b78c1972fe
be in place but don't expect anything to quite work yet. git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1662 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
881 lines
25 KiB
C
881 lines
25 KiB
C
/*
|
|
* PCI Bus Services, see include/linux/pci.h for further explanation.
|
|
*
|
|
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
|
|
* David Mosberger-Tang
|
|
*
|
|
* Copyright 1997 -- 1999 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
|
|
*
|
|
* Copyright 2003 -- Eric Biederman <ebiederman@lnxi.com>
|
|
*/
|
|
|
|
#include <console/console.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <bitops.h>
|
|
#include <string.h>
|
|
#include <arch/io.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <device/pci_ids.h>
|
|
#include <device/chip.h>
|
|
#include <part/hard_reset.h>
|
|
#include <part/fallback_boot.h>
|
|
|
|
/** Given a device and register, read the size of the BAR for that register.
|
|
* @param dev Pointer to the device structure
|
|
* @param resource Pointer to the resource structure
|
|
* @param index Address of the pci configuration register
|
|
*/
|
|
static struct resource *pci_get_resource(struct device *dev, unsigned long index)
|
|
{
|
|
struct resource *resource;
|
|
uint32_t addr, size, base;
|
|
unsigned long type;
|
|
|
|
/* Initialize the resources to nothing */
|
|
resource = get_resource(dev, index);
|
|
|
|
addr = pci_read_config32(dev, index);
|
|
|
|
/* FIXME: more consideration for 64-bit PCI devices,
|
|
* we currently detect their size but otherwise
|
|
* treat them as 32-bit resources
|
|
*/
|
|
/* get the size */
|
|
pci_write_config32(dev, index, ~0);
|
|
size = pci_read_config32(dev, index);
|
|
|
|
/* get the minimum value the bar can be set to */
|
|
pci_write_config32(dev, index, 0);
|
|
base = pci_read_config32(dev, index);
|
|
|
|
/* restore addr */
|
|
pci_write_config32(dev, index, addr);
|
|
|
|
/*
|
|
* some broken hardware has read-only registers that do not
|
|
* really size correctly. You can tell this if addr == size
|
|
* Example: the acer m7229 has BARs 1-4 normally read-only.
|
|
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
|
|
* by writing 0xffffffff to it, it will read back as 0x1f1 -- a
|
|
* violation of the spec.
|
|
* We catch this case and ignore it by settting size and type to 0.
|
|
* This incidentally catches the common case where registers
|
|
* read back as 0 for both address and size.
|
|
*/
|
|
if ((addr == size) && (addr == base)) {
|
|
if (size != 0) {
|
|
printk_debug(
|
|
"%s register %02x(%08x), read-only ignoring it\n",
|
|
dev_path(dev),
|
|
index, addr);
|
|
}
|
|
resource->flags = 0;
|
|
}
|
|
/* Now compute the actual size, See PCI Spec 6.2.5.1 ... */
|
|
else if (size & PCI_BASE_ADDRESS_SPACE_IO) {
|
|
type = size & (~PCI_BASE_ADDRESS_IO_MASK);
|
|
/* BUG! Top 16 bits can be zero (or not)
|
|
* So set them to 0xffff so they go away ...
|
|
*/
|
|
resource->size = (~((size | 0xffff0000) & PCI_BASE_ADDRESS_IO_MASK)) +1;
|
|
resource->align = log2(resource->size);
|
|
resource->gran = resource->align;
|
|
resource->flags |= IORESOURCE_IO;
|
|
resource->limit = 0xffff;
|
|
}
|
|
else {
|
|
/* A Memory mapped base address */
|
|
type = size & (~PCI_BASE_ADDRESS_MEM_MASK);
|
|
resource->size = (~(size &PCI_BASE_ADDRESS_MEM_MASK)) +1;
|
|
resource->align = log2(resource->size);
|
|
resource->gran = resource->align;
|
|
resource->flags |= IORESOURCE_MEM;
|
|
if (type & PCI_BASE_ADDRESS_MEM_PREFETCH) {
|
|
resource->flags |= IORESOURCE_PREFETCH;
|
|
}
|
|
type &= PCI_BASE_ADDRESS_MEM_TYPE_MASK;
|
|
if (type == PCI_BASE_ADDRESS_MEM_TYPE_32) {
|
|
/* 32bit limit */
|
|
resource->limit = 0xffffffffUL;
|
|
}
|
|
else if (type == PCI_BASE_ADDRESS_MEM_TYPE_1M) {
|
|
/* 1MB limit */
|
|
resource->limit = 0x000fffffUL;
|
|
}
|
|
else if (type == PCI_BASE_ADDRESS_MEM_TYPE_64) {
|
|
unsigned long index_hi;
|
|
/* 64bit limit
|
|
* For now just treat this as a 32bit limit
|
|
*/
|
|
index_hi = index + 4;
|
|
resource->limit = 0xffffffffUL;
|
|
resource->flags |= IORESOURCE_PCI64;
|
|
addr = pci_read_config32( dev, index_hi);
|
|
/* get the extended size */
|
|
pci_write_config32(dev, index_hi, 0xffffffffUL);
|
|
size = pci_read_config32( dev, index_hi);
|
|
|
|
/* get the minimum value the bar can be set to */
|
|
pci_write_config32(dev, index_hi, 0);
|
|
base = pci_read_config32(dev, index_hi);
|
|
|
|
/* restore addr */
|
|
pci_write_config32(dev, index_hi, addr);
|
|
|
|
if ((size == 0xffffffff) && (base == 0)) {
|
|
/* Clear the top half of the bar */
|
|
pci_write_config32(dev, index_hi, 0);
|
|
}
|
|
else {
|
|
printk_err("%s Unable to handle 64-bit address\n",
|
|
dev_path(dev));
|
|
resource->flags = IORESOURCE_PCI64;
|
|
}
|
|
}
|
|
else {
|
|
/* Invalid value */
|
|
resource->flags = 0;
|
|
}
|
|
}
|
|
/* dev->size holds the flags... */
|
|
return resource;
|
|
}
|
|
|
|
/** Read the base address registers for a given device.
|
|
* @param dev Pointer to the dev structure
|
|
* @param howmany How many registers to read (6 for device, 2 for bridge)
|
|
*/
|
|
static void pci_read_bases(struct device *dev, unsigned int howmany)
|
|
{
|
|
unsigned long index;
|
|
|
|
for(index = PCI_BASE_ADDRESS_0; (index < PCI_BASE_ADDRESS_0 + (howmany << 2)); ) {
|
|
struct resource *resource;
|
|
resource = pci_get_resource(dev, index);
|
|
index += (resource->flags & IORESOURCE_PCI64)?8:4;
|
|
}
|
|
compact_resources(dev);
|
|
}
|
|
|
|
static void pci_bridge_read_bases(struct device *dev)
|
|
{
|
|
struct resource *resource;
|
|
|
|
/* FIXME handle bridges without some of the optional resources */
|
|
|
|
/* Initialize the io space constraints on the current bus */
|
|
resource = get_resource(dev, PCI_IO_BASE);
|
|
resource->size = 0;
|
|
resource->align = log2(PCI_IO_BRIDGE_ALIGN);
|
|
resource->gran = log2(PCI_IO_BRIDGE_ALIGN);
|
|
resource->limit = 0xffffUL;
|
|
resource->flags |= IORESOURCE_IO | IORESOURCE_PCI_BRIDGE;
|
|
compute_allocate_resource(&dev->link[0], resource,
|
|
IORESOURCE_IO, IORESOURCE_IO);
|
|
|
|
/* Initiliaze the prefetchable memory constraints on the current bus */
|
|
resource = get_resource(dev, PCI_PREF_MEMORY_BASE);
|
|
resource->size = 0;
|
|
resource->align = log2(PCI_MEM_BRIDGE_ALIGN);
|
|
resource->gran = log2(PCI_MEM_BRIDGE_ALIGN);
|
|
resource->limit = 0xffffffffUL;
|
|
resource->flags = IORESOURCE_MEM | IORESOURCE_PREFETCH | IORESOURCE_PCI_BRIDGE;
|
|
resource->index = PCI_PREF_MEMORY_BASE;
|
|
compute_allocate_resource(&dev->link[0], resource,
|
|
IORESOURCE_MEM | IORESOURCE_PREFETCH,
|
|
IORESOURCE_MEM | IORESOURCE_PREFETCH);
|
|
|
|
/* Initialize the memory resources on the current bus */
|
|
resource = get_resource(dev, PCI_MEMORY_BASE);
|
|
resource->size = 0;
|
|
resource->align = log2(PCI_MEM_BRIDGE_ALIGN);
|
|
resource->gran = log2(PCI_MEM_BRIDGE_ALIGN);
|
|
resource->limit = 0xffffffffUL;
|
|
resource->flags = IORESOURCE_MEM | IORESOURCE_PCI_BRIDGE;
|
|
compute_allocate_resource(&dev->link[0], resource,
|
|
IORESOURCE_MEM | IORESOURCE_PREFETCH,
|
|
IORESOURCE_MEM);
|
|
|
|
compact_resources(dev);
|
|
}
|
|
|
|
void pci_dev_read_resources(struct device *dev)
|
|
{
|
|
uint32_t addr;
|
|
|
|
pci_read_bases(dev, 6);
|
|
|
|
addr = pci_read_config32(dev, PCI_ROM_ADDRESS);
|
|
dev->rom_address = (addr == 0xffffffff)? 0 : addr;
|
|
}
|
|
|
|
void pci_bus_read_resources(struct device *dev)
|
|
{
|
|
uint32_t addr;
|
|
|
|
pci_bridge_read_bases(dev);
|
|
pci_read_bases(dev, 2);
|
|
|
|
addr = pci_read_config32(dev, PCI_ROM_ADDRESS1);
|
|
dev->rom_address = (addr == 0xffffffff)? 0 : addr;
|
|
}
|
|
|
|
/**
|
|
* @brief round a number up to the next multiple of gran
|
|
* @param val the starting value
|
|
* @param gran granularity we are aligning the number to.
|
|
* @returns aligned value
|
|
*/
|
|
static unsigned long align(unsigned long val, unsigned long gran)
|
|
{
|
|
/* GRAN MUST BE A POWER OF TWO. */
|
|
unsigned long mask;
|
|
mask = ~(gran - 1);
|
|
val += (gran - 1);
|
|
val &= mask;
|
|
return val;
|
|
}
|
|
|
|
static void pci_set_resource(struct device *dev, struct resource *resource)
|
|
{
|
|
unsigned long base, limit;
|
|
unsigned char buf[10];
|
|
unsigned long gran;
|
|
|
|
/* Make certain the resource has actually been set */
|
|
if (!(resource->flags & IORESOURCE_ASSIGNED)) {
|
|
printk_err("ERROR: %s %02x not allocated\n",
|
|
dev_path(dev), resource->index);
|
|
return;
|
|
}
|
|
|
|
/* If I have already stored this resource don't worry about it */
|
|
if (resource->flags & IORESOURCE_STORED) {
|
|
return;
|
|
}
|
|
|
|
/* Only handle PCI memory and IO resources for now */
|
|
if (!(resource->flags & (IORESOURCE_MEM |IORESOURCE_IO)))
|
|
return;
|
|
|
|
if (resource->flags & IORESOURCE_MEM) {
|
|
dev->command |= PCI_COMMAND_MEMORY;
|
|
}
|
|
if (resource->flags & IORESOURCE_IO) {
|
|
dev->command |= PCI_COMMAND_IO;
|
|
}
|
|
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
|
|
dev->command |= PCI_COMMAND_MASTER;
|
|
}
|
|
/* Get the base address */
|
|
base = resource->base;
|
|
/* Get the resource granularity */
|
|
gran = 1UL << resource->gran;
|
|
|
|
/* For a non bridge resource granularity and alignment are the same.
|
|
* For a bridge resource align is the largest needed alignment below
|
|
* the bridge. While the granularity is simply how many low bits of the
|
|
* address cannot be set.
|
|
*/
|
|
|
|
/* Get the limit (rounded up) */
|
|
limit = base + align(resource->size, gran) - 1UL;
|
|
|
|
/* Now store the resource */
|
|
resource->flags |= IORESOURCE_STORED;
|
|
if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
|
|
/*
|
|
* some chipsets allow us to set/clear the IO bit.
|
|
* (e.g. VIA 82c686a.) So set it to be safe)
|
|
*/
|
|
limit = base + resource->size -1;
|
|
if (resource->flags & IORESOURCE_IO) {
|
|
base |= PCI_BASE_ADDRESS_SPACE_IO;
|
|
}
|
|
pci_write_config32(dev, resource->index, base & 0xffffffff);
|
|
if (resource->flags & IORESOURCE_PCI64) {
|
|
/* FIXME handle real 64bit base addresses */
|
|
pci_write_config32(dev, resource->index + 4, 0);
|
|
}
|
|
}
|
|
else if (resource->index == PCI_IO_BASE) {
|
|
/* set the IO ranges
|
|
* WARNING: we don't really do 32-bit addressing for IO yet!
|
|
*/
|
|
compute_allocate_resource(&dev->link[0], resource,
|
|
IORESOURCE_IO, IORESOURCE_IO);
|
|
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
|
|
pci_write_config8(dev, PCI_IO_LIMIT, limit >> 8);
|
|
pci_write_config16(dev, PCI_IO_BASE_UPPER16, 0);
|
|
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, 0);
|
|
}
|
|
else if (resource->index == PCI_MEMORY_BASE) {
|
|
/* set the memory range
|
|
*/
|
|
compute_allocate_resource(&dev->link[0], resource,
|
|
IORESOURCE_MEM | IORESOURCE_PREFETCH,
|
|
IORESOURCE_MEM);
|
|
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
|
|
pci_write_config16(dev, PCI_MEMORY_LIMIT, limit >> 16);
|
|
}
|
|
else if (resource->index == PCI_PREF_MEMORY_BASE) {
|
|
/* set the prefetchable memory range
|
|
* WARNING: we don't really do 64-bit addressing
|
|
* for prefetchable memory yet!
|
|
*/
|
|
compute_allocate_resource(&dev->link[0], resource,
|
|
IORESOURCE_MEM | IORESOURCE_PREFETCH,
|
|
IORESOURCE_MEM | IORESOURCE_PREFETCH);
|
|
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
|
|
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, limit >> 16);
|
|
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, 0);
|
|
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, 0);
|
|
}
|
|
else {
|
|
/* Don't let me think I stored the resource */
|
|
resource->flags &= ~IORESOURCE_STORED;
|
|
printk_err("ERROR: invalid resource->index %x\n",
|
|
resource->index);
|
|
}
|
|
buf[0] = '\0';
|
|
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
|
|
sprintf(buf, "bus %d ", dev->link[0].secondary);
|
|
}
|
|
printk_debug(
|
|
"%s %02x <- [0x%08lx - 0x%08lx] %s%s\n",
|
|
dev_path(dev),
|
|
resource->index,
|
|
(unsigned long)(resource->base), limit,
|
|
buf,
|
|
(resource->flags & IORESOURCE_IO)? "io":
|
|
(resource->flags & IORESOURCE_PREFETCH)? "prefmem": "mem");
|
|
return;
|
|
}
|
|
|
|
void pci_dev_set_resources(struct device *dev)
|
|
{
|
|
struct resource *resource, *last;
|
|
unsigned link;
|
|
uint8_t line;
|
|
|
|
last = &dev->resource[dev->resources];
|
|
|
|
for(resource = &dev->resource[0]; resource < last; resource++) {
|
|
pci_set_resource(dev, resource);
|
|
}
|
|
for(link = 0; link < dev->links; link++) {
|
|
struct bus *bus;
|
|
bus = &dev->link[link];
|
|
if (bus->children) {
|
|
assign_resources(bus);
|
|
}
|
|
}
|
|
|
|
/* set a default latency timer */
|
|
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
|
|
|
|
/* set a default secondary latency timer */
|
|
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE) {
|
|
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
|
|
}
|
|
|
|
/* zero the irq settings */
|
|
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
|
|
if (line) {
|
|
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
|
|
}
|
|
/* set the cache line size, so far 64 bytes is good for everyone */
|
|
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
|
|
}
|
|
|
|
void pci_dev_enable_resources(struct device *dev)
|
|
{
|
|
uint16_t command;
|
|
command = pci_read_config16(dev, PCI_COMMAND);
|
|
command |= dev->command;
|
|
command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); /* error check */
|
|
printk_debug("%s cmd <- %02x\n", dev_path(dev), command);
|
|
pci_write_config16(dev, PCI_COMMAND, command);
|
|
|
|
enable_childrens_resources(dev);
|
|
}
|
|
|
|
void pci_bus_enable_resources(struct device *dev)
|
|
{
|
|
uint16_t ctrl;
|
|
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
|
|
ctrl |= dev->link[0].bridge_ctrl;
|
|
ctrl |= (PCI_BRIDGE_CTL_PARITY + PCI_BRIDGE_CTL_SERR); /* error check */
|
|
printk_debug("%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
|
|
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
|
|
|
|
pci_dev_enable_resources(dev);
|
|
}
|
|
|
|
/** Default device operation for PCI devices */
|
|
struct device_operations default_pci_ops_dev = {
|
|
.read_resources = pci_dev_read_resources,
|
|
.set_resources = pci_dev_set_resources,
|
|
.enable_resources = pci_dev_enable_resources,
|
|
.init = 0,
|
|
.scan_bus = 0,
|
|
};
|
|
|
|
/** Default device operations for PCI bridges */
|
|
struct device_operations default_pci_ops_bus = {
|
|
.read_resources = pci_bus_read_resources,
|
|
.set_resources = pci_dev_set_resources,
|
|
.enable_resources = pci_bus_enable_resources,
|
|
.init = 0,
|
|
.scan_bus = pci_scan_bridge,
|
|
};
|
|
|
|
/**
|
|
* @brief Set up PCI device operation
|
|
*
|
|
*
|
|
* @param dev
|
|
*
|
|
* @see pci_drivers
|
|
*/
|
|
static void set_pci_ops(struct device *dev)
|
|
{
|
|
struct pci_driver *driver;
|
|
|
|
if (dev->ops) {
|
|
return;
|
|
}
|
|
|
|
/* Look through the list of setup drivers and find one for
|
|
* this pci device
|
|
*/
|
|
for(driver = &pci_drivers[0]; driver != &epci_drivers[0]; driver++) {
|
|
if ((driver->vendor == dev->vendor) &&
|
|
(driver->device == dev->device))
|
|
{
|
|
dev->ops = driver->ops;
|
|
printk_debug("%s [%04x/%04x] %sops\n",
|
|
dev_path(dev),
|
|
driver->vendor, driver->device,
|
|
(driver->ops->scan_bus?"bus ":""));
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
extern struct pci_driver generic_vga_driver;
|
|
/* TODO: Install generic VGA driver for VGA devices, base on the
|
|
* class ID */
|
|
if ((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA) {
|
|
printk_debug("setting up generic VGA driver\n");
|
|
dev->ops = generic_vga_driver.ops;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* If I don't have a specific driver use the default operations */
|
|
switch(dev->hdr_type & 0x7f) { /* header type */
|
|
case PCI_HEADER_TYPE_NORMAL: /* standard header */
|
|
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
|
|
goto bad;
|
|
dev->ops = &default_pci_ops_dev;
|
|
break;
|
|
case PCI_HEADER_TYPE_BRIDGE:
|
|
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
|
|
goto bad;
|
|
dev->ops = &default_pci_ops_bus;
|
|
break;
|
|
default:
|
|
bad:
|
|
if (dev->enabled) {
|
|
printk_err("%s [%04x/%04x/%06x] has unknown header "
|
|
"type %02x, ignoring.\n",
|
|
dev_path(dev),
|
|
dev->vendor, dev->device,
|
|
dev->class >> 8, dev->hdr_type);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief Find a specific device structure on a list of device structures
|
|
*
|
|
* Given a linked list of PCI device structures and a devfn number, find the
|
|
* device structure correspond to the devfn, if present.
|
|
*
|
|
* @param list the device structure list
|
|
* @param devfn a device/function number
|
|
*
|
|
* @return pointer to the device structure found or null of we have not allocated
|
|
* a device for this devfn yet.
|
|
*/
|
|
static struct device *pci_scan_get_dev(struct device **list, unsigned int devfn)
|
|
{
|
|
struct device *dev;
|
|
|
|
printk_spew("%s, looking for devfn: %02x.%01x\n", __FUNCTION__,
|
|
devfn >> 3, devfn & 7);
|
|
dev = 0;
|
|
for(; *list; list = &(*list)->sibling) {
|
|
if ((*list)->path.type != DEVICE_PATH_PCI) {
|
|
printk_err("child %s not a pci device\n",
|
|
dev_path(*list));
|
|
continue;
|
|
}
|
|
if ((*list)->path.u.pci.devfn == devfn) {
|
|
/* Unlink from the list */
|
|
dev = *list;
|
|
*list = (*list)->sibling;
|
|
dev->sibling = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* Just like alloc_dev add the device to the
|
|
* list of device on the bus. When the list of devices was formed
|
|
* we removed all of the parents children, and now we are interleaving
|
|
* static and dynamic devices in order on the bus.
|
|
*/
|
|
printk_spew("%s, found dev %08x\n", __FUNCTION__, dev);
|
|
if (dev) {
|
|
device_t child;
|
|
/* Find the last child of our parent */
|
|
for(child = dev->bus->children; child && child->sibling; ) {
|
|
child = child->sibling;
|
|
}
|
|
/* Place the device on the list of children of it's parent. */
|
|
if (child) {
|
|
child->sibling = dev;
|
|
} else {
|
|
dev->bus->children = dev;
|
|
}
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
/**
|
|
* @brief Scan a PCI bus.
|
|
*
|
|
* Determine the existence of devices and bridges on a PCI bus. If there are
|
|
* bridges on the bus, recursively scan the buses behind the bridges.
|
|
*
|
|
* This function is the default scan_bus() method for the root device
|
|
* 'dev_root'.
|
|
*
|
|
* @param bus pointer to the bus structure
|
|
* @param min_devfn minimum devfn to look at in the scan usually 0x00
|
|
* @param max_devfn maximum devfn to look at in the scan usually 0xff
|
|
* @param max current bus number
|
|
*
|
|
* @return The maximum bus number found, after scanning all subordinate busses
|
|
*/
|
|
unsigned int pci_scan_bus(struct bus *bus,
|
|
unsigned min_devfn, unsigned max_devfn,
|
|
unsigned int max)
|
|
{
|
|
unsigned int devfn;
|
|
device_t dev;
|
|
device_t old_devices;
|
|
device_t child;
|
|
|
|
printk_debug("PCI: pci_scan_bus for bus %d\n", bus->secondary);
|
|
|
|
old_devices = bus->children;
|
|
bus->children = 0;
|
|
|
|
post_code(0x24);
|
|
|
|
/* probe all devices/functions on this bus with some optimization for
|
|
* non-existence and single funcion devices
|
|
*/
|
|
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
|
|
uint32_t id, class;
|
|
uint8_t hdr_type;
|
|
|
|
/* device structures for PCI devices associated with static
|
|
* devices are already created during the static device
|
|
* enumeration, find out if it is the case for this devfn */
|
|
dev = pci_scan_get_dev(&old_devices, devfn);
|
|
|
|
if (!dev) {
|
|
/* it's not associated with a static device, detect if
|
|
* this device is present */
|
|
struct device dummy;
|
|
dummy.bus = bus;
|
|
dummy.path.type = DEVICE_PATH_PCI;
|
|
dummy.path.u.pci.devfn = devfn;
|
|
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
|
|
/* some broken boards return 0 if a slot is empty: */
|
|
if ( (id == 0xffffffff) || (id == 0x00000000) ||
|
|
(id == 0x0000ffff) || (id == 0xffff0000))
|
|
{
|
|
printk_spew("PCI: devfn 0x%x, bad id 0x%x\n", devfn, id);
|
|
if (PCI_FUNC(devfn) == 0x00) {
|
|
/* if this is a function 0 device and
|
|
* it is not present,
|
|
* skip to next device
|
|
*/
|
|
devfn += 0x07;
|
|
}
|
|
/* This function in a multi function device is
|
|
* not present, skip to the next function.
|
|
*/
|
|
continue;
|
|
}
|
|
dev = alloc_dev(bus, &dummy.path);
|
|
}
|
|
else {
|
|
/* If at all possible enable the device, if desired
|
|
* we will disable the device later, once we have
|
|
* found it's device specific operations.
|
|
*
|
|
* This is geared toward devices that have subfunctions
|
|
* that do not show up by default.
|
|
*
|
|
* If a device is a stuff option on the motherboard
|
|
* it may be absent and enable_dev must cope.
|
|
*
|
|
*/
|
|
if ( dev->chip && dev->chip->control &&
|
|
dev->chip->control->enable_dev)
|
|
{
|
|
int enabled = dev->enabled;
|
|
dev->enabled = 1;
|
|
dev->chip->control->enable_dev(dev);
|
|
dev->enabled = enabled;
|
|
}
|
|
/* Now read the vendor and device id */
|
|
id = pci_read_config32(dev, PCI_VENDOR_ID);
|
|
}
|
|
/* Read the rest of the pci configuration information */
|
|
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
|
|
class = pci_read_config32(dev, PCI_CLASS_REVISION);
|
|
|
|
/* Store the interesting information in the device structure */
|
|
dev->vendor = id & 0xffff;
|
|
dev->device = (id >> 16) & 0xffff;
|
|
dev->hdr_type = hdr_type;
|
|
/* class code, the upper 3 bytes of PCI_CLASS_REVISION */
|
|
dev->class = class >> 8;
|
|
|
|
/* Look at the vendor and device id, or at least the
|
|
* header type and class and figure out which set of
|
|
* configuration methods to use. Unless we already
|
|
* have some pci ops.
|
|
*/
|
|
set_pci_ops(dev);
|
|
/* Error if we don't have some pci operations for it */
|
|
if (!dev->ops) {
|
|
printk_err("%s No device operations\n",
|
|
dev_path(dev));
|
|
continue;
|
|
}
|
|
|
|
/* Now run the magic enable/disable sequence for the device */
|
|
if (dev->ops && dev->ops->enable) {
|
|
dev->ops->enable(dev);
|
|
}
|
|
else if (dev->chip && dev->chip->control &&
|
|
dev->chip->control->enable_dev)
|
|
{
|
|
dev->chip->control->enable_dev(dev);
|
|
}
|
|
|
|
printk_debug("%s [%04x/%04x] %s\n",
|
|
dev_path(dev),
|
|
dev->vendor, dev->device,
|
|
dev->enabled?"enabled": "disabled");
|
|
|
|
if (PCI_FUNC(devfn) == 0x00 && (hdr_type & 0x80) != 0x80) {
|
|
/* if this is not a multi function device,
|
|
* don't waste time probing another function.
|
|
* Skip to next device.
|
|
*/
|
|
devfn += 0x07;
|
|
}
|
|
}
|
|
post_code(0x25);
|
|
|
|
/* For all children that implement scan_bus (i.e. bridges)
|
|
* scan the bus behind that child.
|
|
*/
|
|
for(child = bus->children; child; child = child->sibling) {
|
|
if (!child->enabled ||
|
|
!child->ops ||
|
|
!child->ops->scan_bus)
|
|
{
|
|
continue;
|
|
}
|
|
max = child->ops->scan_bus(child, max);
|
|
}
|
|
|
|
/*
|
|
* We've scanned the bus and so we know all about what's on
|
|
* the other side of any bridges that may be on this bus plus
|
|
* any devices.
|
|
*
|
|
* Return how far we've got finding sub-buses.
|
|
*/
|
|
printk_debug("PCI: pci_scan_bus returning with max=%02x\n", max);
|
|
post_code(0x55);
|
|
return max;
|
|
}
|
|
|
|
/**
|
|
* @brief Scan a PCI bridge and the buses behind the bridge.
|
|
*
|
|
* Determine the existence of buses behind the bridge. Set up the bridge
|
|
* according to the result of the scan.
|
|
*
|
|
* This function is the default scan_bus() method for PCI bridge devices.
|
|
*
|
|
* @param dev pointer to the bridge device
|
|
* @param max the highest bus number assgined up to now
|
|
*
|
|
* @return The maximum bus number found, after scanning all subordinate busses
|
|
*/
|
|
unsigned int pci_scan_bridge(struct device *dev, unsigned int max)
|
|
{
|
|
struct bus *bus;
|
|
uint32_t buses;
|
|
uint16_t cr;
|
|
|
|
bus = &dev->link[0];
|
|
dev->links = 1;
|
|
|
|
/* Set up the primary, secondary and subordinate bus numbers. We have
|
|
* no idea how many buses are behind this bridge yet, so we set the
|
|
* subordinate bus number to 0xff for the moment.
|
|
*/
|
|
bus->secondary = ++max;
|
|
bus->subordinate = 0xff;
|
|
|
|
/* Clear all status bits and turn off memory, I/O and master enables. */
|
|
cr = pci_read_config16(dev, PCI_COMMAND);
|
|
pci_write_config16(dev, PCI_COMMAND, 0x0000);
|
|
pci_write_config16(dev, PCI_STATUS, 0xffff);
|
|
|
|
/*
|
|
* Read the existing primary/secondary/subordinate bus
|
|
* number configuration.
|
|
*/
|
|
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
|
|
|
|
/* Configure the bus numbers for this bridge: the configuration
|
|
* transactions will not be propagated by the bridge if it is not
|
|
* correctly configured.
|
|
*/
|
|
buses &= 0xff000000;
|
|
buses |= (((unsigned int) (dev->bus->secondary) << 0) |
|
|
((unsigned int) (bus->secondary) << 8) |
|
|
((unsigned int) (bus->subordinate) << 16));
|
|
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
|
|
|
|
/* Now we can scan all subordinate buses
|
|
* i.e. the bus behind the bridge.
|
|
*/
|
|
max = pci_scan_bus(bus, 0x00, 0xff, max);
|
|
|
|
/* We know the number of buses behind this bridge. Set the subordinate
|
|
* bus number to its real value.
|
|
*/
|
|
bus->subordinate = max;
|
|
buses = (buses & 0xff00ffff) |
|
|
((unsigned int) (bus->subordinate) << 16);
|
|
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
|
|
pci_write_config16(dev, PCI_COMMAND, cr);
|
|
|
|
printk_spew("%s returns max %d\n", __func__, max);
|
|
return max;
|
|
}
|
|
|
|
/*
|
|
Tell the EISA int controller this int must be level triggered
|
|
THIS IS A KLUDGE -- sorry, this needs to get cleaned up.
|
|
*/
|
|
static void pci_level_irq(unsigned char intNum)
|
|
{
|
|
unsigned short intBits = inb(0x4d0) | (((unsigned) inb(0x4d1)) << 8);
|
|
|
|
<<<<<<< pci_device.c
|
|
printk_spew("%s: current ints are 0x%x\n", __func__, intBits);
|
|
=======
|
|
printk_debug("%s: current ints are 0x%x\n", __FUNCTION__, intBits);
|
|
>>>>>>> 1.25
|
|
intBits |= (1 << intNum);
|
|
|
|
<<<<<<< pci_device.c
|
|
printk_spew("%s: try to set ints 0x%x\n", __func__, intBits);
|
|
=======
|
|
printk_debug("%s: try to set ints 0x%x\n", __FUNCTION__, intBits);
|
|
>>>>>>> 1.25
|
|
|
|
// Write new values
|
|
outb((unsigned char) intBits, 0x4d0);
|
|
outb((unsigned char) (intBits >> 8), 0x4d1);
|
|
|
|
/* this seems like an error but is not ... */
|
|
#if 1
|
|
if (inb(0x4d0) != (intBits & 0xf)) {
|
|
printk_err("%s: lower order bits are wrong: want 0x%x, got 0x%x\n",
|
|
__func__, intBits &0xf, inb(0x4d0));
|
|
}
|
|
if (inb(0x4d1) != ((intBits >> 8) & 0xf)) {
|
|
printk_err("%s: lower order bits are wrong: want 0x%x, got 0x%x\n",
|
|
__func__, (intBits>>8) &0xf, inb(0x4d1));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
This function assigns IRQs for all functions contained within
|
|
the indicated device address. If the device does not exist or does
|
|
not require interrupts then this function has no effect.
|
|
|
|
This function should be called for each PCI slot in your system.
|
|
|
|
pIntAtoD is an array of IRQ #s that are assigned to PINTA through PINTD of
|
|
this slot.
|
|
The particular irq #s that are passed in depend on the routing inside
|
|
your southbridge and on your motherboard.
|
|
|
|
-kevinh@ispiri.com
|
|
*/
|
|
void pci_assign_irqs(unsigned bus, unsigned slot,
|
|
const unsigned char pIntAtoD[4])
|
|
{
|
|
unsigned functNum;
|
|
device_t pdev;
|
|
unsigned char line;
|
|
unsigned char irq;
|
|
unsigned char readback;
|
|
|
|
/* Each slot may contain up to eight functions */
|
|
for (functNum = 0; functNum < 8; functNum++) {
|
|
pdev = dev_find_slot(bus, (slot << 3) + functNum);
|
|
|
|
if (pdev) {
|
|
line = pci_read_config8(pdev, PCI_INTERRUPT_PIN);
|
|
|
|
// PCI spec says all other values are reserved
|
|
if ((line >= 1) && (line <= 4)) {
|
|
irq = pIntAtoD[line - 1];
|
|
|
|
printk_debug("Assigning IRQ %d to %d:%x.%d\n", \
|
|
irq, bus, slot, functNum);
|
|
|
|
pci_write_config8(pdev, PCI_INTERRUPT_LINE,\
|
|
pIntAtoD[line - 1]);
|
|
|
|
readback = pci_read_config8(pdev, PCI_INTERRUPT_LINE);
|
|
printk_debug(" Readback = %d\n", readback);
|
|
|
|
// Change to level triggered
|
|
pci_level_irq(pIntAtoD[line - 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|