coreboot-kgpe-d16/src/mainboard/amd/inagua/BiosCallOuts.c
Frank Vibrans 69da1b676c Add IBASE DB-FT1 and AMD Inagua motherboards. Patch 8 of 8.
This code provides support for IBASE Technology DB-FT1 (AMD code name Persimmon) and AMD Inagua platforms. It is dependent on all other patches in this set.

Signed-off-by: Frank Vibrans <frank.vibrans@amd.com>
Acked-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Acked-by: Marc Jones <marcj303@gmail.com>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@6352 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2011-02-14 19:04:45 +00:00

662 lines
20 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2011 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "agesawrapper.h"
#include "amdlib.h"
#include "BiosCallOuts.h"
#include "Ids.h"
#include "OptionsIds.h"
#include "heapManager.h"
#include "SB800.h"
STATIC BIOS_CALLOUT_STRUCT BiosCallouts[REQUIRED_CALLOUTS] =
{
{AGESA_ALLOCATE_BUFFER,
BiosAllocateBuffer
},
{AGESA_DEALLOCATE_BUFFER,
BiosDeallocateBuffer
},
{AGESA_DO_RESET,
BiosReset
},
{AGESA_LOCATE_BUFFER,
BiosLocateBuffer
},
{AGESA_READ_SPD,
BiosReadSpd
},
{AGESA_READ_SPD_RECOVERY,
BiosDefaultRet
},
{AGESA_RUNFUNC_ONAP,
BiosRunFuncOnAp
},
{AGESA_GET_IDS_INIT_DATA,
BiosGetIdsInitData
},
{AGESA_HOOKBEFORE_DQS_TRAINING,
BiosHookBeforeDQSTraining
},
{AGESA_HOOKBEFORE_DRAM_INIT,
BiosHookBeforeDramInit
},
{AGESA_HOOKBEFORE_EXIT_SELF_REF,
BiosHookBeforeExitSelfRefresh
},
{AGESA_GNB_PCIE_SLOT_RESET,
BiosGnbPcieSlotReset
},
};
AGESA_STATUS GetBiosCallout (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
UINTN i;
AGESA_STATUS CalloutStatus;
for (i = 0; i < REQUIRED_CALLOUTS; i++)
{
if (BiosCallouts[i].CalloutName == Func)
{
break;
}
}
if(i >= REQUIRED_CALLOUTS)
{
return AGESA_UNSUPPORTED;
}
CalloutStatus = BiosCallouts[i].CalloutPtr (Func, Data, ConfigPtr);
return CalloutStatus;
}
CONST IDS_NV_ITEM IdsData[] =
{
/*{
AGESA_IDS_NV_MAIN_PLL_CON,
0x1
},
{
AGESA_IDS_NV_MAIN_PLL_FID_EN,
0x1
},
{
AGESA_IDS_NV_MAIN_PLL_FID,
0x8
},
{
AGESA_IDS_NV_CUSTOM_NB_PSTATE,
},
{
AGESA_IDS_NV_CUSTOM_NB_P0_DIV_CTRL,
},
{
AGESA_IDS_NV_CUSTOM_NB_P1_DIV_CTRL,
},
{
AGESA_IDS_NV_FORCE_NB_PSTATE,
},
*/
{
0xFFFF,
0xFFFF
}
};
#define NUM_IDS_ENTRIES (sizeof (IdsData) / sizeof (IDS_NV_ITEM))
AGESA_STATUS BiosGetIdsInitData (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
UINTN i;
IDS_NV_ITEM *IdsPtr;
IdsPtr = ((IDS_CALLOUT_STRUCT *) ConfigPtr)->IdsNvPtr;
if (Data == IDS_CALLOUT_INIT) {
for (i = 0; i < NUM_IDS_ENTRIES; i++) {
IdsPtr[i].IdsNvValue = IdsData[i].IdsNvValue;
IdsPtr[i].IdsNvId = IdsData[i].IdsNvId;
}
}
return AGESA_SUCCESS;
}
AGESA_STATUS BiosAllocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
UINT32 AvailableHeapSize;
UINT8 *BiosHeapBaseAddr;
UINT32 CurrNodeOffset;
UINT32 PrevNodeOffset;
UINT32 FreedNodeOffset;
UINT32 BestFitNodeOffset;
UINT32 BestFitPrevNodeOffset;
UINT32 NextFreeOffset;
BIOS_BUFFER_NODE *CurrNodePtr;
BIOS_BUFFER_NODE *FreedNodePtr;
BIOS_BUFFER_NODE *BestFitNodePtr;
BIOS_BUFFER_NODE *BestFitPrevNodePtr;
BIOS_BUFFER_NODE *NextFreePtr;
BIOS_HEAP_MANAGER *BiosHeapBasePtr;
AGESA_BUFFER_PARAMS *AllocParams;
AllocParams = ((AGESA_BUFFER_PARAMS *) ConfigPtr);
AllocParams->BufferPointer = NULL;
AvailableHeapSize = BIOS_HEAP_SIZE - sizeof (BIOS_HEAP_MANAGER);
BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS;
BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS;
if (BiosHeapBasePtr->StartOfAllocatedNodes == 0) {
/* First allocation */
CurrNodeOffset = sizeof (BIOS_HEAP_MANAGER);
CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
CurrNodePtr->BufferHandle = AllocParams->BufferHandle;
CurrNodePtr->BufferSize = AllocParams->BufferLength;
CurrNodePtr->NextNodeOffset = 0;
AllocParams->BufferPointer = (UINT8 *) CurrNodePtr + sizeof (BIOS_BUFFER_NODE);
/* Update the remaining free space */
FreedNodeOffset = CurrNodeOffset + CurrNodePtr->BufferSize + sizeof (BIOS_BUFFER_NODE);
FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
FreedNodePtr->BufferSize = AvailableHeapSize - sizeof (BIOS_BUFFER_NODE) - CurrNodePtr->BufferSize;
FreedNodePtr->NextNodeOffset = 0;
/* Update the offsets for Allocated and Freed nodes */
BiosHeapBasePtr->StartOfAllocatedNodes = CurrNodeOffset;
BiosHeapBasePtr->StartOfFreedNodes = FreedNodeOffset;
} else {
/* Find out whether BufferHandle has been allocated on the heap. */
/* If it has, return AGESA_BOUNDS_CHK */
CurrNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
while (CurrNodeOffset != 0) {
CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
if (CurrNodePtr->BufferHandle == AllocParams->BufferHandle) {
return AGESA_BOUNDS_CHK;
}
CurrNodeOffset = CurrNodePtr->NextNodeOffset;
/* If BufferHandle has not been allocated on the heap, CurrNodePtr here points
to the end of the allocated nodes list.
*/
}
/* Find the node that best fits the requested buffer size */
FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes;
PrevNodeOffset = FreedNodeOffset;
BestFitNodeOffset = 0;
BestFitPrevNodeOffset = 0;
while (FreedNodeOffset != 0) {
FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
if (FreedNodePtr->BufferSize >= (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) {
if (BestFitNodeOffset == 0) {
/* First node that fits the requested buffer size */
BestFitNodeOffset = FreedNodeOffset;
BestFitPrevNodeOffset = PrevNodeOffset;
} else {
/* Find out whether current node is a better fit than the previous nodes */
BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset);
if (BestFitNodePtr->BufferSize > FreedNodePtr->BufferSize) {
BestFitNodeOffset = FreedNodeOffset;
BestFitPrevNodeOffset = PrevNodeOffset;
}
}
}
PrevNodeOffset = FreedNodeOffset;
FreedNodeOffset = FreedNodePtr->NextNodeOffset;
} /* end of while loop */
if (BestFitNodeOffset == 0) {
/* If we could not find a node that fits the requested buffer */
/* size, return AGESA_BOUNDS_CHK */
return AGESA_BOUNDS_CHK;
} else {
BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset);
BestFitPrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitPrevNodeOffset);
/* If BestFitNode is larger than the requested buffer, fragment the node further */
if (BestFitNodePtr->BufferSize > (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) {
NextFreeOffset = BestFitNodeOffset + AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE);
NextFreePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextFreeOffset);
NextFreePtr->BufferSize = BestFitNodePtr->BufferSize - (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE));
NextFreePtr->NextNodeOffset = BestFitNodePtr->NextNodeOffset;
} else {
/* Otherwise, next free node is NextNodeOffset of BestFitNode */
NextFreeOffset = BestFitNodePtr->NextNodeOffset;
}
/* If BestFitNode is the first buffer in the list, then update
StartOfFreedNodes to reflect the new free node
*/
if (BestFitNodeOffset == BiosHeapBasePtr->StartOfFreedNodes) {
BiosHeapBasePtr->StartOfFreedNodes = NextFreeOffset;
} else {
BestFitPrevNodePtr->NextNodeOffset = NextFreeOffset;
}
/* Add BestFitNode to the list of Allocated nodes */
CurrNodePtr->NextNodeOffset = BestFitNodeOffset;
BestFitNodePtr->BufferSize = AllocParams->BufferLength;
BestFitNodePtr->BufferHandle = AllocParams->BufferHandle;
BestFitNodePtr->NextNodeOffset = 0;
/* Remove BestFitNode from list of Freed nodes */
AllocParams->BufferPointer = (UINT8 *) BestFitNodePtr + sizeof (BIOS_BUFFER_NODE);
}
}
return AGESA_SUCCESS;
}
AGESA_STATUS BiosDeallocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
UINT8 *BiosHeapBaseAddr;
UINT32 AllocNodeOffset;
UINT32 PrevNodeOffset;
UINT32 NextNodeOffset;
UINT32 FreedNodeOffset;
UINT32 EndNodeOffset;
BIOS_BUFFER_NODE *AllocNodePtr;
BIOS_BUFFER_NODE *PrevNodePtr;
BIOS_BUFFER_NODE *FreedNodePtr;
BIOS_BUFFER_NODE *NextNodePtr;
BIOS_HEAP_MANAGER *BiosHeapBasePtr;
AGESA_BUFFER_PARAMS *AllocParams;
BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS;
BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS;
AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr;
/* Find target node to deallocate in list of allocated nodes.
Return AGESA_BOUNDS_CHK if the BufferHandle is not found
*/
AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
PrevNodeOffset = AllocNodeOffset;
while (AllocNodePtr->BufferHandle != AllocParams->BufferHandle) {
if (AllocNodePtr->NextNodeOffset == 0) {
return AGESA_BOUNDS_CHK;
}
PrevNodeOffset = AllocNodeOffset;
AllocNodeOffset = AllocNodePtr->NextNodeOffset;
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
}
/* Remove target node from list of allocated nodes */
PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset);
PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset;
/* Zero out the buffer, and clear the BufferHandle */
LibAmdMemFill ((UINT8 *)AllocNodePtr + sizeof (BIOS_BUFFER_NODE), 0, AllocNodePtr->BufferSize, &(AllocParams->StdHeader));
AllocNodePtr->BufferHandle = 0;
AllocNodePtr->BufferSize += sizeof (BIOS_BUFFER_NODE);
/* Add deallocated node in order to the list of freed nodes */
FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes;
FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
EndNodeOffset = AllocNodeOffset + AllocNodePtr->BufferSize;
if (AllocNodeOffset < FreedNodeOffset) {
/* Add to the start of the freed list */
if (EndNodeOffset == FreedNodeOffset) {
/* If the freed node is adjacent to the first node in the list, concatenate both nodes */
AllocNodePtr->BufferSize += FreedNodePtr->BufferSize;
AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset;
/* Clear the BufferSize and NextNodeOffset of the previous first node */
FreedNodePtr->BufferSize = 0;
FreedNodePtr->NextNodeOffset = 0;
} else {
/* Otherwise, add freed node to the start of the list
Update NextNodeOffset and BufferSize to include the
size of BIOS_BUFFER_NODE
*/
AllocNodePtr->NextNodeOffset = FreedNodeOffset;
}
/* Update StartOfFreedNodes to the new first node */
BiosHeapBasePtr->StartOfFreedNodes = AllocNodeOffset;
} else {
/* Traverse list of freed nodes to find where the deallocated node
should be place
*/
NextNodeOffset = FreedNodeOffset;
NextNodePtr = FreedNodePtr;
while (AllocNodeOffset > NextNodeOffset) {
PrevNodeOffset = NextNodeOffset;
if (NextNodePtr->NextNodeOffset == 0) {
break;
}
NextNodeOffset = NextNodePtr->NextNodeOffset;
NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset);
}
/* If deallocated node is adjacent to the next node,
concatenate both nodes
*/
if (NextNodeOffset == EndNodeOffset) {
NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset);
AllocNodePtr->BufferSize += NextNodePtr->BufferSize;
AllocNodePtr->NextNodeOffset = NextNodePtr->NextNodeOffset;
NextNodePtr->BufferSize = 0;
NextNodePtr->NextNodeOffset = 0;
} else {
/*AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; */
AllocNodePtr->NextNodeOffset = NextNodeOffset;
}
/* If deallocated node is adjacent to the previous node,
concatenate both nodes
*/
PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset);
EndNodeOffset = PrevNodeOffset + PrevNodePtr->BufferSize;
if (AllocNodeOffset == EndNodeOffset) {
PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset;
PrevNodePtr->BufferSize += AllocNodePtr->BufferSize;
AllocNodePtr->BufferSize = 0;
AllocNodePtr->NextNodeOffset = 0;
} else {
PrevNodePtr->NextNodeOffset = AllocNodeOffset;
}
}
return AGESA_SUCCESS;
}
AGESA_STATUS BiosLocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
UINT32 AllocNodeOffset;
UINT8 *BiosHeapBaseAddr;
BIOS_BUFFER_NODE *AllocNodePtr;
BIOS_HEAP_MANAGER *BiosHeapBasePtr;
AGESA_BUFFER_PARAMS *AllocParams;
AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr;
BiosHeapBaseAddr = (UINT8 *) BIOS_HEAP_START_ADDRESS;
BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BIOS_HEAP_START_ADDRESS;
AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
while (AllocParams->BufferHandle != AllocNodePtr->BufferHandle) {
if (AllocNodePtr->NextNodeOffset == 0) {
AllocParams->BufferPointer = NULL;
AllocParams->BufferLength = 0;
return AGESA_BOUNDS_CHK;
} else {
AllocNodeOffset = AllocNodePtr->NextNodeOffset;
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
}
}
AllocParams->BufferPointer = (UINT8 *) ((UINT8 *) AllocNodePtr + sizeof (BIOS_BUFFER_NODE));
AllocParams->BufferLength = AllocNodePtr->BufferSize;
return AGESA_SUCCESS;
}
AGESA_STATUS BiosRunFuncOnAp (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
AGESA_STATUS Status;
Status = agesawrapper_amdlaterunaptask (Data, ConfigPtr);
return Status;
}
AGESA_STATUS BiosReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
AGESA_STATUS Status;
UINT8 Value;
UINTN ResetType;
AMD_CONFIG_PARAMS *StdHeader;
ResetType = Data;
StdHeader = ConfigPtr;
//
// Perform the RESET based upon the ResetType. In case of
// WARM_RESET_WHENVER and COLD_RESET_WHENEVER, the request will go to
// AmdResetManager. During the critical condition, where reset is required
// immediately, the reset will be invoked directly by writing 0x04 to port
// 0xCF9 (Reset Port).
//
switch (ResetType) {
case WARM_RESET_WHENEVER:
case COLD_RESET_WHENEVER:
break;
case WARM_RESET_IMMEDIATELY:
case COLD_RESET_IMMEDIATELY:
Value = 0x06;
LibAmdIoWrite (AccessWidth8, 0xCf9, &Value, StdHeader);
break;
default:
break;
}
Status = 0;
return Status;
}
AGESA_STATUS BiosReadSpd (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
AGESA_STATUS Status;
Status = AmdMemoryReadSPD (Func, Data, ConfigPtr);
return Status;
}
AGESA_STATUS BiosDefaultRet (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
return AGESA_UNSUPPORTED;
}
/* Call the host environment interface to provide a user hook opportunity. */
AGESA_STATUS BiosHookBeforeDQSTraining (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
return AGESA_SUCCESS;
}
/* Call the host environment interface to provide a user hook opportunity. */
AGESA_STATUS BiosHookBeforeDramInit (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
AGESA_STATUS Status;
UINTN FcnData;
MEM_DATA_STRUCT *MemData;
UINT32 AcpiMmioAddr;
UINT32 GpioMmioAddr;
UINT8 Data8;
UINT16 Data16;
UINT8 TempData8;
FcnData = Data;
MemData = ConfigPtr;
Status = AGESA_SUCCESS;
/* Get SB800 MMIO Base (AcpiMmioAddr) */
WriteIo8 (0xCD6, 0x27);
Data8 = ReadIo8(0xCD7);
Data16 = Data8<<8;
WriteIo8 (0xCD6, 0x26);
Data8 = ReadIo8(0xCD7);
Data16 |= Data8;
AcpiMmioAddr = (UINT32)Data16 << 16;
GpioMmioAddr = AcpiMmioAddr + GPIO_BASE;
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG178);
Data8 &= ~BIT5;
TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178);
TempData8 &= 0x03;
TempData8 |= Data8;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, TempData8);
Data8 |= BIT2+BIT3;
Data8 &= ~BIT4;
TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178);
TempData8 &= 0x23;
TempData8 |= Data8;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, TempData8);
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG179);
Data8 &= ~BIT5;
TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179);
TempData8 &= 0x03;
TempData8 |= Data8;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, TempData8);
Data8 |= BIT2+BIT3;
Data8 &= ~BIT4;
TempData8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179);
TempData8 &= 0x23;
TempData8 |= Data8;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, TempData8);
switch(MemData->ParameterListPtr->DDR3Voltage){
case VOLT1_35:
Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178);
Data8 &= ~(UINT8)BIT6;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, Data8);
Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179);
Data8 |= (UINT8)BIT6;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, Data8);
break;
case VOLT1_25:
Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178);
Data8 &= ~(UINT8)BIT6;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, Data8);
Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179);
Data8 &= ~(UINT8)BIT6;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, Data8);
break;
case VOLT1_5:
default:
Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG178);
Data8 |= (UINT8)BIT6;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG178, Data8);
Data8 = Read64Mem8 (GpioMmioAddr+SB_GPIO_REG179);
Data8 &= ~(UINT8)BIT6;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG179, Data8);
}
return Status;
}
/* Call the host environment interface to provide a user hook opportunity. */
AGESA_STATUS BiosHookBeforeExitSelfRefresh (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
return AGESA_SUCCESS;
}
/* PCIE slot reset control */
AGESA_STATUS BiosGnbPcieSlotReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
{
AGESA_STATUS Status;
UINTN FcnData;
PCIe_SLOT_RESET_INFO *ResetInfo;
UINT32 GpioMmioAddr;
UINT32 AcpiMmioAddr;
UINT8 Data8;
UINT16 Data16;
FcnData = Data;
ResetInfo = ConfigPtr;
// Get SB800 MMIO Base (AcpiMmioAddr)
WriteIo8(0xCD6, 0x27);
Data8 = ReadIo8(0xCD7);
Data16=Data8<<8;
WriteIo8(0xCD6, 0x26);
Data8 = ReadIo8(0xCD7);
Data16|=Data8;
AcpiMmioAddr = (UINT32)Data16 << 16;
Status = AGESA_UNSUPPORTED;
GpioMmioAddr = AcpiMmioAddr + GPIO_BASE;
switch (ResetInfo->ResetId)
{
case 4:
switch (ResetInfo->ResetControl)
{
case AssertSlotReset:
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG21);
Data8 &= ~(UINT8)BIT6 ;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG21, Data8); // MXM_GPIO0. GPIO21
Status = AGESA_SUCCESS;
break;
case DeassertSlotReset:
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG21);
Data8 |= BIT6 ;
Write64Mem8 (GpioMmioAddr+SB_GPIO_REG21, Data8); // MXM_GPIO0. GPIO21
Status = AGESA_SUCCESS;
break;
}
break;
case 6:
switch (ResetInfo->ResetControl)
{
case AssertSlotReset:
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG25);
Data8 &= ~(UINT8)BIT6 ;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG25, Data8); // PCIE_RST#_LAN, GPIO25
Status = AGESA_SUCCESS;
break;
case DeassertSlotReset:
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG25);
Data8 |= BIT6 ;
Write64Mem8 (GpioMmioAddr+SB_GPIO_REG25, Data8); // PCIE_RST#_LAN, GPIO25
Status = AGESA_SUCCESS;
break;
}
break;
case 7:
switch (ResetInfo->ResetControl)
{
case AssertSlotReset:
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG02);
Data8 &= ~(UINT8)BIT6 ;
Write64Mem8(GpioMmioAddr+SB_GPIO_REG02, Data8); // MPCIE_RST0, GPIO02
Status = AGESA_SUCCESS;
break;
case DeassertSlotReset:
Data8 = Read64Mem8(GpioMmioAddr+SB_GPIO_REG25);
Data8 |= BIT6 ;
Write64Mem8 (GpioMmioAddr+SB_GPIO_REG02, Data8); // MPCIE_RST0, GPIO02
Status = AGESA_SUCCESS;
break;
}
break;
}
return Status;
}