coreboot-kgpe-d16/util/intelmetool/me.c

632 lines
16 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <pci/pci.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/io.h>
#include <assert.h>
#include <unistd.h>
#include "intelmetool.h"
#include "me.h"
#include "mmap.h"
#define read32(addr, off) ( *((uint32_t *) (addr + off)) )
#define write32(addr, off, val) ( *((uint32_t *) (addr + off)) = val)
/* Path that the BIOS should take based on ME state */
/*
static const char *me_bios_path_values[] = {
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
*/
/* MMIO base address for MEI interface */
static uint32_t mei_base_address;
static uint8_t* mei_mmap;
static void mei_dump(void *ptr, int dword, int offset, const char *type)
{
/* struct mei_csr *csr; */
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
/*
csr = ptr;
if (!csr) {
printf("%-9s[%02x] : ", type, offset);
printf("ERROR: 0x%08x\n", dword);
break;
}
printf("%-9s[%02x] : ", type, offset);
printf("depth=%u read=%02u write=%02u ready=%u "
"reset=%u intgen=%u intstatus=%u intenable=%u\n",
csr->buffer_depth, csr->buffer_read_ptr,
csr->buffer_write_ptr, csr->ready, csr->reset,
csr->interrupt_generate, csr->interrupt_status,
csr->interrupt_enable);
*/
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printf("%-9s[%02x] : ", type, offset);
printf("CB: 0x%08x\n", dword);
break;
default:
printf("%-9s[%02x] : ", type, offset);
printf("0x%08x\n", offset);
break;
}
}
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline void mei_read_dword_ptr(void *ptr, uint32_t offset)
{
uint32_t dword = read32(mei_mmap, offset);
memcpy(ptr, &dword, sizeof(dword));
if (debug) {
mei_dump(ptr, dword, offset, "READ");
}
}
static inline void mei_write_dword_ptr(void *ptr, uint32_t offset)
{
uint32_t dword = 0;
memcpy(&dword, ptr, sizeof(dword));
write32(mei_mmap, offset, dword);
if (debug) {
mei_dump(ptr, dword, offset, "WRITE");
}
}
static inline void pci_read_dword_ptr(struct pci_dev *dev, void *ptr, uint32_t offset)
{
uint32_t dword = pci_read_long(dev, offset);
memcpy(ptr, &dword, sizeof(dword));
if (debug) {
mei_dump(ptr, dword, offset, "PCI READ");
}
}
static inline void read_host_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_H_CSR);
}
static inline void write_host_csr(struct mei_csr *csr)
{
mei_write_dword_ptr(csr, MEI_H_CSR);
}
static inline void read_me_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_ME_CSR_HA);
}
static inline void write_cb(uint32_t dword)
{
write32(mei_mmap, MEI_H_CB_WW, dword);
if (debug) {
mei_dump(NULL, dword, MEI_H_CB_WW, "WRITE");
}
}
static inline uint32_t read_cb(void)
{
uint32_t dword = read32(mei_mmap, MEI_ME_CB_RW);
if (debug) {
mei_dump(NULL, dword, MEI_ME_CB_RW, "READ");
}
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
struct mei_csr me;
unsigned try = ME_RETRY;
while (try--) {
read_me_csr(&me);
if (me.ready)
return 0;
usleep(ME_DELAY);
}
printf("ME: failed to become ready\n");
return -1;
}
void mei_reset(void)
{
struct mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
read_host_csr(&host);
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
}
static int mei_send_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data)
{
struct mei_csr host;
unsigned ndata , n;
uint32_t *data;
/* Number of dwords to write, ignoring MKHI */
ndata = (mei->length) >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printf("ME: request does not include MKHI\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
read_host_csr(&host);
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printf("ME: circular buffer full, resetting...\n");
mei_reset();
read_host_csr(&host);
}
/*
* This implementation does not handle splitting large messages
* across multiple transactions. Ensure the requested length
* will fit in the available circular buffer depth.
*/
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printf("ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
mei_write_dword_ptr(mei, MEI_H_CB_WW);
ndata--;
/* Write MKHI header */
mei_write_dword_ptr(mkhi, MEI_H_CB_WW);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_recv_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *rsp_data, uint32_t rsp_bytes)
{
struct mei_header mei_rsp;
struct mkhi_header mkhi_rsp;
struct mei_csr me, host;
unsigned ndata, n;
unsigned expected;
uint32_t *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + sizeof(mkhi_rsp)) >> 2;
if (rsp_bytes & 3)
expected++;
if (debug) {
printf("expected u32 = %d\n", expected);
}
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
read_me_csr(&me);
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
//if (me.interrupt_generate && !me.interrupt_status)
//if (me.interrupt_status)
break;
usleep(ME_DELAY);
}
if (!n) {
printf("ME: timeout waiting for data: expected "
"%u, available %u\n", expected,
me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_read_dword_ptr(&mei_rsp, MEI_ME_CB_RW);
if (!mei_rsp.is_complete) {
printf("ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least MKHI header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) { //XXX
printf("ME: response is missing data\n");
//return -1;
}
/* Read and verify MKHI response header from the ME */
mei_read_dword_ptr(&mkhi_rsp, MEI_ME_CB_RW);
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printf("ME: invalid response, group %u ?= %u, "
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
//return -1;
}
ndata--; /* MKHI header has been read */
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printf("ME: not enough room in response buffer: "
"%u != %u\n", ndata, rsp_bytes >> 2);
//return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
read_host_csr(&host);
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data, void *rsp_data, uint32_t rsp_bytes)
{
if (mei_send_msg(mei, mkhi, req_data) < 0)
return -1;
if (mei_recv_msg(mei, mkhi, rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
/* Send END OF POST message to the ME */
/*
static int mkhi_end_of_post(void)
{
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = MKHI_END_OF_POST,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi),
};
if (mei_sendrecv(&mei, &mkhi, NULL, NULL, 0) < 0) {
printf("ME: END OF POST message failed\n");
return -1;
}
printf("ME: END OF POST message successful\n");
return 0;
}
*/
/* Get ME firmware version */
int mkhi_get_fw_version(int *major, int *minor)
{
uint32_t data = 0;
struct me_fw_version version = {0};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = GEN_GET_FW_VERSION,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi),
};
#ifndef OLDARC
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &data, &version, sizeof(version) ) < 0) {
printf("ME: GET FW VERSION message failed\n");
return -1;
}
printf("ME: Firmware Version %u.%u.%u.%u (code) "
"%u.%u.%u.%u (recovery) "
"%u.%u.%u.%u (fitc)\n\n",
version.code_major, version.code_minor,
version.code_build_number, version.code_hot_fix,
version.recovery_major, version.recovery_minor,
version.recovery_build_number, version.recovery_hot_fix,
version.fitcmajor, version.fitcminor,
version.fitcbuildno, version.fitchotfix);
#else
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &data, &version, 2*sizeof(uint32_t) ) < 0) {
printf("ME: GET FW VERSION message failed\n");
return -1;
}
printf("ME: Firmware Version %u.%u (code)\n\n",
version.code_major, version.code_minor);
#endif
if (major)
*major = version.code_major;
if (minor)
*minor = version.code_minor;
return 0;
}
/* Get ME Firmware Capabilities */
int mkhi_get_fwcaps(void)
{
struct {
uint32_t rule_id;
uint32_t rule_len;
struct me_fwcaps cap;
} fwcaps;
fwcaps.rule_id = 0;
fwcaps.rule_len = 0;
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_FWCAPS,
.command = MKHI_FWCAPS_GET_RULE,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi) + sizeof(fwcaps.rule_id),
};
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &fwcaps.rule_id, &fwcaps.cap, sizeof(fwcaps.cap)) < 0) {
printf("ME: GET FWCAPS message failed\n");
return -1;
}
print_cap("Full Network manageability ", fwcaps.cap.caps_sku.full_net);
print_cap("Regular Network manageability ", fwcaps.cap.caps_sku.std_net);
print_cap("Manageability ", fwcaps.cap.caps_sku.manageability);
print_cap("Small business technology ", fwcaps.cap.caps_sku.small_business);
print_cap("Level III manageability ", fwcaps.cap.caps_sku.l3manageability);
print_cap("IntelR Anti-Theft (AT) ", fwcaps.cap.caps_sku.intel_at);
print_cap("IntelR Capability Licensing Service (CLS) ", fwcaps.cap.caps_sku.intel_cls);
print_cap("IntelR Power Sharing Technology (MPC) ", fwcaps.cap.caps_sku.intel_mpc);
print_cap("ICC Over Clocking ", fwcaps.cap.caps_sku.icc_over_clocking);
print_cap("Protected Audio Video Path (PAVP) ", fwcaps.cap.caps_sku.pavp);
print_cap("IPV6 ", fwcaps.cap.caps_sku.ipv6);
print_cap("KVM Remote Control (KVM) ", fwcaps.cap.caps_sku.kvm);
print_cap("Outbreak Containment Heuristic (OCH) ", fwcaps.cap.caps_sku.och);
print_cap("Virtual LAN (VLAN) ", fwcaps.cap.caps_sku.vlan);
print_cap("TLS ", fwcaps.cap.caps_sku.tls);
print_cap("Wireless LAN (WLAN) ", fwcaps.cap.caps_sku.wlan);
return 0;
}
/* Tell ME to issue a global reset */
uint32_t mkhi_global_reset(void)
{
struct me_global_reset reset = {
.request_origin = GLOBAL_RESET_BIOS_POST,
.reset_type = CBM_RR_GLOBAL_RESET,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_CBM,
.command = MKHI_GLOBAL_RESET,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(reset),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
};
printf("ME: Requesting global reset\n");
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &reset, NULL, 0) < 0) {
/* No response means reset will happen shortly... */
asm("hlt");
}
/* If the ME responded it rejected the reset request */
printf("ME: Global Reset failed\n");
return -1;
}
/* Tell ME thermal reporting parameters */
/*
void mkhi_thermal(void)
{
struct me_thermal_reporting thermal = {
.polling_timeout = 2,
.smbus_ec_msglen = 1,
.smbus_ec_msgpec = 0,
.dimmnumber = 4,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_CBM,
.command = MKHI_THERMAL_REPORTING,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(thermal),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_THERMAL,
};
printf("ME: Sending thermal reporting params\n");
mei_sendrecv(&mei, &mkhi, &thermal, NULL, 0);
}
*/
/* Enable debug of internal ME memory */
int mkhi_debug_me_memory(void *physaddr)
{
uint32_t data = 0;
/* copy whole ME memory to a readable space */
struct me_debug_mem memory = {
.debug_phys = (uintptr_t)physaddr,
.debug_size = 0x2000000,
.me_phys = 0x20000000,
.me_size = 0x2000000,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = GEN_SET_DEBUG_MEM,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(memory),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
};
printf("ME: Debug memory to 0x%zx ...", (size_t)physaddr);
if (mei_sendrecv(&mei, &mkhi, &memory, &data, 0) < 0) {
printf("failed\n");
return -1;
} else {
printf("done\n");
}
return 0;
}
/* Prepare ME for MEI messages */
uint32_t intel_mei_setup(struct pci_dev *dev)
{
struct mei_csr host;
uint16_t reg16;
uint32_t pagerounded;
mei_base_address = dev->base_addr[0] & ~0xf;
pagerounded = mei_base_address & ~0xfff;
mei_mmap = map_physical(pagerounded, 0x2000);
mei_mmap += mei_base_address - pagerounded;
if (mei_mmap == NULL) {
printf("Could not map ME setup memory.\n"
"Do you have kernel cmdline argument 'iomem=relaxed' set ?\n");
return 1;
}
/* Ensure Memory and Bus Master bits are set */
reg16 = pci_read_word(dev, PCI_COMMAND);
reg16 |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
pci_write_word(dev, PCI_COMMAND, reg16);
/* Clean up status for next message */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
return 0;
}
/* Read the Extend register hash of ME firmware */
int intel_me_extend_valid(struct pci_dev *dev)
{
struct me_heres status;
uint32_t extend[8] = {0};
int i, count = 0;
pci_read_dword_ptr(dev, &status, PCI_ME_HERES);
if (!status.extend_feature_present) {
printf("ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printf("ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printf("ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printf("ME: Extend SHA-256: ");
break;
default:
printf("ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_long(dev, PCI_ME_HER(i));
printf("%08x", extend[i]);
}
printf("\n");
return 0;
}