coreboot-kgpe-d16/src/soc/intel/broadwell/raminit.c
Shelley Chen 6615c6eaf7 mrc_cache: Move code for triggering memory training into mrc_cache
Currently the decision of whether or not to use mrc_cache in recovery
mode is made within the individual platforms' drivers (ie: fsp2.0,
fsp1.1, etc.).  As this is not platform specific, but uses common
vboot infrastructure, the code can be unified and moved into
mrc_cache.  The conditions are as follows:

  1.  If HAS_RECOVERY_MRC_CACHE, use mrc_cache data (unless retrain
      switch is true)
  2.  If !HAS_RECOVERY_MRC_CACHE && VBOOT_STARTS_IN_BOOTBLOCK, this
      means that memory training will occur after verified boot,
      meaning that mrc_cache will be filled with data from executing
      RW code.  So in this case, we never want to use the training
      data in the mrc_cache for recovery mode.
  3.  If !HAS_RECOVERY_MRC_CACHE && VBOOT_STARTS_IN_ROMSTAGE, this
      means that memory training happens before verfied boot, meaning
      that the mrc_cache data is generated by RO code, so it is safe
      to use for a recovery boot.
  4.  Any platform that does not use vboot should be unaffected.

Additionally, we have removed the
MRC_CLEAR_NORMAL_CACHE_ON_RECOVERY_RETRAIN config because the
mrc_cache driver takes care of invalidating the mrc_cache data for
normal mode.  If the platform:
  1.  !HAS_RECOVERY_MRC_CACHE, always invalidate mrc_cache data
  2.  HAS_RECOVERY_MRC_CACHE, only invalidate if retrain switch is set

BUG=b:150502246
BRANCH=None
TEST=1. run dut-control power_state:rec_force_mrc twice on lazor
        ensure that memory retraining happens both times
        run dut-control power_state:rec twice on lazor
        ensure that memory retraining happens only first time
     2. remove HAS_RECOVERY_MRC_CACHE from lazor Kconfig
        boot twice to ensure caching of memory training occurred
	on each boot.

Change-Id: I3875a7b4a4ba3c1aa8a3c1507b3993036a7155fc
Signed-off-by: Shelley Chen <shchen@google.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/46855
Reviewed-by: Furquan Shaikh <furquan@google.com>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2020-11-13 22:57:50 +00:00

190 lines
5.8 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <cbfs.h>
#include <cbmem.h>
#include <cf9_reset.h>
#include <console/console.h>
#include <device/pci_def.h>
#include <memory_info.h>
#include <mrc_cache.h>
#include <string.h>
#if CONFIG(EC_GOOGLE_CHROMEEC)
#include <ec/google/chromeec/ec.h>
#include <ec/google/chromeec/ec_commands.h>
#endif
#include <vendorcode/google/chromeos/chromeos.h>
#include <soc/iomap.h>
#include <soc/pei_data.h>
#include <soc/pei_wrapper.h>
#include <soc/pm.h>
#include <soc/romstage.h>
#include <soc/systemagent.h>
static const char *const ecc_decoder[] = {
"inactive",
"active on IO",
"disabled on IO",
"active",
};
/*
* Dump in the log memory controller configuration as read from the memory
* controller registers.
*/
static void report_memory_config(void)
{
int i;
const u32 addr_decoder_common = MCHBAR32(MAD_CHNL);
printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n",
(MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100);
printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n",
(addr_decoder_common >> 0) & 3,
(addr_decoder_common >> 2) & 3,
(addr_decoder_common >> 4) & 3);
for (i = 0; i < NUM_CHANNELS; i++) {
const u32 ch_conf = MCHBAR32(MAD_DIMM(i));
printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
printk(BIOS_DEBUG, " ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
printk(BIOS_DEBUG, " enhanced interleave mode %s\n",
((ch_conf >> 22) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " rank interleave %s\n",
((ch_conf >> 21) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " DIMMA %d MB width %s %s rank%s\n",
((ch_conf >> 0) & 0xff) * 256,
((ch_conf >> 19) & 1) ? "x16" : "x8 or x32",
((ch_conf >> 17) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? "" : ", selected");
printk(BIOS_DEBUG, " DIMMB %d MB width %s %s rank%s\n",
((ch_conf >> 8) & 0xff) * 256,
((ch_conf >> 20) & 1) ? "x16" : "x8 or x32",
((ch_conf >> 18) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? ", selected" : "");
}
}
/*
* Find PEI executable in coreboot filesystem and execute it.
*/
void raminit(struct pei_data *pei_data)
{
size_t mrc_size;
struct memory_info *mem_info;
pei_wrapper_entry_t entry;
int ret;
struct cbfsf f;
uint32_t type = CBFS_TYPE_MRC;
broadwell_fill_pei_data(pei_data);
/* Assume boot device is memory mapped. */
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED));
pei_data->saved_data =
mrc_cache_current_mmap_leak(MRC_TRAINING_DATA, 0,
&mrc_size);
if (pei_data->saved_data) {
/* MRC cache found */
pei_data->saved_data_size = mrc_size;
} else if (pei_data->boot_mode == ACPI_S3) {
/* Waking from S3 and no cache. */
printk(BIOS_DEBUG,
"No MRC cache found in S3 resume path.\n");
post_code(POST_RESUME_FAILURE);
system_reset();
} else {
printk(BIOS_DEBUG, "No MRC cache found.\n");
}
/*
* Do not use saved pei data. Can be set by mainboard romstage
* to force a full train of memory on every boot.
*/
if (pei_data->disable_saved_data) {
printk(BIOS_DEBUG, "Disabling PEI saved data by request\n");
pei_data->saved_data = NULL;
pei_data->saved_data_size = 0;
}
/* Determine if mrc.bin is in the cbfs. */
if (cbfs_locate_file_in_region(&f, "COREBOOT", "mrc.bin", &type) < 0)
die("mrc.bin not found!");
/* We don't care about leaking the mapping */
entry = (pei_wrapper_entry_t)rdev_mmap_full(&f.data);
if (entry == NULL) {
printk(BIOS_DEBUG, "Couldn't find mrc.bin\n");
return;
}
printk(BIOS_DEBUG, "Starting Memory Reference Code\n");
ret = entry(pei_data);
if (ret < 0)
die("pei_data version mismatch\n");
/* Print the MRC version after executing the UEFI PEI stage. */
u32 version = MCHBAR32(MRC_REVISION);
printk(BIOS_DEBUG, "MRC Version %d.%d.%d Build %d\n",
(version >> 24) & 0xff, (version >> 16) & 0xff,
(version >> 8) & 0xff, (version >> 0) & 0xff);
report_memory_config();
if (pei_data->boot_mode != ACPI_S3) {
cbmem_initialize_empty();
} else if (cbmem_initialize()) {
printk(BIOS_DEBUG, "Failed to recover CBMEM in S3 resume.\n");
/* Failed S3 resume, reset to come up cleanly */
system_reset();
}
printk(BIOS_DEBUG, "MRC data at %p %d bytes\n", pei_data->data_to_save,
pei_data->data_to_save_size);
if (pei_data->data_to_save != NULL && pei_data->data_to_save_size > 0)
mrc_cache_stash_data(MRC_TRAINING_DATA, 0,
pei_data->data_to_save,
pei_data->data_to_save_size);
printk(BIOS_DEBUG, "create cbmem for dimm information\n");
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(struct memory_info));
if (!mem_info) {
printk(BIOS_ERR, "Error! Failed to add mem_info to cbmem\n");
return;
}
memset(mem_info, 0, sizeof(*mem_info));
/* Translate pei_memory_info struct data into memory_info struct */
mem_info->dimm_cnt = pei_data->meminfo.dimm_cnt;
for (int i = 0; i < MIN(DIMM_INFO_TOTAL, PEI_DIMM_INFO_TOTAL); i++) {
struct dimm_info *dimm = &mem_info->dimm[i];
const struct pei_dimm_info *pei_dimm =
&pei_data->meminfo.dimm[i];
dimm->dimm_size = pei_dimm->dimm_size;
dimm->ddr_type = pei_dimm->ddr_type;
dimm->ddr_frequency = pei_dimm->ddr_frequency;
dimm->rank_per_dimm = pei_dimm->rank_per_dimm;
dimm->channel_num = pei_dimm->channel_num;
dimm->dimm_num = pei_dimm->dimm_num;
dimm->bank_locator = pei_dimm->bank_locator;
memcpy(&dimm->serial, &pei_dimm->serial,
MIN(sizeof(dimm->serial), sizeof(pei_dimm->serial)));
memcpy(&dimm->module_part_number,
&pei_dimm->module_part_number,
MIN(sizeof(dimm->module_part_number),
sizeof(pei_dimm->module_part_number)));
dimm->module_part_number[DIMM_INFO_PART_NUMBER_SIZE - 1] = '\0';
dimm->mod_id = pei_dimm->mod_id;
dimm->mod_type = pei_dimm->mod_type;
dimm->bus_width = pei_dimm->bus_width;
}
}