coreboot-kgpe-d16/src/acpi/acpigen_dptf.c
Sumeet Pawnikar 2f7fa55433 Reland "drivers/intel/dptf: Add multiple fan support under dptf"
This reverts commit 4dba71fd25.

Add multiple fan support for dptf policies.

This also fixes the Google Meet resolution drop issue as per
b:246535768 comment#12. When system starts Google Meet video call,
it uses the hardware accelerated encoder as expected. But, as soon as
another system connects to the call, an immediate fallback is observed
from hardware to software encoder. Due to this, Google Meet resolution
dropped from 720p to 180p. This issue is observed on Alder Lake-N SoC
based fanless platforms. This same issue was not seen on fan based
systems. With the fix in dptf driver where fan configures appropriate
setting for only fan participant, not for other device participants,
able to see consistent 720p resolution.

BUG=b:246535768,b:235254828
BRANCH=None
TEST=Built and tested on Alder Lake-P Redrix system for two fans
support and on Alder Lake-N fanless systems. With this code change
Google Meet resolution drop not observed.

Signed-off-by: Sumeet Pawnikar <sumeet.r.pawnikar@intel.com>
Change-Id: Id07d279ff962253c22be9d395ed7be0d732aeaa7
Reviewed-on: https://review.coreboot.org/c/coreboot/+/73249
Reviewed-by: Lean Sheng Tan <sheng.tan@9elements.com>
Reviewed-by: Paul Menzel <paulepanter@mailbox.org>
Reviewed-by: Reka Norman <rekanorman@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2023-04-12 14:11:45 +00:00

549 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpigen.h>
#include <acpi/acpigen_dptf.h>
#include <stdbool.h>
#include <stdint.h>
/* Defaults */
#define DEFAULT_RAW_UNIT "ma"
/* DPTF-specific UUIDs */
#define DPTF_PASSIVE_POLICY_1_0_UUID "42A441D6-AE6A-462B-A84B-4A8CE79027D3"
#define DPTF_CRITICAL_POLICY_UUID "97C68AE7-15FA-499c-B8C9-5DA81D606E0A"
#define DPTF_ACTIVE_POLICY_UUID "3A95C389-E4B8-4629-A526-C52C88626BAE"
enum {
ART_REVISION = 0,
DEFAULT_PRIORITY = 100,
DEFAULT_TRIP_POINT = 0xFFFFFFFFull,
DEFAULT_WEIGHT = 100,
DPTF_MAX_ART_THRESHOLDS = 10,
FPS_REVISION = 0,
PPCC_REVISION = 2,
RAPL_PL1_INDEX = 0,
RAPL_PL2_INDEX = 1,
};
/* Convert degrees C to 1/10 degree Kelvin for ACPI */
static int to_acpi_temp(int deg_c)
{
return deg_c * 10 + 2732;
}
/* Converts ms to 1/10th second for ACPI */
static int to_acpi_time(int ms)
{
return ms / 100;
}
/* Writes out a 0-argument non-Serialized Method that returns an Integer */
static void write_simple_return_method(const char *name, int value)
{
acpigen_write_method(name, 0);
acpigen_write_return_integer(value);
acpigen_pop_len(); /* Method */
}
/* Writes out 'count' ZEROs in a row */
static void write_zeros(int count)
{
for (; count; --count)
acpigen_write_integer(0);
}
/* Return the assigned namestring of any participant */
static const char *namestring_of(enum dptf_participant participant)
{
switch (participant) {
case DPTF_CPU:
return "TCPU";
case DPTF_CHARGER:
return "TCHG";
case DPTF_FAN:
return "TFN1";
case DPTF_FAN_2:
return "TFN2";
case DPTF_TEMP_SENSOR_0:
return "TSR0";
case DPTF_TEMP_SENSOR_1:
return "TSR1";
case DPTF_TEMP_SENSOR_2:
return "TSR2";
case DPTF_TEMP_SENSOR_3:
return "TSR3";
case DPTF_TEMP_SENSOR_4:
return "TSR4";
case DPTF_TPCH:
return "TPCH";
case DPTF_POWER:
return "TPWR";
case DPTF_BATTERY:
return "TBAT";
default:
return "";
}
}
/* Helper to get Scope for participants underneath \_SB.DPTF */
static const char *scope_of(enum dptf_participant participant)
{
static char scope[16];
if (participant == DPTF_CPU)
snprintf(scope, sizeof(scope), TCPU_SCOPE ".%s", namestring_of(participant));
else
snprintf(scope, sizeof(scope), DPTF_DEVICE_PATH ".%s",
namestring_of(participant));
return scope;
}
/*
* Most of the DPTF participants are underneath the \_SB.DPTF scope, so we can just get away
* with using the simple namestring for references, but the TCPU has a different scope, so
* either an absolute or relative path must be used instead.
*/
static const char *path_of(enum dptf_participant participant)
{
if (participant == DPTF_CPU)
return scope_of(participant);
else
return namestring_of(participant);
}
/* Write out scope of a participant */
void dptf_write_scope(enum dptf_participant participant)
{
acpigen_write_scope(scope_of(participant));
}
/*
* This table describes active cooling relationships between the system's fan and the
* temperature sensors that it can have an effect on. As ever-increasing temperature thresholds
* are crossed (_AC9.._AC0, low to high), the corresponding fan percentages listed in this table
* are used to increase the speed of the fan in order to speed up cooling.
*/
static void write_active_relationship_table(const struct dptf_active_policy *policies,
int max_count, bool dptf_multifan_support)
{
char *pkg_count;
int i, j;
/* Nothing to do */
if (!max_count || policies[0].target == DPTF_NONE)
return;
acpigen_write_scope(DPTF_DEVICE_PATH);
acpigen_write_method("_ART", 0);
/* Return this package */
acpigen_emit_byte(RETURN_OP);
/* Keep track of items added to the package */
pkg_count = acpigen_write_package(1); /* The '1' here is for the revision */
acpigen_write_integer(ART_REVISION);
for (i = 0; i < max_count; ++i) {
/*
* These have to be filled out from AC0 down to AC9, filling in only as many
* as are used. As soon as one isn't filled in, we're done.
*/
if (policies[i].target == DPTF_NONE)
break;
(*pkg_count)++;
/* Source, Target, Percent, Fan % for each of _AC0 ... _AC9 */
acpigen_write_package(13);
if (dptf_multifan_support)
acpigen_emit_namestring(path_of(policies[i].source));
else
acpigen_emit_namestring(path_of(DPTF_FAN));
acpigen_emit_namestring(path_of(policies[i].target));
acpigen_write_integer(DEFAULT_IF_0(policies[i].weight, DEFAULT_WEIGHT));
/* Write out fan %; corresponds with target's _ACx methods */
for (j = 0; j < DPTF_MAX_ART_THRESHOLDS; ++j)
acpigen_write_integer(policies[i].thresholds[j].fan_pct);
acpigen_pop_len(); /* inner Package */
}
acpigen_pop_len(); /* outer Package */
acpigen_pop_len(); /* Method _ART */
acpigen_pop_len(); /* Scope */
}
/*
* _AC9 through _AC0 represent temperature thresholds, in increasing order, defined from _AC0
* down, that, when reached, DPTF will activate TFN1 in order to actively cool the temperature
* sensor(s). As increasing thresholds are reached, the fan is spun faster.
*/
static void write_active_cooling_methods(const struct dptf_active_policy *policies,
int max_count)
{
char name[5];
int i, j;
/* Nothing to do */
if (!max_count || policies[0].target == DPTF_NONE)
return;
for (i = 0; i < max_count; ++i) {
if (policies[i].target == DPTF_NONE)
break;
dptf_write_scope(policies[i].target);
/* Write out as many of _AC0 through _AC9 that are applicable */
for (j = 0; j < DPTF_MAX_ACX; ++j) {
if (!policies[i].thresholds[j].temp)
break;
snprintf(name, sizeof(name), "_AC%1X", j);
write_simple_return_method(name, to_acpi_temp(
policies[i].thresholds[j].temp));
}
acpigen_pop_len(); /* Scope */
}
}
void dptf_write_active_policies(const struct dptf_active_policy *policies,
int max_count, bool dptf_multifan_support)
{
write_active_relationship_table(policies, max_count, dptf_multifan_support);
write_active_cooling_methods(policies, max_count);
}
/*
* This writes out the Thermal Relationship Table, which describes the thermal relationships
* between participants in a thermal zone. This information is used to passively cool (i.e.,
* throttle) the Source (source of heat), in order to indirectly cool the Target (temperature
* sensor).
*/
static void write_thermal_relationship_table(const struct dptf_passive_policy *policies,
int max_count)
{
char *pkg_count;
int i;
/* Nothing to do */
if (!max_count || policies[0].source == DPTF_NONE)
return;
acpigen_write_scope(DPTF_DEVICE_PATH);
/*
* A _TRT Revision (TRTR) of 1 means that the 'Priority' field is an arbitrary priority
* value to be used for this specific relationship. The priority value determines the
* order in which various sources are used in a passive thermal action for a given
* target.
*/
acpigen_write_name_integer("TRTR", 1);
/* Thermal Relationship Table */
acpigen_write_method("_TRT", 0);
/* Return this package */
acpigen_emit_byte(RETURN_OP);
pkg_count = acpigen_write_package(0);
for (i = 0; i < max_count; ++i) {
/* Stop writing the table once an entry is empty */
if (policies[i].source == DPTF_NONE)
break;
/* Keep track of outer package item count */
(*pkg_count)++;
acpigen_write_package(8);
/* Source, Target, Priority, Sampling Period */
acpigen_emit_namestring(path_of(policies[i].source));
acpigen_emit_namestring(path_of(policies[i].target));
acpigen_write_integer(DEFAULT_IF_0(policies[i].priority, DEFAULT_PRIORITY));
acpigen_write_integer(to_acpi_time(policies[i].period));
/* Reserved */
write_zeros(4);
acpigen_pop_len(); /* Package */
}
acpigen_pop_len(); /* Package */
acpigen_pop_len(); /* Method */
acpigen_pop_len(); /* Scope */
}
/*
* When a temperature sensor measures above its the temperature returned in its _PSV Method,
* DPTF will begin throttling Sources in order to indirectly cool the sensor.
*/
static void write_all_PSV(const struct dptf_passive_policy *policies, int max_count)
{
int i;
for (i = 0; i < max_count; ++i) {
if (policies[i].source == DPTF_NONE)
break;
dptf_write_scope(policies[i].target);
write_simple_return_method("_PSV", to_acpi_temp(policies[i].temp));
acpigen_pop_len(); /* Scope */
}
}
void dptf_write_passive_policies(const struct dptf_passive_policy *policies, int max_count)
{
write_thermal_relationship_table(policies, max_count);
write_all_PSV(policies, max_count);
}
void dptf_write_critical_policies(const struct dptf_critical_policy *policies, int max_count)
{
int i;
for (i = 0; i < max_count; ++i) {
if (policies[i].source == DPTF_NONE)
break;
dptf_write_scope(policies[i].source);
/* Choose _CRT or _HOT */
write_simple_return_method(policies[i].type == DPTF_CRITICAL_SHUTDOWN ?
"_CRT" : "_HOT", to_acpi_temp(policies[i].temp));
acpigen_pop_len(); /* Scope */
}
}
void dptf_write_charger_perf(const struct dptf_charger_perf *states, int max_count)
{
char *pkg_count;
int i;
if (!max_count || !states[0].control)
return;
dptf_write_scope(DPTF_CHARGER);
/* PPSS - Participant Performance Supported States */
acpigen_write_method("PPSS", 0);
acpigen_emit_byte(RETURN_OP);
pkg_count = acpigen_write_package(0);
for (i = 0; i < max_count; ++i) {
if (!states[i].control)
break;
(*pkg_count)++;
/*
* 0, 0, 0, 0, # Reserved
* Control, Raw Performance, Raw Unit, 0 # Reserved
*/
acpigen_write_package(8);
write_zeros(4);
acpigen_write_integer(states[i].control);
acpigen_write_integer(states[i].raw_perf);
acpigen_write_string(DEFAULT_RAW_UNIT);
acpigen_write_integer(0);
acpigen_pop_len(); /* inner Package */
}
acpigen_pop_len(); /* outer Package */
acpigen_pop_len(); /* Method PPSS */
acpigen_pop_len(); /* Scope */
}
int dptf_write_fan_perf_fps(uint8_t percent, uint16_t power, uint16_t speed,
uint16_t noise_level)
{
/*
* Some _FPS tables do include a last entry where Percent is 0, but Power is
* called out, so this table is finished when both are zero.
*/
if (!percent && !power)
return 1;
acpigen_write_package(5);
acpigen_write_integer(percent);
acpigen_write_integer(DEFAULT_TRIP_POINT);
acpigen_write_integer(speed);
acpigen_write_integer(noise_level);
acpigen_write_integer(power);
acpigen_pop_len(); /* inner Package */
return 0;
}
void dptf_write_fan_perf(const struct dptf_fan_perf *states, int max_count,
enum dptf_participant participant)
{
char *pkg_count;
int i;
if (!max_count || !states[0].percent)
return;
dptf_write_scope(participant);
/* _FPS - Fan Performance States */
acpigen_write_name("_FPS");
pkg_count = acpigen_write_package(1); /* 1 for Revision */
acpigen_write_integer(FPS_REVISION); /* revision */
for (i = 0; i < max_count; ++i) {
(*pkg_count)++;
if (dptf_write_fan_perf_fps(states[i].percent, states[i].power,
states[i].speed, states[i].noise_level))
break;
}
acpigen_pop_len(); /* Package */
acpigen_pop_len(); /* Scope */
}
void dptf_write_multifan_perf(
const struct dptf_multifan_perf
states[DPTF_MAX_FAN_PARTICIPANTS][DPTF_MAX_FAN_PERF_STATES],
int max_count, enum dptf_participant participant, int fan_num)
{
char *pkg_count;
int i;
if (!max_count || !states[fan_num][0].percent)
return;
dptf_write_scope(participant);
/* _FPS - Fan Performance States */
acpigen_write_name("_FPS");
pkg_count = acpigen_write_package(1); /* 1 for Revision */
acpigen_write_integer(FPS_REVISION); /* revision */
for (i = 0; i < max_count; ++i) {
(*pkg_count)++;
if (dptf_write_fan_perf_fps(states[fan_num][i].percent, states[fan_num][i].power,
states[fan_num][i].speed, states[fan_num][i].noise_level))
break;
}
acpigen_pop_len(); /* Package */
acpigen_pop_len(); /* Scope */
}
void dptf_write_power_limits(const struct dptf_power_limits *limits)
{
char *pkg_count;
/* Nothing to do */
if (!limits->pl1.min_power && !limits->pl2.min_power)
return;
dptf_write_scope(DPTF_CPU);
acpigen_write_method("PPCC", 0);
acpigen_emit_byte(RETURN_OP);
pkg_count = acpigen_write_package(1); /* 1 for the Revision */
acpigen_write_integer(PPCC_REVISION); /* revision */
if (limits->pl1.min_power) {
(*pkg_count)++;
acpigen_write_package(6);
acpigen_write_integer(RAPL_PL1_INDEX);
acpigen_write_integer(limits->pl1.min_power);
acpigen_write_integer(limits->pl1.max_power);
acpigen_write_integer(limits->pl1.time_window_min);
acpigen_write_integer(limits->pl1.time_window_max);
acpigen_write_integer(limits->pl1.granularity);
acpigen_pop_len(); /* inner Package */
}
if (limits->pl2.min_power) {
(*pkg_count)++;
acpigen_write_package(6);
acpigen_write_integer(RAPL_PL2_INDEX);
acpigen_write_integer(limits->pl2.min_power);
acpigen_write_integer(limits->pl2.max_power);
acpigen_write_integer(limits->pl2.time_window_min);
acpigen_write_integer(limits->pl2.time_window_max);
acpigen_write_integer(limits->pl2.granularity);
acpigen_pop_len(); /* inner Package */
}
acpigen_pop_len(); /* outer Package */
acpigen_pop_len(); /* Method */
acpigen_pop_len(); /* Scope */
}
void dptf_write_STR(const char *str)
{
if (!str)
return;
acpigen_write_name_string("_STR", str);
}
void dptf_write_fan_options(bool fine_grained, int step_size, bool low_speed_notify)
{
acpigen_write_name("_FIF");
acpigen_write_package(4);
acpigen_write_integer(0); /* Revision */
acpigen_write_integer(fine_grained);
acpigen_write_integer(step_size);
acpigen_write_integer(low_speed_notify);
acpigen_pop_len(); /* Package */
}
void dptf_write_tsr_hysteresis(uint8_t hysteresis)
{
if (!hysteresis)
return;
acpigen_write_name_integer("GTSH", hysteresis);
}
void dptf_write_enabled_policies(const struct dptf_active_policy *active_policies,
int active_count,
const struct dptf_passive_policy *passive_policies,
int passive_count,
const struct dptf_critical_policy *critical_policies,
int critical_count)
{
bool is_active_used;
bool is_passive_used;
bool is_critical_used;
int pkg_count;
is_active_used = (active_count && active_policies[0].target != DPTF_NONE);
is_passive_used = (passive_count && passive_policies[0].target != DPTF_NONE);
is_critical_used = (critical_count && critical_policies[0].source != DPTF_NONE);
pkg_count = is_active_used + is_passive_used + is_critical_used;
if (!pkg_count)
return;
acpigen_write_scope(DPTF_DEVICE_PATH);
acpigen_write_name("IDSP");
acpigen_write_package(pkg_count);
if (is_active_used)
acpigen_write_uuid(DPTF_ACTIVE_POLICY_UUID);
if (is_passive_used)
acpigen_write_uuid(DPTF_PASSIVE_POLICY_1_0_UUID);
if (is_critical_used)
acpigen_write_uuid(DPTF_CRITICAL_POLICY_UUID);
acpigen_pop_len(); /* Package */
acpigen_pop_len(); /* Scope */
}