coreboot-kgpe-d16/src/soc/amd/stoneyridge/sb_util.c
Marshall Dawson 50cc53d0a9 amd/stoneyridge: Convert BiosRam access to MMIO
Change the BiosRam read/write functions to use the fixed MMIO range at
0xfed80500.  This is faster than two accesses per byte when using I/O
0xcd4/0xcd5.

Note that BiosRam may only be accessed byte-by-byte.  It does not decode
normally.

Change-Id: I9d8baf2bd5d9d48a87bddfb6a0b86e292a8fdf7d
Signed-off-by: Marshall Dawson <marshalldawson3rd@gmail.com>
Reviewed-on: https://review.coreboot.org/23436
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
2018-01-26 22:38:05 +00:00

166 lines
3.4 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/acpi.h>
#include <soc/southbridge.h>
void pm_write8(u8 reg, u8 value)
{
write8((void *)(PM_MMIO_BASE + reg), value);
}
u8 pm_read8(u8 reg)
{
return read8((void *)(PM_MMIO_BASE + reg));
}
void pm_write16(u8 reg, u16 value)
{
write16((void *)(PM_MMIO_BASE + reg), value);
}
u16 pm_read16(u8 reg)
{
return read16((void *)(PM_MMIO_BASE + reg));
}
void pm_write32(u8 reg, u32 value)
{
write32((void *)(PM_MMIO_BASE + reg), value);
}
u32 pm_read32(u8 reg)
{
return read32((void *)(PM_MMIO_BASE + reg));
}
void smi_write32(uint8_t offset, uint32_t value)
{
write32((void *)(APU_SMI_BASE + offset), value);
}
uint32_t smi_read32(uint8_t offset)
{
return read32((void *)(APU_SMI_BASE + offset));
}
uint16_t smi_read16(uint8_t offset)
{
return read16((void *)(APU_SMI_BASE + offset));
}
void smi_write16(uint8_t offset, uint16_t value)
{
write16((void *)(APU_SMI_BASE + offset), value);
}
uint8_t smi_read8(uint8_t offset)
{
return read8((void *)(APU_SMI_BASE + offset));
}
void smi_write8(uint8_t offset, uint8_t value)
{
write8((void *)(APU_SMI_BASE + offset), value);
}
uint8_t biosram_read8(uint8_t offset)
{
return read8((void *)(BIOSRAM_MMIO_BASE + offset));
}
void biosram_write8(uint8_t offset, uint8_t value)
{
write8((void *)(BIOSRAM_MMIO_BASE + offset), value);
}
/* BiosRam may only be accessed a byte at a time */
uint16_t biosram_read16(uint8_t offset)
{
int i;
uint16_t value = 0;
for (i = sizeof(value) - 1 ; i >= 0 ; i--)
value = (value << 8) | biosram_read8(offset + i);
return value;
}
uint32_t biosram_read32(uint8_t offset)
{
uint32_t value = biosram_read16(offset + sizeof(uint16_t)) << 16;
return value | biosram_read16(offset);
}
void biosram_write16(uint8_t offset, uint16_t value)
{
int i;
for (i = 0 ; i < sizeof(value) ; i++) {
biosram_write8(offset + i, value & 0xff);
value >>= 8;
}
}
void biosram_write32(uint8_t offset, uint32_t value)
{
int i;
for (i = 0 ; i < sizeof(value) ; i++) {
biosram_write8(offset + i, value & 0xff);
value >>= 8;
}
}
uint16_t pm_acpi_pm_cnt_blk(void)
{
return pm_read16(PM1_CNT_BLK);
}
uint16_t pm_acpi_pm_evt_blk(void)
{
return pm_read16(PM_EVT_BLK);
}
void xhci_pm_write8(uint8_t reg, uint8_t value)
{
write8((void *)(XHCI_ACPI_PM_MMIO_BASE + reg), value);
}
uint8_t xhci_pm_read8(uint8_t reg)
{
return read8((void *)(XHCI_ACPI_PM_MMIO_BASE + reg));
}
void xhci_pm_write16(uint8_t reg, uint16_t value)
{
write16((void *)(XHCI_ACPI_PM_MMIO_BASE + reg), value);
}
uint16_t xhci_pm_read16(uint8_t reg)
{
return read16((void *)(XHCI_ACPI_PM_MMIO_BASE + reg));
}
void xhci_pm_write32(uint8_t reg, uint32_t value)
{
write32((void *)(XHCI_ACPI_PM_MMIO_BASE + reg), value);
}
uint32_t xhci_pm_read32(uint8_t reg)
{
return read32((void *)(XHCI_ACPI_PM_MMIO_BASE + reg));
}
int acpi_get_sleep_type(void)
{
return acpi_sleep_from_pm1(inw(pm_acpi_pm_cnt_blk()));
}