;
|
|
|
|
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
|
|
|
|
/* PCI spec says all values except 1..4 are reserved. */
|
|
if ((line < 1) || (line > 4))
|
|
continue;
|
|
|
|
irq = pIntAtoD[line - 1];
|
|
|
|
printk(BIOS_DEBUG, "Assigning IRQ %d to %s\n", irq, dev_path(dev));
|
|
|
|
pci_write_config8(dev, PCI_INTERRUPT_LINE, pIntAtoD[line - 1]);
|
|
|
|
#if CONFIG(PC80_SYSTEM)
|
|
/* Change to level triggered. */
|
|
i8259_configure_irq_trigger(pIntAtoD[line - 1],
|
|
IRQ_LEVEL_TRIGGERED);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void pci_dev_disable_bus_master(const struct device *dev)
|
|
{
|
|
pci_update_config16(dev, PCI_COMMAND, ~PCI_COMMAND_MASTER, 0x0);
|
|
}
|
|
#endif
|