Break TPM related Kconfig into the following dimensions: TPM transport support: config CRB_TPM config I2C_TPM config SPI_TPM config MEMORY_MAPPED_TPM (new) TPM brand, not defining any of these is valid, and result in "generic" support: config TPM_ATMEL (new) config TPM_GOOGLE (new) config TPM_GOOGLE_CR50 (new, implies TPM_GOOGLE) config TPM_GOOGLE_TI50 (new to be used later, implies TPM_GOOGLE) What protocol the TPM chip supports: config MAINBOARD_HAS_TPM1 config MAINBOARD_HAS_TPM2 What the user chooses to compile (restricted by the above): config NO_TPM config TPM1 config TPM2 The following Kconfigs will be replaced as indicated: config TPM_CR50 -> TPM_GOOGLE config MAINBOARD_HAS_CRB_TPM -> CRB_TPM config MAINBOARD_HAS_I2C_TPM_ATMEL -> I2C_TPM && TPM_ATMEL config MAINBOARD_HAS_I2C_TPM_CR50 -> I2C_TPM && TPM_GOOGLE config MAINBOARD_HAS_I2C_TPM_GENERIC -> I2C_TPM && !TPM_GOOGLE && !TPM_ATMEL config MAINBOARD_HAS_LPC_TPM -> MEMORY_MAPPED_TPM config MAINBOARD_HAS_SPI_TPM -> SPI_TPM && !TPM_GOOGLE && !TPM_ATMEL config MAINBOARD_HAS_SPI_TPM_CR50 -> SPI_TPM && TPM_GOOGLE Signed-off-by: Jes B. Klinke <jbk@chromium.org> Change-Id: I4656b2b90363b8dfd008dc281ad591862fe2cc9e Reviewed-on: https://review.coreboot.org/c/coreboot/+/63424 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Yu-Ping Wu <yupingso@google.com> Reviewed-by: Tim Wawrzynczak <twawrzynczak@chromium.org> Reviewed-by: Julius Werner <jwerner@chromium.org>
648 lines
19 KiB
C
648 lines
19 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause */
|
|
|
|
/*
|
|
* Functions for querying, manipulating and locking rollback indices
|
|
* stored in the TPM NVRAM.
|
|
*/
|
|
|
|
#include <security/vboot/antirollback.h>
|
|
#include <security/vboot/tpm_common.h>
|
|
#include <security/tpm/tspi.h>
|
|
#include <security/tpm/tss.h>
|
|
#include <security/tpm/tss/tcg-1.2/tss_structures.h>
|
|
#include <security/tpm/tss/tcg-2.0/tss_structures.h>
|
|
#include <vb2_api.h>
|
|
#include <console/console.h>
|
|
|
|
#define VBDEBUG(format, args...) \
|
|
printk(BIOS_INFO, "%s():%d: " format, __func__, __LINE__, ## args)
|
|
|
|
#define RETURN_ON_FAILURE(tpm_cmd) do { \
|
|
uint32_t result_; \
|
|
if ((result_ = (tpm_cmd)) != TPM_SUCCESS) { \
|
|
VBDEBUG("Antirollback: %08x returned by " #tpm_cmd \
|
|
"\n", (int)result_); \
|
|
return result_; \
|
|
} \
|
|
} while (0)
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length);
|
|
|
|
static uint32_t read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_read(FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_read_space_kernel(struct vb2_context *ctx)
|
|
{
|
|
if (!CONFIG(TPM2)) {
|
|
/*
|
|
* Before reading the kernel space, verify its permissions. If
|
|
* the kernel space has the wrong permission, we give up. This
|
|
* will need to be fixed by the recovery kernel. We will have
|
|
* to worry about this because at any time (even with PP turned
|
|
* off) the TPM owner can remove and redefine a PP-protected
|
|
* space (but not write to it).
|
|
*/
|
|
uint32_t perms;
|
|
|
|
RETURN_ON_FAILURE(tlcl_get_permissions(KERNEL_NV_INDEX,
|
|
&perms));
|
|
if (perms != TPM_NV_PER_PPWRITE) {
|
|
printk(BIOS_ERR,
|
|
"TPM: invalid secdata_kernel permissions\n");
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
}
|
|
|
|
uint8_t size = VB2_SECDATA_KERNEL_SIZE;
|
|
uint32_t ret;
|
|
|
|
/* Start with the version 1.0 size used by all modern cr50-boards. */
|
|
ret = tlcl_read(KERNEL_NV_INDEX, ctx->secdata_kernel, size);
|
|
if (ret == TPM_E_RANGE) {
|
|
/* Fallback to version 0.2(minimum) size and re-read. */
|
|
VBDEBUG("Antirollback: NV read out of range, trying min size\n");
|
|
size = VB2_SECDATA_KERNEL_MIN_SIZE;
|
|
ret = tlcl_read(KERNEL_NV_INDEX, ctx->secdata_kernel, size);
|
|
}
|
|
RETURN_ON_FAILURE(ret);
|
|
|
|
if (vb2api_secdata_kernel_check(ctx, &size) == VB2_ERROR_SECDATA_KERNEL_INCOMPLETE)
|
|
/* Re-read. vboot will run the check and handle errors. */
|
|
RETURN_ON_FAILURE(tlcl_read(KERNEL_NV_INDEX, ctx->secdata_kernel, size));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
#if CONFIG(TPM2)
|
|
|
|
static uint32_t read_space_mrc_hash(uint32_t index, uint8_t *data)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_read(index, data,
|
|
HASH_NV_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* This is used to initialize the TPM space for recovery hash after defining
|
|
* it. Since there is no data available to calculate hash at the point where TPM
|
|
* space is defined, initialize it to all 0s.
|
|
*/
|
|
static const uint8_t mrc_hash_data[HASH_NV_SIZE] = { };
|
|
|
|
/*
|
|
* Different sets of NVRAM space attributes apply to the "ro" spaces,
|
|
* i.e. those which should not be possible to delete or modify once
|
|
* the RO exits, and the rest of the NVRAM spaces.
|
|
*/
|
|
static const TPMA_NV ro_space_attributes = {
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_WRITE_STCLEAR = 1,
|
|
.TPMA_NV_POLICY_DELETE = 1,
|
|
};
|
|
|
|
static const TPMA_NV rw_space_attributes = {
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_WRITE_STCLEAR = 1,
|
|
};
|
|
|
|
static const TPMA_NV fwmp_attr = {
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_OWNERWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PPWRITE = 1,
|
|
};
|
|
|
|
/* Attributes for spaces that enable zero-touch enrollment (ZTE) */
|
|
static const TPMA_NV zte_attr = {
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_WRITEDEFINE = 1,
|
|
.TPMA_NV_AUTHWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_NO_DA = 1,
|
|
.TPMA_NV_POLICY_DELETE = 1,
|
|
};
|
|
|
|
static const TPMA_NV zte_rma_bytes_attr = {
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_BITS = 1,
|
|
.TPMA_NV_AUTHWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_NO_DA = 1,
|
|
.TPMA_NV_POLICY_DELETE = 1,
|
|
};
|
|
|
|
static const TPMA_NV rw_orderly_counter_attributes = {
|
|
.TPMA_NV_COUNTER = 1,
|
|
.TPMA_NV_ORDERLY = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_AUTHWRITE = 1,
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_WRITE_STCLEAR = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_NO_DA = 1,
|
|
};
|
|
|
|
/*
|
|
* This policy digest was obtained using TPM2_PolicyOR on 3 digests
|
|
* corresponding to a sequence of
|
|
* -) TPM2_PolicyCommandCode(TPM_CC_NV_UndefineSpaceSpecial),
|
|
* -) TPM2_PolicyPCR(PCR0, <extended_value>).
|
|
* where <extended value> is
|
|
* 1) all zeros = initial, unextended state:
|
|
* - Value to extend to initial PCR0:
|
|
* <none>
|
|
* - Resulting PCR0:
|
|
* 0000000000000000000000000000000000000000000000000000000000000000
|
|
* - Policy digest for PolicyCommandCode + PolicyPCR:
|
|
* 4B44FC4192DB5AD7167E0135708FD374890A06BFB56317DF01F24F2226542A3F
|
|
* 2) result of extending (SHA1(0x00|0x01|0x00) | 00s to SHA256 size)
|
|
* - Value to extend to initial PCR0:
|
|
* 62571891215b4efc1ceab744ce59dd0b66ea6f73000000000000000000000000
|
|
* - Resulting PCR0:
|
|
* 9F9EA866D3F34FE3A3112AE9CB1FBABC6FFE8CD261D42493BC6842A9E4F93B3D
|
|
* - Policy digest for PolicyCommandCode + PolicyPCR:
|
|
* CB5C8014E27A5F7586AAE42DB4F9776A977BCBC952CA61E33609DA2B2C329418
|
|
* 3) result of extending (SHA1(0x01|0x01|0x00) | 00s to SHA256 size)
|
|
* - Value to extend to initial PCR0:
|
|
* 47ec8d98366433dc002e7721c9e37d5067547937000000000000000000000000
|
|
* - Resulting PCR0:
|
|
* 2A7580E5DA289546F4D2E0509CC6DE155EA131818954D36D49E027FD42B8C8F8
|
|
* - Policy digest for PolicyCommandCode + PolicyPCR:
|
|
* E6EF4F0296AC3EF0F53906480985B1BE8058E0E517E5F74A5B8A415EFE339D87
|
|
* Values #2 and #3 correspond to two forms of recovery mode as extended by
|
|
* vb2api_get_pcr_digest().
|
|
* As a result, the digest allows deleting the space with UndefineSpaceSpecial
|
|
* at early RO stages (before extending PCR0) or from recovery mode.
|
|
*/
|
|
static const uint8_t pcr0_allowed_policy[] = {
|
|
0x44, 0x44, 0x79, 0x00, 0xCB, 0xB8, 0x3F, 0x5B, 0x15, 0x76, 0x56,
|
|
0x50, 0xEF, 0x96, 0x98, 0x0A, 0x2B, 0x96, 0x6E, 0xA9, 0x09, 0x04,
|
|
0x4A, 0x01, 0xB8, 0x5F, 0xA5, 0x4A, 0x96, 0xFC, 0x59, 0x84};
|
|
|
|
static const uint8_t unsatisfiable_policy[VB2_SHA256_DIGEST_SIZE] =
|
|
"hmwhat if RBR beat merc in 2021";
|
|
|
|
static uint32_t define_space(const char *name, uint32_t index, uint32_t length,
|
|
const TPMA_NV nv_attributes,
|
|
const uint8_t *nv_policy, size_t nv_policy_size)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = tlcl_define_space(index, length, nv_attributes, nv_policy,
|
|
nv_policy_size);
|
|
if (rv == TPM_E_NV_DEFINED) {
|
|
/*
|
|
* Continue with writing: it may be defined, but not written
|
|
* to. In that case a subsequent tlcl_read() would still return
|
|
* TPM_E_BADINDEX on TPM 2.0. The cases when some non-firmware
|
|
* space is defined while the firmware space is not there
|
|
* should be rare (interrupted initialization), so no big harm
|
|
* in writing once again even if it was written already.
|
|
*/
|
|
VBDEBUG("%s: %s space already exists\n", __func__, name);
|
|
rv = TPM_SUCCESS;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* Nothing special in the TPM2 path yet. */
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
return tlcl_write(index, data, length);
|
|
}
|
|
|
|
static uint32_t setup_space(const char *name, uint32_t index, const void *data,
|
|
uint32_t length, const TPMA_NV nv_attributes,
|
|
const uint8_t *nv_policy, size_t nv_policy_size)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = define_space(name, index, length, nv_attributes, nv_policy,
|
|
nv_policy_size);
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(index, data, length);
|
|
}
|
|
|
|
static uint32_t setup_firmware_space(struct vb2_context *ctx)
|
|
{
|
|
uint32_t firmware_space_size = vb2api_secdata_firmware_create(ctx);
|
|
|
|
return setup_space("firmware", FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware, firmware_space_size,
|
|
ro_space_attributes, pcr0_allowed_policy,
|
|
sizeof(pcr0_allowed_policy));
|
|
}
|
|
|
|
static uint32_t setup_fwmp_space(struct vb2_context *ctx)
|
|
{
|
|
uint32_t fwmp_space_size = vb2api_secdata_fwmp_create(ctx);
|
|
|
|
return setup_space("FWMP", FWMP_NV_INDEX, ctx->secdata_fwmp, fwmp_space_size,
|
|
fwmp_attr, NULL, 0);
|
|
}
|
|
|
|
static uint32_t setup_kernel_space(struct vb2_context *ctx)
|
|
{
|
|
uint32_t kernel_space_size = vb2api_secdata_kernel_create(ctx);
|
|
|
|
return setup_space("kernel", KERNEL_NV_INDEX, ctx->secdata_kernel,
|
|
kernel_space_size, rw_space_attributes, NULL, 0);
|
|
}
|
|
|
|
static uint32_t set_mrc_hash_space(uint32_t index, const uint8_t *data)
|
|
{
|
|
if (index == MRC_REC_HASH_NV_INDEX) {
|
|
return setup_space("RO MRC Hash", index, data, HASH_NV_SIZE,
|
|
ro_space_attributes, pcr0_allowed_policy,
|
|
sizeof(pcr0_allowed_policy));
|
|
} else {
|
|
return setup_space("RW MRC Hash", index, data, HASH_NV_SIZE,
|
|
rw_space_attributes, NULL, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set up the Zero-Touch Enrollment(ZTE) related spaces.
|
|
*
|
|
* These spaces are not used by firmware, but we do need to initialize them.
|
|
*/
|
|
static uint32_t setup_zte_spaces(void)
|
|
{
|
|
uint32_t rv;
|
|
uint64_t rma_bytes_counter_default = 0;
|
|
uint8_t rma_sn_bits_default[16];
|
|
uint8_t board_id_default[12];
|
|
|
|
/* Initialize defaults: Board ID and RMA+SN Bits must be initialized
|
|
to all 0xFFs. */
|
|
memset(rma_sn_bits_default, 0xFF, ARRAY_SIZE(rma_sn_bits_default));
|
|
memset(board_id_default, 0xFF, ARRAY_SIZE(board_id_default));
|
|
|
|
/* Set up RMA + SN Bits */
|
|
rv = setup_space("RMA + SN Bits", ZTE_RMA_SN_BITS_INDEX,
|
|
rma_sn_bits_default, sizeof(rma_sn_bits_default),
|
|
zte_attr,
|
|
unsatisfiable_policy, sizeof(unsatisfiable_policy));
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to set up RMA + SN Bits space\n", __func__);
|
|
return rv;
|
|
}
|
|
|
|
rv = setup_space("Board ID", ZTE_BOARD_ID_NV_INDEX,
|
|
board_id_default, sizeof(board_id_default),
|
|
zte_attr,
|
|
unsatisfiable_policy, sizeof(unsatisfiable_policy));
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to set up Board ID space\n", __func__);
|
|
return rv;
|
|
}
|
|
|
|
/* Set up RMA Bytes counter */
|
|
rv = define_space("RMA Bytes Counter", ZTE_RMA_BYTES_COUNTER_INDEX,
|
|
sizeof(rma_bytes_counter_default),
|
|
zte_rma_bytes_attr,
|
|
unsatisfiable_policy, sizeof(unsatisfiable_policy));
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to define RMA Bytes space\n", __func__);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Since the RMA counter has the BITS attribute, we need to call
|
|
* TPM2_NV_SetBits() in order to initialize it.
|
|
*/
|
|
rv = tlcl_set_bits(ZTE_RMA_BYTES_COUNTER_INDEX,
|
|
rma_bytes_counter_default);
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to init RMA Bytes counter space\n",
|
|
__func__);
|
|
return rv;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static uint32_t setup_widevine_counter_spaces(void)
|
|
{
|
|
uint32_t index, rv;
|
|
|
|
for (index = 0; index < NUM_WIDEVINE_COUNTERS; index++) {
|
|
rv = define_space(WIDEVINE_COUNTER_NAME, WIDEVINE_COUNTER_NV_INDEX(index),
|
|
WIDEVINE_COUNTER_SIZE, rw_orderly_counter_attributes, NULL, 0);
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
}
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_force_clear());
|
|
|
|
/*
|
|
* Of all NVRAM spaces defined by this function the firmware space
|
|
* must be defined last, because its existence is considered an
|
|
* indication that TPM factory initialization was successfully
|
|
* completed.
|
|
*/
|
|
RETURN_ON_FAILURE(setup_kernel_space(ctx));
|
|
|
|
/*
|
|
* Define and set rec hash space, if available. No need to
|
|
* create the RW hash space because we will definitely boot
|
|
* once in normal mode before shipping, meaning that the space
|
|
* will get created with correct permissions while still in
|
|
* our hands.
|
|
*/
|
|
if (CONFIG(VBOOT_HAS_REC_HASH_SPACE))
|
|
RETURN_ON_FAILURE(set_mrc_hash_space(MRC_REC_HASH_NV_INDEX, mrc_hash_data));
|
|
|
|
/* Define and write firmware management parameters space. */
|
|
RETURN_ON_FAILURE(setup_fwmp_space(ctx));
|
|
|
|
/*
|
|
* Define and write zero-touch enrollment (ZTE) spaces. For Cr50 devices,
|
|
* these are set up elsewhere via TPM vendor commands.
|
|
*/
|
|
if (CONFIG(CHROMEOS) && !(CONFIG(TPM_GOOGLE)))
|
|
RETURN_ON_FAILURE(setup_zte_spaces());
|
|
|
|
/* Define widevine counter space. No need to increment/write to the secure counters
|
|
and are expected to be incremented during the first use. */
|
|
if (CONFIG(VBOOT_DEFINE_WIDEVINE_COUNTERS))
|
|
RETURN_ON_FAILURE(setup_widevine_counter_spaces());
|
|
|
|
RETURN_ON_FAILURE(setup_firmware_space(ctx));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_lock_nv_write(FIRMWARE_NV_INDEX);
|
|
}
|
|
|
|
uint32_t antirollback_read_space_mrc_hash(uint32_t index, uint8_t *data, uint32_t size)
|
|
{
|
|
if (size != HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for hash idx 0x%x. "
|
|
"(Expected=0x%x Actual=0x%x).\n", index, HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_READ_FAILURE;
|
|
}
|
|
return read_space_mrc_hash(index, data);
|
|
}
|
|
|
|
uint32_t antirollback_write_space_mrc_hash(uint32_t index, const uint8_t *data, uint32_t size)
|
|
{
|
|
uint8_t spc_data[HASH_NV_SIZE];
|
|
uint32_t rv;
|
|
|
|
if (size != HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for hash idx 0x%x. "
|
|
"(Expected=0x%x Actual=0x%x).\n", index, HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_WRITE_FAILURE;
|
|
}
|
|
|
|
rv = read_space_mrc_hash(index, spc_data);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/*
|
|
* If space is not defined already for hash, define
|
|
* new space.
|
|
*/
|
|
VBDEBUG("TPM: Initializing hash space.\n");
|
|
return set_mrc_hash_space(index, data);
|
|
}
|
|
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(index, data, size);
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_mrc_hash(uint32_t index)
|
|
{
|
|
return tlcl_lock_nv_write(index);
|
|
}
|
|
|
|
#else
|
|
|
|
/**
|
|
* Like tlcl_write(), but checks for write errors due to hitting the 64-write
|
|
* limit and clears the TPM when that happens. This can only happen when the
|
|
* TPM is unowned, so it is OK to clear it (and we really have no choice).
|
|
* This is not expected to happen frequently, but it could happen.
|
|
*/
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
uint32_t result = tlcl_write(index, data, length);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_write(index, data, length);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Similarly to safe_write(), this ensures we don't fail a DefineSpace because
|
|
* we hit the TPM write limit. This is even less likely to happen than with
|
|
* writes because we only define spaces once at initialization, but we'd
|
|
* rather be paranoid about this.
|
|
*/
|
|
static uint32_t safe_define_space(uint32_t index, uint32_t perm, uint32_t size)
|
|
{
|
|
uint32_t result = tlcl_define_space(index, perm, size);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_define_space(index, perm, size);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
TPM_PERMANENT_FLAGS pflags;
|
|
uint32_t result;
|
|
|
|
vb2api_secdata_kernel_create_v0(ctx);
|
|
|
|
result = tlcl_get_permanent_flags(&pflags);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
/*
|
|
* TPM may come from the factory without physical presence finalized.
|
|
* Fix if necessary.
|
|
*/
|
|
VBDEBUG("TPM: physicalPresenceLifetimeLock=%d\n",
|
|
pflags.physicalPresenceLifetimeLock);
|
|
if (!pflags.physicalPresenceLifetimeLock) {
|
|
VBDEBUG("TPM: Finalizing physical presence\n");
|
|
RETURN_ON_FAILURE(tlcl_finalize_physical_presence());
|
|
}
|
|
|
|
/*
|
|
* The TPM will not enforce the NV authorization restrictions until the
|
|
* execution of a TPM_NV_DefineSpace with the handle of
|
|
* TPM_NV_INDEX_LOCK. Here we create that space if it doesn't already
|
|
* exist. */
|
|
VBDEBUG("TPM: nvLocked=%d\n", pflags.nvLocked);
|
|
if (!pflags.nvLocked) {
|
|
VBDEBUG("TPM: Enabling NV locking\n");
|
|
RETURN_ON_FAILURE(tlcl_set_nv_locked());
|
|
}
|
|
|
|
/* Clear TPM owner, in case the TPM is already owned for some reason. */
|
|
VBDEBUG("TPM: Clearing owner\n");
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
|
|
/* Define and write secdata_kernel space. */
|
|
RETURN_ON_FAILURE(safe_define_space(KERNEL_NV_INDEX,
|
|
TPM_NV_PER_PPWRITE,
|
|
VB2_SECDATA_KERNEL_SIZE_V02));
|
|
RETURN_ON_FAILURE(safe_write(KERNEL_NV_INDEX,
|
|
ctx->secdata_kernel,
|
|
VB2_SECDATA_KERNEL_SIZE_V02));
|
|
|
|
/* Define and write secdata_firmware space. */
|
|
RETURN_ON_FAILURE(safe_define_space(FIRMWARE_NV_INDEX,
|
|
TPM_NV_PER_GLOBALLOCK |
|
|
TPM_NV_PER_PPWRITE,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
RETURN_ON_FAILURE(safe_write(FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_set_global_lock();
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Perform one-time initializations.
|
|
*
|
|
* Create the NVRAM spaces, and set their initial values as needed. Sets the
|
|
* nvLocked bit and ensures the physical presence command is enabled and
|
|
* locked.
|
|
*/
|
|
static uint32_t factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
uint32_t result;
|
|
|
|
/*
|
|
* Set initial values of secdata_firmware space.
|
|
* kernel space is created in _factory_initialize_tpm().
|
|
*/
|
|
vb2api_secdata_firmware_create(ctx);
|
|
|
|
VBDEBUG("TPM: factory initialization\n");
|
|
|
|
/*
|
|
* Do a full test. This only happens the first time the device is
|
|
* turned on in the factory, so performance is not an issue. This is
|
|
* almost certainly not necessary, but it gives us more confidence
|
|
* about some code paths below that are difficult to
|
|
* test---specifically the ones that set lifetime flags, and are only
|
|
* executed once per physical TPM.
|
|
*/
|
|
result = tlcl_self_test_full();
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
result = _factory_initialize_tpm(ctx);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
/* _factory_initialize_tpm() writes initial secdata values to TPM
|
|
immediately, so let vboot know that it's up to date now. */
|
|
ctx->flags &= ~(VB2_CONTEXT_SECDATA_FIRMWARE_CHANGED |
|
|
VB2_CONTEXT_SECDATA_KERNEL_CHANGED);
|
|
|
|
VBDEBUG("TPM: factory initialization successful\n");
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
uint32_t rv;
|
|
|
|
/* Read the firmware space. */
|
|
rv = read_space_firmware(ctx);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/* This seems the first time we've run. Initialize the TPM. */
|
|
VBDEBUG("TPM: Not initialized yet.\n");
|
|
RETURN_ON_FAILURE(factory_initialize_tpm(ctx));
|
|
} else if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("TPM: Firmware space in a bad state; giving up.\n");
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_write_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
if (CONFIG(TPM_GOOGLE_IMMEDIATELY_COMMIT_FW_SECDATA))
|
|
tlcl_cr50_enable_nvcommits();
|
|
return safe_write(FIRMWARE_NV_INDEX, ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE);
|
|
}
|
|
|
|
uint32_t antirollback_write_space_kernel(struct vb2_context *ctx)
|
|
{
|
|
/* Learn the expected size. */
|
|
uint8_t size = VB2_SECDATA_KERNEL_MIN_SIZE;
|
|
vb2api_secdata_kernel_check(ctx, &size);
|
|
|
|
/*
|
|
* Ensure that the TPM actually commits our changes to NVMEN in case
|
|
* there is a power loss or other unexpected event. The AP does not
|
|
* write to the TPM during normal boot flow; it only writes during
|
|
* recovery, software sync, or other special boot flows. When the AP
|
|
* wants to write, it is imporant to actually commit changes.
|
|
*/
|
|
if (CONFIG(TPM_GOOGLE_IMMEDIATELY_COMMIT_FW_SECDATA))
|
|
tlcl_cr50_enable_nvcommits();
|
|
|
|
return safe_write(KERNEL_NV_INDEX, ctx->secdata_kernel, size);
|
|
}
|
|
|
|
vb2_error_t vb2ex_tpm_clear_owner(struct vb2_context *ctx)
|
|
{
|
|
uint32_t rv;
|
|
printk(BIOS_INFO, "Clearing TPM owner\n");
|
|
rv = tpm_clear_and_reenable();
|
|
if (rv)
|
|
return VB2_ERROR_EX_TPM_CLEAR_OWNER;
|
|
return VB2_SUCCESS;
|
|
}
|