1170 lines
34 KiB
C
1170 lines
34 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
|
|
*
|
|
* Modifications are:
|
|
* Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
|
|
* Copyright (C) 2003-2004 Linux Networx
|
|
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
|
|
* Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
|
|
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
|
|
* Copyright (C) 2005-2006 Tyan
|
|
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
|
|
* Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
|
|
* Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
|
|
*/
|
|
|
|
/*
|
|
* (c) 1999--2000 Martin Mares <mj@suse.cz>
|
|
*/
|
|
|
|
/*
|
|
* Lots of mods by Ron Minnich <rminnich@lanl.gov>, with
|
|
* the final architecture guidance from Tom Merritt <tjm@codegen.com>.
|
|
*
|
|
* In particular, we changed from the one-pass original version to
|
|
* Tom's recommended multiple-pass version. I wasn't sure about doing
|
|
* it with multiple passes, until I actually started doing it and saw
|
|
* the wisdom of Tom's recommendations...
|
|
*
|
|
* Lots of cleanups by Eric Biederman to handle bridges, and to
|
|
* handle resource allocation for non-PCI devices.
|
|
*/
|
|
|
|
#include <console/console.h>
|
|
#include <arch/io.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <device/pci_ids.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <smp/spinlock.h>
|
|
#if CONFIG_ARCH_X86
|
|
#include <arch/ebda.h>
|
|
#endif
|
|
#include <timer.h>
|
|
|
|
/** Linked list of ALL devices */
|
|
struct device *all_devices = &dev_root;
|
|
/** Pointer to the last device */
|
|
extern struct device *last_dev;
|
|
/** Linked list of free resources */
|
|
struct resource *free_resources = NULL;
|
|
|
|
/**
|
|
* Initialize all chips of statically known devices.
|
|
*
|
|
* Will be called before bus enumeration to initialize chips stated in the
|
|
* device tree.
|
|
*/
|
|
void dev_initialize_chips(void)
|
|
{
|
|
struct device *dev;
|
|
|
|
for (dev = all_devices; dev; dev = dev->next) {
|
|
/* Initialize chip if we haven't yet. */
|
|
if (dev->chip_ops && dev->chip_ops->init &&
|
|
!dev->chip_ops->initialized) {
|
|
dev->chip_ops->init(dev->chip_info);
|
|
dev->chip_ops->initialized = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
DECLARE_SPIN_LOCK(dev_lock)
|
|
|
|
#if CONFIG_GFXUMA
|
|
/* IGD UMA memory */
|
|
uint64_t uma_memory_base = 0;
|
|
uint64_t uma_memory_size = 0;
|
|
#endif
|
|
|
|
/**
|
|
* Allocate a new device structure.
|
|
*
|
|
* Allocte a new device structure and attach it to the device tree as a
|
|
* child of the parent bus.
|
|
*
|
|
* @param parent Parent bus the newly created device should be attached to.
|
|
* @param path Path to the device to be created.
|
|
* @return Pointer to the newly created device structure.
|
|
*
|
|
* @see device_path
|
|
*/
|
|
static device_t __alloc_dev(struct bus *parent, struct device_path *path)
|
|
{
|
|
device_t dev, child;
|
|
|
|
/* Find the last child of our parent. */
|
|
for (child = parent->children; child && child->sibling; /* */ )
|
|
child = child->sibling;
|
|
|
|
dev = malloc(sizeof(*dev));
|
|
if (dev == 0)
|
|
die("alloc_dev(): out of memory.\n");
|
|
|
|
memset(dev, 0, sizeof(*dev));
|
|
memcpy(&dev->path, path, sizeof(*path));
|
|
|
|
/* By default devices are enabled. */
|
|
dev->enabled = 1;
|
|
|
|
/* Add the new device to the list of children of the bus. */
|
|
dev->bus = parent;
|
|
if (child)
|
|
child->sibling = dev;
|
|
else
|
|
parent->children = dev;
|
|
|
|
/* Append a new device to the global device list.
|
|
* The list is used to find devices once everything is set up.
|
|
*/
|
|
last_dev->next = dev;
|
|
last_dev = dev;
|
|
|
|
return dev;
|
|
}
|
|
|
|
device_t alloc_dev(struct bus *parent, struct device_path *path)
|
|
{
|
|
device_t dev;
|
|
spin_lock(&dev_lock);
|
|
dev = __alloc_dev(parent, path);
|
|
spin_unlock(&dev_lock);
|
|
return dev;
|
|
}
|
|
|
|
/**
|
|
* See if a device structure already exists and if not allocate it.
|
|
*
|
|
* @param parent The bus to find the device on.
|
|
* @param path The relative path from the bus to the appropriate device.
|
|
* @return Pointer to a device structure for the device on bus at path.
|
|
*/
|
|
device_t alloc_find_dev(struct bus *parent, struct device_path *path)
|
|
{
|
|
device_t child;
|
|
spin_lock(&dev_lock);
|
|
child = find_dev_path(parent, path);
|
|
if (!child)
|
|
child = __alloc_dev(parent, path);
|
|
spin_unlock(&dev_lock);
|
|
return child;
|
|
}
|
|
|
|
/**
|
|
* Round a number up to an alignment.
|
|
*
|
|
* @param val The starting value.
|
|
* @param roundup Alignment as a power of two.
|
|
* @return Rounded up number.
|
|
*/
|
|
static resource_t round(resource_t val, unsigned long pow)
|
|
{
|
|
resource_t mask;
|
|
mask = (1ULL << pow) - 1ULL;
|
|
val += mask;
|
|
val &= ~mask;
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* Read the resources on all devices of a given bus.
|
|
*
|
|
* @param bus Bus to read the resources on.
|
|
*/
|
|
static void read_resources(struct bus *bus)
|
|
{
|
|
struct device *curdev;
|
|
|
|
printk(BIOS_SPEW, "%s %s bus %x link: %d\n", dev_path(bus->dev),
|
|
__func__, bus->secondary, bus->link_num);
|
|
|
|
/* Walk through all devices and find which resources they need. */
|
|
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
|
|
struct bus *link;
|
|
|
|
if (!curdev->enabled)
|
|
continue;
|
|
|
|
if (!curdev->ops || !curdev->ops->read_resources) {
|
|
printk(BIOS_ERR, "%s missing read_resources\n",
|
|
dev_path(curdev));
|
|
continue;
|
|
}
|
|
curdev->ops->read_resources(curdev);
|
|
|
|
/* Read in the resources behind the current device's links. */
|
|
for (link = curdev->link_list; link; link = link->next)
|
|
read_resources(link);
|
|
}
|
|
printk(BIOS_SPEW, "%s read_resources bus %d link: %d done\n",
|
|
dev_path(bus->dev), bus->secondary, bus->link_num);
|
|
}
|
|
|
|
struct pick_largest_state {
|
|
struct resource *last;
|
|
struct device *result_dev;
|
|
struct resource *result;
|
|
int seen_last;
|
|
};
|
|
|
|
static void pick_largest_resource(void *gp, struct device *dev,
|
|
struct resource *resource)
|
|
{
|
|
struct pick_largest_state *state = gp;
|
|
struct resource *last;
|
|
|
|
last = state->last;
|
|
|
|
/* Be certain to pick the successor to last. */
|
|
if (resource == last) {
|
|
state->seen_last = 1;
|
|
return;
|
|
}
|
|
if (resource->flags & IORESOURCE_FIXED)
|
|
return; /* Skip it. */
|
|
if (last && ((last->align < resource->align) ||
|
|
((last->align == resource->align) &&
|
|
(last->size < resource->size)) ||
|
|
((last->align == resource->align) &&
|
|
(last->size == resource->size) && (!state->seen_last)))) {
|
|
return;
|
|
}
|
|
if (!state->result ||
|
|
(state->result->align < resource->align) ||
|
|
((state->result->align == resource->align) &&
|
|
(state->result->size < resource->size))) {
|
|
state->result_dev = dev;
|
|
state->result = resource;
|
|
}
|
|
}
|
|
|
|
static struct device *largest_resource(struct bus *bus,
|
|
struct resource **result_res,
|
|
unsigned long type_mask,
|
|
unsigned long type)
|
|
{
|
|
struct pick_largest_state state;
|
|
|
|
state.last = *result_res;
|
|
state.result_dev = NULL;
|
|
state.result = NULL;
|
|
state.seen_last = 0;
|
|
|
|
search_bus_resources(bus, type_mask, type, pick_largest_resource,
|
|
&state);
|
|
|
|
*result_res = state.result;
|
|
return state.result_dev;
|
|
}
|
|
|
|
/**
|
|
* This function is the guts of the resource allocator.
|
|
*
|
|
* The problem.
|
|
* - Allocate resource locations for every device.
|
|
* - Don't overlap, and follow the rules of bridges.
|
|
* - Don't overlap with resources in fixed locations.
|
|
* - Be efficient so we don't have ugly strategies.
|
|
*
|
|
* The strategy.
|
|
* - Devices that have fixed addresses are the minority so don't
|
|
* worry about them too much. Instead only use part of the address
|
|
* space for devices with programmable addresses. This easily handles
|
|
* everything except bridges.
|
|
*
|
|
* - PCI devices are required to have their sizes and their alignments
|
|
* equal. In this case an optimal solution to the packing problem
|
|
* exists. Allocate all devices from highest alignment to least
|
|
* alignment or vice versa. Use this.
|
|
*
|
|
* - So we can handle more than PCI run two allocation passes on bridges. The
|
|
* first to see how large the resources are behind the bridge, and what
|
|
* their alignment requirements are. The second to assign a safe address to
|
|
* the devices behind the bridge. This allows us to treat a bridge as just
|
|
* a device with a couple of resources, and not need to special case it in
|
|
* the allocator. Also this allows handling of other types of bridges.
|
|
*
|
|
* @param bus The bus we are traversing.
|
|
* @param bridge The bridge resource which must contain the bus' resources.
|
|
* @param type_mask This value gets ANDed with the resource type.
|
|
* @param type This value must match the result of the AND.
|
|
* @return TODO
|
|
*/
|
|
static void compute_resources(struct bus *bus, struct resource *bridge,
|
|
unsigned long type_mask, unsigned long type)
|
|
{
|
|
struct device *dev;
|
|
struct resource *resource;
|
|
resource_t base;
|
|
base = round(bridge->base, bridge->align);
|
|
|
|
printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
|
|
" limit: %llx\n", dev_path(bus->dev), __func__,
|
|
(type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
|
|
"prefmem" : "mem", base, bridge->size, bridge->align,
|
|
bridge->gran, bridge->limit);
|
|
|
|
/* For each child which is a bridge, compute the resource needs. */
|
|
for (dev = bus->children; dev; dev = dev->sibling) {
|
|
struct resource *child_bridge;
|
|
|
|
if (!dev->link_list)
|
|
continue;
|
|
|
|
/* Find the resources with matching type flags. */
|
|
for (child_bridge = dev->resource_list; child_bridge;
|
|
child_bridge = child_bridge->next) {
|
|
struct bus* link;
|
|
|
|
if (!(child_bridge->flags & IORESOURCE_BRIDGE)
|
|
|| (child_bridge->flags & type_mask) != type)
|
|
continue;
|
|
|
|
/*
|
|
* Split prefetchable memory if combined. Many domains
|
|
* use the same address space for prefetchable memory
|
|
* and non-prefetchable memory. Bridges below them need
|
|
* it separated. Add the PREFETCH flag to the type_mask
|
|
* and type.
|
|
*/
|
|
link = dev->link_list;
|
|
while (link && link->link_num !=
|
|
IOINDEX_LINK(child_bridge->index))
|
|
link = link->next;
|
|
|
|
if (link == NULL) {
|
|
printk(BIOS_ERR, "link %ld not found on %s\n",
|
|
IOINDEX_LINK(child_bridge->index),
|
|
dev_path(dev));
|
|
}
|
|
|
|
compute_resources(link, child_bridge,
|
|
type_mask | IORESOURCE_PREFETCH,
|
|
type | (child_bridge->flags &
|
|
IORESOURCE_PREFETCH));
|
|
}
|
|
}
|
|
|
|
/* Remember we haven't found anything yet. */
|
|
resource = NULL;
|
|
|
|
/*
|
|
* Walk through all the resources on the current bus and compute the
|
|
* amount of address space taken by them. Take granularity and
|
|
* alignment into account.
|
|
*/
|
|
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
|
|
|
|
/* Size 0 resources can be skipped. */
|
|
if (!resource->size)
|
|
continue;
|
|
|
|
/* Propagate the resource alignment to the bridge resource. */
|
|
if (resource->align > bridge->align)
|
|
bridge->align = resource->align;
|
|
|
|
/* Propagate the resource limit to the bridge register. */
|
|
if (bridge->limit > resource->limit)
|
|
bridge->limit = resource->limit;
|
|
|
|
/* Warn if it looks like APICs aren't declared. */
|
|
if ((resource->limit == 0xffffffff) &&
|
|
(resource->flags & IORESOURCE_ASSIGNED)) {
|
|
printk(BIOS_ERR,
|
|
"Resource limit looks wrong! (no APIC?)\n");
|
|
printk(BIOS_ERR, "%s %02lx limit %08llx\n",
|
|
dev_path(dev), resource->index, resource->limit);
|
|
}
|
|
|
|
if (resource->flags & IORESOURCE_IO) {
|
|
/*
|
|
* Don't allow potential aliases over the legacy PCI
|
|
* expansion card addresses. The legacy PCI decodes
|
|
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
|
|
* 0x00 - 0xff can be used out of each 0x400 block of
|
|
* I/O space.
|
|
*/
|
|
if ((base & 0x300) != 0) {
|
|
base = (base & ~0x3ff) + 0x400;
|
|
}
|
|
/*
|
|
* Don't allow allocations in the VGA I/O range.
|
|
* PCI has special cases for that.
|
|
*/
|
|
else if ((base >= 0x3b0) && (base <= 0x3df)) {
|
|
base = 0x3e0;
|
|
}
|
|
}
|
|
/* Base must be aligned. */
|
|
base = round(base, resource->align);
|
|
resource->base = base;
|
|
base += resource->size;
|
|
|
|
printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
|
|
dev_path(dev), resource->index, resource->base,
|
|
resource->base + resource->size - 1,
|
|
(resource->flags & IORESOURCE_IO) ? "io" :
|
|
(resource->flags & IORESOURCE_PREFETCH) ?
|
|
"prefmem" : "mem");
|
|
}
|
|
|
|
/*
|
|
* A PCI bridge resource does not need to be a power of two size, but
|
|
* it does have a minimum granularity. Round the size up to that
|
|
* minimum granularity so we know not to place something else at an
|
|
* address postitively decoded by the bridge.
|
|
*/
|
|
bridge->size = round(base, bridge->gran) -
|
|
round(bridge->base, bridge->align);
|
|
|
|
printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
|
|
" limit: %llx done\n", dev_path(bus->dev), __func__,
|
|
(bridge->flags & IORESOURCE_IO) ? "io" :
|
|
(bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
|
|
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
|
|
}
|
|
|
|
/**
|
|
* This function is the second part of the resource allocator.
|
|
*
|
|
* See the compute_resources function for a more detailed explanation.
|
|
*
|
|
* This function assigns the resources a value.
|
|
*
|
|
* @param bus The bus we are traversing.
|
|
* @param bridge The bridge resource which must contain the bus' resources.
|
|
* @param type_mask This value gets ANDed with the resource type.
|
|
* @param type This value must match the result of the AND.
|
|
*
|
|
* @see compute_resources
|
|
*/
|
|
static void allocate_resources(struct bus *bus, struct resource *bridge,
|
|
unsigned long type_mask, unsigned long type)
|
|
{
|
|
struct device *dev;
|
|
struct resource *resource;
|
|
resource_t base;
|
|
base = bridge->base;
|
|
|
|
printk(BIOS_SPEW, "%s %s_%s: base:%llx size:%llx align:%d gran:%d "
|
|
"limit:%llx\n", dev_path(bus->dev), __func__,
|
|
(type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
|
|
"prefmem" : "mem",
|
|
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
|
|
|
|
/* Remember we haven't found anything yet. */
|
|
resource = NULL;
|
|
|
|
/*
|
|
* Walk through all the resources on the current bus and allocate them
|
|
* address space.
|
|
*/
|
|
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
|
|
|
|
/* Propagate the bridge limit to the resource register. */
|
|
if (resource->limit > bridge->limit)
|
|
resource->limit = bridge->limit;
|
|
|
|
/* Size 0 resources can be skipped. */
|
|
if (!resource->size) {
|
|
/* Set the base to limit so it doesn't confuse tolm. */
|
|
resource->base = resource->limit;
|
|
resource->flags |= IORESOURCE_ASSIGNED;
|
|
continue;
|
|
}
|
|
|
|
if (resource->flags & IORESOURCE_IO) {
|
|
/*
|
|
* Don't allow potential aliases over the legacy PCI
|
|
* expansion card addresses. The legacy PCI decodes
|
|
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
|
|
* 0x00 - 0xff can be used out of each 0x400 block of
|
|
* I/O space.
|
|
*/
|
|
if ((base & 0x300) != 0) {
|
|
base = (base & ~0x3ff) + 0x400;
|
|
}
|
|
/*
|
|
* Don't allow allocations in the VGA I/O range.
|
|
* PCI has special cases for that.
|
|
*/
|
|
else if ((base >= 0x3b0) && (base <= 0x3df)) {
|
|
base = 0x3e0;
|
|
}
|
|
}
|
|
|
|
if ((round(base, resource->align) + resource->size - 1) <=
|
|
resource->limit) {
|
|
/* Base must be aligned. */
|
|
base = round(base, resource->align);
|
|
resource->base = base;
|
|
resource->flags |= IORESOURCE_ASSIGNED;
|
|
resource->flags &= ~IORESOURCE_STORED;
|
|
base += resource->size;
|
|
} else {
|
|
printk(BIOS_ERR, "!! Resource didn't fit !!\n");
|
|
printk(BIOS_ERR, " aligned base %llx size %llx "
|
|
"limit %llx\n", round(base, resource->align),
|
|
resource->size, resource->limit);
|
|
printk(BIOS_ERR, " %llx needs to be <= %llx "
|
|
"(limit)\n", (round(base, resource->align) +
|
|
resource->size) - 1, resource->limit);
|
|
printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]"
|
|
" %s\n", (resource->flags & IORESOURCE_ASSIGNED)
|
|
? "Assigned: " : "", dev_path(dev),
|
|
resource->index, resource->base,
|
|
resource->base + resource->size - 1,
|
|
(resource->flags & IORESOURCE_IO) ? "io"
|
|
: (resource->flags & IORESOURCE_PREFETCH)
|
|
? "prefmem" : "mem");
|
|
}
|
|
|
|
printk(BIOS_SPEW, "%s%s %02lx * [0x%llx - 0x%llx] %s\n",
|
|
(resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: "
|
|
: "", dev_path(dev), resource->index, resource->base,
|
|
resource->size ? resource->base + resource->size - 1 :
|
|
resource->base, (resource->flags & IORESOURCE_IO)
|
|
? "io" : (resource->flags & IORESOURCE_PREFETCH)
|
|
? "prefmem" : "mem");
|
|
}
|
|
|
|
/*
|
|
* A PCI bridge resource does not need to be a power of two size, but
|
|
* it does have a minimum granularity. Round the size up to that
|
|
* minimum granularity so we know not to place something else at an
|
|
* address positively decoded by the bridge.
|
|
*/
|
|
|
|
bridge->flags |= IORESOURCE_ASSIGNED;
|
|
|
|
printk(BIOS_SPEW, "%s %s_%s: next_base: %llx size: %llx align: %d "
|
|
"gran: %d done\n", dev_path(bus->dev), __func__,
|
|
(type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
|
|
"prefmem" : "mem", base, bridge->size, bridge->align,
|
|
bridge->gran);
|
|
|
|
/* For each child which is a bridge, allocate_resources. */
|
|
for (dev = bus->children; dev; dev = dev->sibling) {
|
|
struct resource *child_bridge;
|
|
|
|
if (!dev->link_list)
|
|
continue;
|
|
|
|
/* Find the resources with matching type flags. */
|
|
for (child_bridge = dev->resource_list; child_bridge;
|
|
child_bridge = child_bridge->next) {
|
|
struct bus* link;
|
|
|
|
if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
|
|
(child_bridge->flags & type_mask) != type)
|
|
continue;
|
|
|
|
/*
|
|
* Split prefetchable memory if combined. Many domains
|
|
* use the same address space for prefetchable memory
|
|
* and non-prefetchable memory. Bridges below them need
|
|
* it separated. Add the PREFETCH flag to the type_mask
|
|
* and type.
|
|
*/
|
|
link = dev->link_list;
|
|
while (link && link->link_num !=
|
|
IOINDEX_LINK(child_bridge->index))
|
|
link = link->next;
|
|
if (link == NULL)
|
|
printk(BIOS_ERR, "link %ld not found on %s\n",
|
|
IOINDEX_LINK(child_bridge->index),
|
|
dev_path(dev));
|
|
|
|
allocate_resources(link, child_bridge,
|
|
type_mask | IORESOURCE_PREFETCH,
|
|
type | (child_bridge->flags &
|
|
IORESOURCE_PREFETCH));
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_PCI_64BIT_PREF_MEM
|
|
#define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM)
|
|
#else
|
|
#define MEM_MASK (IORESOURCE_MEM)
|
|
#endif
|
|
|
|
#define IO_MASK (IORESOURCE_IO)
|
|
#define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM)
|
|
#define MEM_TYPE (IORESOURCE_MEM)
|
|
#define IO_TYPE (IORESOURCE_IO)
|
|
|
|
struct constraints {
|
|
struct resource pref, io, mem;
|
|
};
|
|
|
|
static void constrain_resources(struct device *dev, struct constraints* limits)
|
|
{
|
|
struct device *child;
|
|
struct resource *res;
|
|
struct resource *lim;
|
|
struct bus *link;
|
|
|
|
printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
|
|
|
|
/* Constrain limits based on the fixed resources of this device. */
|
|
for (res = dev->resource_list; res; res = res->next) {
|
|
if (!(res->flags & IORESOURCE_FIXED))
|
|
continue;
|
|
if (!res->size) {
|
|
/* It makes no sense to have 0-sized, fixed resources.*/
|
|
printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
|
|
"size=0!\n", dev_path(dev), res->index);
|
|
continue;
|
|
}
|
|
|
|
/* PREFETCH, MEM, or I/O - skip any others. */
|
|
if ((res->flags & MEM_MASK) == PREF_TYPE)
|
|
lim = &limits->pref;
|
|
else if ((res->flags & MEM_MASK) == MEM_TYPE)
|
|
lim = &limits->mem;
|
|
else if ((res->flags & IO_MASK) == IO_TYPE)
|
|
lim = &limits->io;
|
|
else
|
|
continue;
|
|
|
|
/*
|
|
* Is it a fixed resource outside the current known region?
|
|
* If so, we don't have to consider it - it will be handled
|
|
* correctly and doesn't affect current region's limits.
|
|
*/
|
|
if (((res->base + res->size -1) < lim->base)
|
|
|| (res->base > lim->limit))
|
|
continue;
|
|
|
|
/*
|
|
* Choose to be above or below fixed resources. This check is
|
|
* signed so that "negative" amounts of space are handled
|
|
* correctly.
|
|
*/
|
|
if ((signed long long)(lim->limit - (res->base + res->size -1))
|
|
> (signed long long)(res->base - lim->base))
|
|
lim->base = res->base + res->size;
|
|
else
|
|
lim->limit = res->base -1;
|
|
}
|
|
|
|
/* Descend into every enabled child and look for fixed resources. */
|
|
for (link = dev->link_list; link; link = link->next) {
|
|
for (child = link->children; child; child = child->sibling) {
|
|
if (child->enabled)
|
|
constrain_resources(child, limits);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void avoid_fixed_resources(struct device *dev)
|
|
{
|
|
struct constraints limits;
|
|
struct resource *res;
|
|
|
|
printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
|
|
|
|
/* Initialize constraints to maximum size. */
|
|
limits.pref.base = 0;
|
|
limits.pref.limit = 0xffffffffffffffffULL;
|
|
limits.io.base = 0;
|
|
limits.io.limit = 0xffffffffffffffffULL;
|
|
limits.mem.base = 0;
|
|
limits.mem.limit = 0xffffffffffffffffULL;
|
|
|
|
/* Constrain the limits to dev's initial resources. */
|
|
for (res = dev->resource_list; res; res = res->next) {
|
|
if ((res->flags & IORESOURCE_FIXED))
|
|
continue;
|
|
printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
|
|
dev_path(dev), res->index, res->limit);
|
|
if ((res->flags & MEM_MASK) == PREF_TYPE &&
|
|
(res->limit < limits.pref.limit))
|
|
limits.pref.limit = res->limit;
|
|
if ((res->flags & MEM_MASK) == MEM_TYPE &&
|
|
(res->limit < limits.mem.limit))
|
|
limits.mem.limit = res->limit;
|
|
if ((res->flags & IO_MASK) == IO_TYPE &&
|
|
(res->limit < limits.io.limit))
|
|
limits.io.limit = res->limit;
|
|
}
|
|
|
|
/* Look through the tree for fixed resources and update the limits. */
|
|
constrain_resources(dev, &limits);
|
|
|
|
/* Update dev's resources with new limits. */
|
|
for (res = dev->resource_list; res; res = res->next) {
|
|
struct resource *lim;
|
|
|
|
if ((res->flags & IORESOURCE_FIXED))
|
|
continue;
|
|
|
|
/* PREFETCH, MEM, or I/O - skip any others. */
|
|
if ((res->flags & MEM_MASK) == PREF_TYPE)
|
|
lim = &limits.pref;
|
|
else if ((res->flags & MEM_MASK) == MEM_TYPE)
|
|
lim = &limits.mem;
|
|
else if ((res->flags & IO_MASK) == IO_TYPE)
|
|
lim = &limits.io;
|
|
else
|
|
continue;
|
|
|
|
printk(BIOS_SPEW, "%s2: %s@%02lx limit %08llx\n", __func__,
|
|
dev_path(dev), res->index, res->limit);
|
|
printk(BIOS_SPEW, "\tlim->base %08llx lim->limit %08llx\n",
|
|
lim->base, lim->limit);
|
|
|
|
/* Is the resource outside the limits? */
|
|
if (lim->base > res->base)
|
|
res->base = lim->base;
|
|
if (res->limit > lim->limit)
|
|
res->limit = lim->limit;
|
|
}
|
|
}
|
|
|
|
device_t vga_pri = 0;
|
|
static void set_vga_bridge_bits(void)
|
|
{
|
|
/*
|
|
* FIXME: Modify set_vga_bridge() so it is less PCI centric!
|
|
* This function knows too much about PCI stuff, it should be just
|
|
* an iterator/visitor.
|
|
*/
|
|
|
|
/* FIXME: Handle the VGA palette snooping. */
|
|
struct device *dev, *vga, *vga_onboard;
|
|
struct bus *bus;
|
|
|
|
bus = 0;
|
|
vga = 0;
|
|
vga_onboard = 0;
|
|
|
|
dev = NULL;
|
|
while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
|
|
if (!dev->enabled)
|
|
continue;
|
|
|
|
printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));
|
|
|
|
if (dev->on_mainboard) {
|
|
vga_onboard = dev;
|
|
} else {
|
|
vga = dev;
|
|
}
|
|
|
|
/* It isn't safe to enable all VGA cards. */
|
|
dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
|
|
}
|
|
|
|
if (!vga)
|
|
vga = vga_onboard;
|
|
|
|
if (CONFIG_ONBOARD_VGA_IS_PRIMARY && vga_onboard)
|
|
vga = vga_onboard;
|
|
|
|
/* If we prefer plugin VGA over chipset VGA, the chipset might
|
|
want to know. */
|
|
if (!CONFIG_ONBOARD_VGA_IS_PRIMARY && (vga != vga_onboard) &&
|
|
vga_onboard && vga_onboard->ops && vga_onboard->ops->disable) {
|
|
printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
|
|
vga_onboard->ops->disable(vga_onboard);
|
|
}
|
|
|
|
if (vga) {
|
|
/* VGA is first add-on card or the only onboard VGA. */
|
|
printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
|
|
/* All legacy VGA cards have MEM & I/O space registers. */
|
|
vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
|
|
vga_pri = vga;
|
|
bus = vga->bus;
|
|
}
|
|
|
|
/* Now walk up the bridges setting the VGA enable. */
|
|
while (bus) {
|
|
printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
|
|
dev_path(bus->dev));
|
|
bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
|
|
bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Assign the computed resources to the devices on the bus.
|
|
*
|
|
* Use the device specific set_resources() method to store the computed
|
|
* resources to hardware. For bridge devices, the set_resources() method
|
|
* has to recurse into every down stream buses.
|
|
*
|
|
* Mutual recursion:
|
|
* assign_resources() -> device_operation::set_resources()
|
|
* device_operation::set_resources() -> assign_resources()
|
|
*
|
|
* @param bus Pointer to the structure for this bus.
|
|
*/
|
|
void assign_resources(struct bus *bus)
|
|
{
|
|
struct device *curdev;
|
|
|
|
printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
|
|
dev_path(bus->dev), bus->secondary, bus->link_num);
|
|
|
|
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
|
|
if (!curdev->enabled || !curdev->resource_list)
|
|
continue;
|
|
|
|
if (!curdev->ops || !curdev->ops->set_resources) {
|
|
printk(BIOS_ERR, "%s missing set_resources\n",
|
|
dev_path(curdev));
|
|
continue;
|
|
}
|
|
curdev->ops->set_resources(curdev);
|
|
}
|
|
printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
|
|
dev_path(bus->dev), bus->secondary, bus->link_num);
|
|
}
|
|
|
|
/**
|
|
* Enable the resources for devices on a link.
|
|
*
|
|
* Enable resources of the device by calling the device specific
|
|
* enable_resources() method.
|
|
*
|
|
* The parent's resources should be enabled first to avoid having enabling
|
|
* order problem. This is done by calling the parent's enable_resources()
|
|
* method before its childrens' enable_resources() methods.
|
|
*
|
|
* @param link The link whose devices' resources are to be enabled.
|
|
*/
|
|
static void enable_resources(struct bus *link)
|
|
{
|
|
struct device *dev;
|
|
struct bus *c_link;
|
|
|
|
for (dev = link->children; dev; dev = dev->sibling) {
|
|
if (dev->enabled && dev->ops && dev->ops->enable_resources)
|
|
dev->ops->enable_resources(dev);
|
|
}
|
|
|
|
for (dev = link->children; dev; dev = dev->sibling) {
|
|
for (c_link = dev->link_list; c_link; c_link = c_link->next)
|
|
enable_resources(c_link);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reset all of the devices on a bus and clear the bus's reset_needed flag.
|
|
*
|
|
* @param bus Pointer to the bus structure.
|
|
* @return 1 if the bus was successfully reset, 0 otherwise.
|
|
*/
|
|
int reset_bus(struct bus *bus)
|
|
{
|
|
if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
|
|
bus->dev->ops->reset_bus(bus);
|
|
bus->reset_needed = 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Scan for devices on a bus.
|
|
*
|
|
* If there are bridges on the bus, recursively scan the buses behind the
|
|
* bridges. If the setting up and tuning of the bus causes a reset to be
|
|
* required, reset the bus and scan it again.
|
|
*
|
|
* @param busdev Pointer to the bus device.
|
|
* @param max Current bus number.
|
|
* @return The maximum bus number found, after scanning all subordinate buses.
|
|
*/
|
|
unsigned int scan_bus(struct device *busdev, unsigned int max)
|
|
{
|
|
unsigned int new_max;
|
|
int do_scan_bus;
|
|
|
|
if (!busdev || !busdev->enabled || !busdev->ops ||
|
|
!busdev->ops->scan_bus) {
|
|
return max;
|
|
}
|
|
|
|
do_scan_bus = 1;
|
|
while (do_scan_bus) {
|
|
struct bus *link;
|
|
new_max = busdev->ops->scan_bus(busdev, max);
|
|
do_scan_bus = 0;
|
|
for (link = busdev->link_list; link; link = link->next) {
|
|
if (link->reset_needed) {
|
|
if (reset_bus(link))
|
|
do_scan_bus = 1;
|
|
else
|
|
busdev->bus->reset_needed = 1;
|
|
}
|
|
}
|
|
}
|
|
return new_max;
|
|
}
|
|
|
|
/**
|
|
* Determine the existence of devices and extend the device tree.
|
|
*
|
|
* Most of the devices in the system are listed in the mainboard devicetree.cb
|
|
* file. The device structures for these devices are generated at compile
|
|
* time by the config tool and are organized into the device tree. This
|
|
* function determines if the devices created at compile time actually exist
|
|
* in the physical system.
|
|
*
|
|
* For devices in the physical system but not listed in devicetree.cb,
|
|
* the device structures have to be created at run time and attached to the
|
|
* device tree.
|
|
*
|
|
* This function starts from the root device 'dev_root', scans the buses in
|
|
* the system recursively, and modifies the device tree according to the
|
|
* result of the probe.
|
|
*
|
|
* This function has no idea how to scan and probe buses and devices at all.
|
|
* It depends on the bus/device specific scan_bus() method to do it. The
|
|
* scan_bus() method also has to create the device structure and attach
|
|
* it to the device tree.
|
|
*/
|
|
void dev_enumerate(void)
|
|
{
|
|
struct device *root;
|
|
|
|
printk(BIOS_INFO, "Enumerating buses...\n");
|
|
|
|
root = &dev_root;
|
|
|
|
show_all_devs(BIOS_SPEW, "Before device enumeration.");
|
|
printk(BIOS_SPEW, "Compare with tree...\n");
|
|
show_devs_tree(root, BIOS_SPEW, 0, 0);
|
|
|
|
if (root->chip_ops && root->chip_ops->enable_dev)
|
|
root->chip_ops->enable_dev(root);
|
|
|
|
if (!root->ops || !root->ops->scan_bus) {
|
|
printk(BIOS_ERR, "dev_root missing scan_bus operation");
|
|
return;
|
|
}
|
|
scan_bus(root, 0);
|
|
printk(BIOS_INFO, "done\n");
|
|
}
|
|
|
|
/**
|
|
* Configure devices on the devices tree.
|
|
*
|
|
* Starting at the root of the device tree, travel it recursively in two
|
|
* passes. In the first pass, we compute and allocate resources (ranges)
|
|
* requried by each device. In the second pass, the resources ranges are
|
|
* relocated to their final position and stored to the hardware.
|
|
*
|
|
* I/O resources grow upward. MEM resources grow downward.
|
|
*
|
|
* Since the assignment is hierarchical we set the values into the dev_root
|
|
* struct.
|
|
*/
|
|
void dev_configure(void)
|
|
{
|
|
struct resource *res;
|
|
struct device *root;
|
|
struct device *child;
|
|
|
|
set_vga_bridge_bits();
|
|
|
|
printk(BIOS_INFO, "Allocating resources...\n");
|
|
|
|
root = &dev_root;
|
|
|
|
/*
|
|
* Each domain should create resources which contain the entire address
|
|
* space for IO, MEM, and PREFMEM resources in the domain. The
|
|
* allocation of device resources will be done from this address space.
|
|
*/
|
|
|
|
/* Read the resources for the entire tree. */
|
|
|
|
printk(BIOS_INFO, "Reading resources...\n");
|
|
read_resources(root->link_list);
|
|
printk(BIOS_INFO, "Done reading resources.\n");
|
|
|
|
print_resource_tree(root, BIOS_SPEW, "After reading.");
|
|
|
|
/* Compute resources for all domains. */
|
|
for (child = root->link_list->children; child; child = child->sibling) {
|
|
if (!(child->path.type == DEVICE_PATH_DOMAIN))
|
|
continue;
|
|
for (res = child->resource_list; res; res = res->next) {
|
|
if (res->flags & IORESOURCE_FIXED)
|
|
continue;
|
|
if (res->flags & IORESOURCE_PREFETCH) {
|
|
compute_resources(child->link_list,
|
|
res, MEM_MASK, PREF_TYPE);
|
|
continue;
|
|
}
|
|
if (res->flags & IORESOURCE_MEM) {
|
|
compute_resources(child->link_list,
|
|
res, MEM_MASK, MEM_TYPE);
|
|
continue;
|
|
}
|
|
if (res->flags & IORESOURCE_IO) {
|
|
compute_resources(child->link_list,
|
|
res, IO_MASK, IO_TYPE);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For all domains. */
|
|
for (child = root->link_list->children; child; child=child->sibling)
|
|
if (child->path.type == DEVICE_PATH_DOMAIN)
|
|
avoid_fixed_resources(child);
|
|
|
|
/*
|
|
* Now we need to adjust the resources. MEM resources need to start at
|
|
* the highest address managable.
|
|
*/
|
|
for (child = root->link_list->children; child; child = child->sibling) {
|
|
if (child->path.type != DEVICE_PATH_DOMAIN)
|
|
continue;
|
|
for (res = child->resource_list; res; res = res->next) {
|
|
if (!(res->flags & IORESOURCE_MEM) ||
|
|
res->flags & IORESOURCE_FIXED)
|
|
continue;
|
|
res->base = resource_max(res);
|
|
}
|
|
}
|
|
|
|
/* Store the computed resource allocations into device registers ... */
|
|
printk(BIOS_INFO, "Setting resources...\n");
|
|
for (child = root->link_list->children; child; child = child->sibling) {
|
|
if (!(child->path.type == DEVICE_PATH_DOMAIN))
|
|
continue;
|
|
for (res = child->resource_list; res; res = res->next) {
|
|
if (res->flags & IORESOURCE_FIXED)
|
|
continue;
|
|
if (res->flags & IORESOURCE_PREFETCH) {
|
|
allocate_resources(child->link_list,
|
|
res, MEM_MASK, PREF_TYPE);
|
|
continue;
|
|
}
|
|
if (res->flags & IORESOURCE_MEM) {
|
|
allocate_resources(child->link_list,
|
|
res, MEM_MASK, MEM_TYPE);
|
|
continue;
|
|
}
|
|
if (res->flags & IORESOURCE_IO) {
|
|
allocate_resources(child->link_list,
|
|
res, IO_MASK, IO_TYPE);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
assign_resources(root->link_list);
|
|
printk(BIOS_INFO, "Done setting resources.\n");
|
|
print_resource_tree(root, BIOS_SPEW, "After assigning values.");
|
|
|
|
printk(BIOS_INFO, "Done allocating resources.\n");
|
|
}
|
|
|
|
/**
|
|
* Enable devices on the device tree.
|
|
*
|
|
* Starting at the root, walk the tree and enable all devices/bridges by
|
|
* calling the device's enable_resources() method.
|
|
*/
|
|
void dev_enable(void)
|
|
{
|
|
struct bus *link;
|
|
|
|
printk(BIOS_INFO, "Enabling resources...\n");
|
|
|
|
/* Now enable everything. */
|
|
for (link = dev_root.link_list; link; link = link->next)
|
|
enable_resources(link);
|
|
|
|
printk(BIOS_INFO, "done.\n");
|
|
}
|
|
|
|
/**
|
|
* Initialize a specific device.
|
|
*
|
|
* The parent should be initialized first to avoid having an ordering problem.
|
|
* This is done by calling the parent's init() method before its childrens'
|
|
* init() methods.
|
|
*
|
|
* @param dev The device to be initialized.
|
|
*/
|
|
static void init_dev(struct device *dev)
|
|
{
|
|
if (!dev->enabled)
|
|
return;
|
|
|
|
if (!dev->initialized && dev->ops && dev->ops->init) {
|
|
#if CONFIG_HAVE_MONOTONIC_TIMER
|
|
struct mono_time start_time;
|
|
struct rela_time dev_init_time;
|
|
|
|
timer_monotonic_get(&start_time);
|
|
#endif
|
|
if (dev->path.type == DEVICE_PATH_I2C) {
|
|
printk(BIOS_DEBUG, "smbus: %s[%d]->",
|
|
dev_path(dev->bus->dev), dev->bus->link_num);
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "%s init\n", dev_path(dev));
|
|
dev->initialized = 1;
|
|
dev->ops->init(dev);
|
|
#if CONFIG_HAVE_MONOTONIC_TIMER
|
|
dev_init_time = current_time_from(&start_time);
|
|
printk(BIOS_DEBUG, "%s init %ld usecs\n", dev_path(dev),
|
|
rela_time_in_microseconds(&dev_init_time));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void init_link(struct bus *link)
|
|
{
|
|
struct device *dev;
|
|
struct bus *c_link;
|
|
|
|
for (dev = link->children; dev; dev = dev->sibling)
|
|
init_dev(dev);
|
|
|
|
for (dev = link->children; dev; dev = dev->sibling) {
|
|
for (c_link = dev->link_list; c_link; c_link = c_link->next)
|
|
init_link(c_link);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Initialize all devices in the global device tree.
|
|
*
|
|
* Starting at the root device, call the device's init() method to do
|
|
* device-specific setup, then call each child's init() method.
|
|
*/
|
|
void dev_initialize(void)
|
|
{
|
|
struct bus *link;
|
|
|
|
printk(BIOS_INFO, "Initializing devices...\n");
|
|
|
|
#if CONFIG_ARCH_X86
|
|
/* Ensure EBDA is prepared before Option ROMs. */
|
|
setup_default_ebda();
|
|
#endif
|
|
|
|
/* First call the mainboard init. */
|
|
init_dev(&dev_root);
|
|
|
|
/* Now initialize everything. */
|
|
for (link = dev_root.link_list; link; link = link->next)
|
|
init_link(link);
|
|
|
|
printk(BIOS_INFO, "Devices initialized\n");
|
|
show_all_devs(BIOS_SPEW, "After init.");
|
|
}
|