360684b41a
This enables to configure the Thermal Control Circuit (TCC) activation value to new value as tcc_offset in degree Celcius. It prevents any abrupt thermal shutdown while running heavy workload. This helps to take early thermal throttling action before CPU temperature reaches maximum operating temperature TjMax value. Also, cleanup local functions from previous intel soc specific code base like for apollolake, broadwell, skylake and cannonlake. BUG=None BRANCH=None TEST=Built for volteer platform and verified the MSR value. Change-Id: I37dd878902b080602d70c5c3c906820613ea14a5 Signed-off-by: Sumeet R Pawnikar <sumeet.r.pawnikar@intel.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/41855 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Tim Wawrzynczak <twawrzynczak@chromium.org>
298 lines
7.6 KiB
C
298 lines
7.6 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
#include <arch/cpu.h>
|
|
#include <console/console.h>
|
|
#include <device/pci.h>
|
|
#include <cpu/x86/lapic.h>
|
|
#include <cpu/x86/mp.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/intel/smm_reloc.h>
|
|
#include <cpu/intel/turbo.h>
|
|
#include <intelblocks/cpulib.h>
|
|
#include <intelblocks/mp_init.h>
|
|
#include <romstage_handoff.h>
|
|
#include <soc/cpu.h>
|
|
#include <soc/msr.h>
|
|
#include <soc/pci_devs.h>
|
|
#include <soc/pm.h>
|
|
#include <soc/systemagent.h>
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/intel/microcode.h>
|
|
#include <cpu/intel/common/common.h>
|
|
|
|
#include "chip.h"
|
|
|
|
static void soc_fsp_load(void)
|
|
{
|
|
fsps_load(romstage_handoff_is_resume());
|
|
}
|
|
|
|
static void configure_isst(void)
|
|
{
|
|
config_t *conf = config_of_soc();
|
|
msr_t msr;
|
|
|
|
if (conf->speed_shift_enable) {
|
|
/*
|
|
* Kernel driver checks CPUID.06h:EAX[Bit 7] to determine if HWP
|
|
* is supported or not. coreboot needs to configure MSR 0x1AA
|
|
* which is then reflected in the CPUID register.
|
|
*/
|
|
msr = rdmsr(MSR_MISC_PWR_MGMT);
|
|
msr.lo |= MISC_PWR_MGMT_ISST_EN; /* Enable Speed Shift */
|
|
msr.lo |= MISC_PWR_MGMT_ISST_EN_INT; /* Enable Interrupt */
|
|
msr.lo |= MISC_PWR_MGMT_ISST_EN_EPP; /* Enable EPP */
|
|
wrmsr(MSR_MISC_PWR_MGMT, msr);
|
|
} else {
|
|
msr = rdmsr(MSR_MISC_PWR_MGMT);
|
|
msr.lo &= ~MISC_PWR_MGMT_ISST_EN; /* Disable Speed Shift */
|
|
msr.lo &= ~MISC_PWR_MGMT_ISST_EN_INT; /* Disable Interrupt */
|
|
msr.lo &= ~MISC_PWR_MGMT_ISST_EN_EPP; /* Disable EPP */
|
|
wrmsr(MSR_MISC_PWR_MGMT, msr);
|
|
}
|
|
}
|
|
|
|
static void configure_misc(void)
|
|
{
|
|
config_t *conf = config_of_soc();
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(IA32_MISC_ENABLE);
|
|
msr.lo |= (1 << 0); /* Fast String enable */
|
|
msr.lo |= (1 << 3); /* TM1/TM2/EMTTM enable */
|
|
wrmsr(IA32_MISC_ENABLE, msr);
|
|
|
|
/* Set EIST status */
|
|
cpu_set_eist(conf->eist_enable);
|
|
|
|
/* Disable Thermal interrupts */
|
|
msr.lo = 0;
|
|
msr.hi = 0;
|
|
wrmsr(IA32_THERM_INTERRUPT, msr);
|
|
|
|
/* Enable package critical interrupt only */
|
|
msr.lo = 1 << 4;
|
|
msr.hi = 0;
|
|
wrmsr(IA32_PACKAGE_THERM_INTERRUPT, msr);
|
|
|
|
/* Enable PROCHOT */
|
|
msr = rdmsr(MSR_POWER_CTL);
|
|
msr.lo |= (1 << 0); /* Enable Bi-directional PROCHOT as an input*/
|
|
msr.lo |= (1 << 23); /* Lock it */
|
|
wrmsr(MSR_POWER_CTL, msr);
|
|
}
|
|
|
|
static void enable_lapic_tpr(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(MSR_PIC_MSG_CONTROL);
|
|
msr.lo &= ~(1 << 10); /* Enable APIC TPR updates */
|
|
wrmsr(MSR_PIC_MSG_CONTROL, msr);
|
|
}
|
|
|
|
static void configure_dca_cap(void)
|
|
{
|
|
uint32_t feature_flag;
|
|
msr_t msr;
|
|
|
|
/* Check feature flag in CPUID.(EAX=1):ECX[18]==1 */
|
|
feature_flag = cpu_get_feature_flags_ecx();
|
|
if (feature_flag & CPUID_DCA) {
|
|
msr = rdmsr(IA32_PLATFORM_DCA_CAP);
|
|
msr.lo |= 1;
|
|
wrmsr(IA32_PLATFORM_DCA_CAP, msr);
|
|
}
|
|
}
|
|
|
|
static void set_energy_perf_bias(u8 policy)
|
|
{
|
|
msr_t msr;
|
|
int ecx;
|
|
|
|
/* Determine if energy efficient policy is supported. */
|
|
ecx = cpuid_ecx(0x6);
|
|
if (!(ecx & (1 << 3)))
|
|
return;
|
|
|
|
/* Energy Policy is bits 3:0 */
|
|
msr = rdmsr(IA32_ENERGY_PERF_BIAS);
|
|
msr.lo &= ~0xf;
|
|
msr.lo |= policy & 0xf;
|
|
wrmsr(IA32_ENERGY_PERF_BIAS, msr);
|
|
}
|
|
|
|
static void configure_c_states(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
/* C-state Interrupt Response Latency Control 1 - package C6/C7 short */
|
|
msr.hi = 0;
|
|
msr.lo = IRTL_VALID | IRTL_32768_NS | C_STATE_LATENCY_CONTROL_1_LIMIT;
|
|
wrmsr(MSR_C_STATE_LATENCY_CONTROL_1, msr);
|
|
|
|
/* C-state Interrupt Response Latency Control 2 - package C6/C7 long */
|
|
msr.hi = 0;
|
|
msr.lo = IRTL_VALID | IRTL_32768_NS | C_STATE_LATENCY_CONTROL_2_LIMIT;
|
|
wrmsr(MSR_C_STATE_LATENCY_CONTROL_2, msr);
|
|
|
|
/* C-state Interrupt Response Latency Control 3 - package C8 */
|
|
msr.hi = 0;
|
|
msr.lo = IRTL_VALID | IRTL_32768_NS |
|
|
C_STATE_LATENCY_CONTROL_3_LIMIT;
|
|
wrmsr(MSR_C_STATE_LATENCY_CONTROL_3, msr);
|
|
|
|
/* C-state Interrupt Response Latency Control 4 - package C9 */
|
|
msr.hi = 0;
|
|
msr.lo = IRTL_VALID | IRTL_32768_NS |
|
|
C_STATE_LATENCY_CONTROL_4_LIMIT;
|
|
wrmsr(MSR_C_STATE_LATENCY_CONTROL_4, msr);
|
|
|
|
/* C-state Interrupt Response Latency Control 5 - package C10 */
|
|
msr.hi = 0;
|
|
msr.lo = IRTL_VALID | IRTL_32768_NS |
|
|
C_STATE_LATENCY_CONTROL_5_LIMIT;
|
|
wrmsr(MSR_C_STATE_LATENCY_CONTROL_5, msr);
|
|
}
|
|
|
|
/*
|
|
* The emulated ACPI timer allows replacing of the ACPI timer
|
|
* (PM1_TMR) to have no impart on the system.
|
|
*/
|
|
static void enable_pm_timer_emulation(void)
|
|
{
|
|
const struct soc_intel_cannonlake_config *config;
|
|
msr_t msr;
|
|
|
|
config = config_of_soc();
|
|
|
|
/* Enable PM timer emulation only if ACPI PM timer is disabled */
|
|
if (!config->PmTimerDisabled)
|
|
return;
|
|
/*
|
|
* The derived frequency is calculated as follows:
|
|
* (CTC_FREQ * msr[63:32]) >> 32 = target frequency.
|
|
* Back solve the multiplier so the 3.579545MHz ACPI timer
|
|
* frequency is used.
|
|
*/
|
|
msr.hi = (3579545ULL << 32) / CTC_FREQ;
|
|
/* Set PM1 timer IO port and enable */
|
|
msr.lo = (EMULATE_DELAY_VALUE << EMULATE_DELAY_OFFSET_VALUE) |
|
|
EMULATE_PM_TMR_EN | (ACPI_BASE_ADDRESS + PM1_TMR);
|
|
wrmsr(MSR_EMULATE_PM_TIMER, msr);
|
|
}
|
|
|
|
/* All CPUs including BSP will run the following function. */
|
|
void soc_core_init(struct device *cpu)
|
|
{
|
|
/* Clear out pending MCEs */
|
|
/* TODO(adurbin): This should only be done on a cold boot. Also, some
|
|
* of these banks are core vs package scope. For now every CPU clears
|
|
* every bank. */
|
|
mca_configure();
|
|
|
|
/* Enable the local CPU apics */
|
|
enable_lapic_tpr();
|
|
setup_lapic();
|
|
|
|
/* Configure c-state interrupt response time */
|
|
configure_c_states();
|
|
|
|
/* Configure Enhanced SpeedStep and Thermal Sensors */
|
|
configure_misc();
|
|
|
|
/* Configure Intel Speed Shift */
|
|
configure_isst();
|
|
|
|
/* Enable ACPI Timer Emulation via MSR 0x121 */
|
|
enable_pm_timer_emulation();
|
|
|
|
/* Enable Direct Cache Access */
|
|
configure_dca_cap();
|
|
|
|
/* Set energy policy */
|
|
set_energy_perf_bias(ENERGY_POLICY_NORMAL);
|
|
|
|
/* Enable Turbo */
|
|
enable_turbo();
|
|
|
|
/* Enable Vmx */
|
|
set_vmx_and_lock();
|
|
}
|
|
|
|
static void per_cpu_smm_trigger(void)
|
|
{
|
|
/* Relocate the SMM handler. */
|
|
smm_relocate();
|
|
}
|
|
|
|
static void post_mp_init(void)
|
|
{
|
|
/* Set Max Ratio */
|
|
cpu_set_max_ratio();
|
|
|
|
/*
|
|
* Now that all APs have been relocated as well as the BSP let SMIs
|
|
* start flowing.
|
|
*/
|
|
global_smi_enable_no_pwrbtn();
|
|
|
|
/* Lock down the SMRAM space. */
|
|
smm_lock();
|
|
}
|
|
|
|
static const struct mp_ops mp_ops = {
|
|
/*
|
|
* Skip Pre MP init MTRR programming as MTRRs are mirrored from BSP,
|
|
* that are set prior to ramstage.
|
|
* Real MTRRs programming are being done after resource allocation.
|
|
*/
|
|
.pre_mp_init = soc_fsp_load,
|
|
.get_cpu_count = get_cpu_count,
|
|
.get_smm_info = smm_info,
|
|
.get_microcode_info = get_microcode_info,
|
|
.pre_mp_smm_init = smm_initialize,
|
|
.per_cpu_smm_trigger = per_cpu_smm_trigger,
|
|
.relocation_handler = smm_relocation_handler,
|
|
.post_mp_init = post_mp_init,
|
|
};
|
|
|
|
void soc_init_cpus(struct bus *cpu_bus)
|
|
{
|
|
if (mp_init_with_smm(cpu_bus, &mp_ops))
|
|
printk(BIOS_ERR, "MP initialization failure.\n");
|
|
|
|
/* Thermal throttle activation offset */
|
|
configure_tcc_thermal_target();
|
|
}
|
|
|
|
int soc_skip_ucode_update(u32 current_patch_id, u32 new_patch_id)
|
|
{
|
|
msr_t msr1;
|
|
msr_t msr2;
|
|
|
|
/*
|
|
* CFL and WHL CPU die are based on KBL CPU so we need to
|
|
* have this check, where CNL CPU die is not based on KBL CPU
|
|
* so skip this check for CNL.
|
|
*/
|
|
if (!CONFIG(SOC_INTEL_CANNONLAKE_ALTERNATE_HEADERS))
|
|
return 0;
|
|
|
|
/*
|
|
* If PRMRR/SGX is supported the FIT microcode load will set the msr
|
|
* 0x08b with the Patch revision id one less than the id in the
|
|
* microcode binary. The PRMRR support is indicated in the MSR
|
|
* MTRRCAP[12]. If SGX is not enabled, check and avoid reloading the
|
|
* same microcode during CPU initialization. If SGX is enabled, as
|
|
* part of SGX BIOS initialization steps, the same microcode needs to
|
|
* be reloaded after the core PRMRR MSRs are programmed.
|
|
*/
|
|
msr1 = rdmsr(MTRR_CAP_MSR);
|
|
msr2 = rdmsr(MSR_PRMRR_PHYS_BASE);
|
|
if (msr2.lo && (current_patch_id == new_patch_id - 1))
|
|
return 0;
|
|
|
|
return (msr1.lo & MTRR_CAP_PRMRR) &&
|
|
(current_patch_id == new_patch_id - 1);
|
|
}
|