coreboot-kgpe-d16/util/cbfstool/elfheaders.c
Aaron Durbin a31ff73e8d cbfstool: elfparsing: check segment and section regions
While parsing the section and program headers ensure the
locations of their contents are within the elf file proper.

Change-Id: I856f7de45f82ac15977abc06e51bedb51c58dde1
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/5372
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
2014-03-13 05:31:49 +01:00

376 lines
13 KiB
C

/*
* elf header parsing.
*
* Copyright (C) 2013 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "elfparsing.h"
#include "common.h"
#include "cbfs.h"
/*
* Short form: this is complicated, but we've tried making it simple
* and we keep hitting problems with our ELF parsing.
*
* The ELF parsing situation has always been a bit tricky. In fact,
* we (and most others) have been getting it wrong in small ways for
* years. Recently this has caused real trouble for the ARM V8 build.
* In this file we attempt to finally get it right for all variations
* of endian-ness and word size and target architectures and
* architectures we might get run on. Phew!. To do this we borrow a
* page from the FreeBSD NFS xdr model (see elf_ehdr and elf_phdr),
* the Plan 9 endianness functions (see xdr.c), and Go interfaces (see
* how we use buffer structs in this file). This ends up being a bit
* wordy at the lowest level, but greatly simplifies the elf parsing
* code and removes a common source of bugs, namely, forgetting to
* flip type endianness when referencing a struct member.
*
* ELF files can have four combinations of data layout: 32/64, and
* big/little endian. Further, to add to the fun, depending on the
* word size, the size of the ELF structs varies. The coreboot SELF
* format is simpler in theory: it's supposed to be always BE, and the
* various struct members allow room for growth: the entry point is
* always 64 bits, for example, so the size of a SELF struct is
* constant, regardless of target architecture word size. Hence, we
* need to do some transformation of the ELF files.
*
* A given architecture, realistically, only supports one of the four
* combinations at a time as the 'native' format. Hence, our code has
* been sprinkled with every variation of [nh]to[hn][sll] over the
* years. We've never quite gotten it all right, however, and a quick
* pass over this code revealed another bug. It's all worked because,
* until now, all the working platforms that had CBFS were 32 LE. Even then,
* however, bugs crept in: we recently realized that we're not
* transforming the entry point to big format when we store into the
* SELF image.
*
* The problem is essentially an XDR operation:
* we have something in a foreign format and need to transform it.
* It's most like XDR because:
* 1) the byte order can be wrong
* 2) the word size can be wrong
* 3) the size of elements in the stream depends on the value
* of other elements in the stream
* it's not like XDR because:
* 1) the byte order can be right
* 2) the word size can be right
* 3) the struct members are all on a natural alignment
*
* Hence, this new approach. To cover word size issues, we *always*
* transform the two structs we care about, the file header and
* program header, into a native struct in the 64 bit format:
*
* [32,little] -> [Elf64_Ehdr, Elf64_Phdr]
* [64,little] -> [Elf64_Ehdr, Elf64_Phdr]
* [32,big] -> [Elf64_Ehdr, Elf64_Phdr]
* [64,big] -> [Elf64_Ehdr, Elf64_Phdr]
* Then we just use those structs, and all the need for inline ntoh* goes away,
* as well as all the chances for error.
* This works because all the SELF structs have fields large enough for
* the largest ELF 64 struct members, and all the Elf64 struct members
* are at least large enough for all ELF 32 struct members.
* We end up with one function to do all our ELF parsing, and two functions
* to transform the headers. For the put case, we also have
* XDR functions, and hopefully we'll never again spend 5 years with the
* wrong endian-ness on an output value :-)
* This should work for all word sizes and endianness we hope to target.
* I *really* don't want to be here for 128 bit addresses.
*
* The parse functions are called with a pointer to an input buffer
* struct. One might ask: are there enough bytes in the input buffer?
* We know there need to be at *least* sizeof(Elf32_Ehdr) +
* sizeof(Elf32_Phdr) bytes. Realistically, there has to be some data
* too. If we start to worry, though we have not in the past, we
* might apply the simple test: the input buffer needs to be at least
* sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) bytes because, even if it's
* ELF 32, there's got to be *some* data! This is not theoretically
* accurate but it is actually good enough in practice. It allows the
* header transformation code to ignore the possibility of underrun.
*
* We also must accomodate different ELF files, and hence formats,
* in the same cbfs invocation. We might load a 64-bit payload
* on a 32-bit machine; we might even have a mixed armv7/armv8
* SOC or even a system with an x86/ARM!
*
* A possibly problematic (though unlikely to be so) assumption
* is that we expect the BIOS to remain in the lowest 32 bits
* of the physical address space. Since ARMV8 has standardized
* on that, and x86_64 also has, this seems a safe assumption.
*
* To repeat, ELF structs are different sizes because ELF struct
* members are different sizes, depending on values in the ELF file
* header. For this we use the functions defined in xdr.c, which
* consume bytes, convert the endianness, and advance the data pointer
* in the buffer struct.
*/
static int iself(const void *input)
{
const Elf32_Ehdr *ehdr = input;
return !memcmp(ehdr->e_ident, ELFMAG, 4);
}
/* Get the ident array, so we can figure out
* endian-ness, word size, and in future other useful
* parameters
*/
static void
elf_eident(struct buffer *input, Elf64_Ehdr *ehdr)
{
bgets(input, ehdr->e_ident, sizeof(ehdr->e_ident));
}
static int
check_size(const struct buffer *b, size_t offset, size_t size, const char *desc)
{
if (size == 0)
return 0;
if (offset >= buffer_size(b) || (offset + size) > buffer_size(b)) {
ERROR("The file is not large enough for the '%s'. "
"%ld bytes @ offset %zu, input %zu bytes.\n",
desc, size, offset, buffer_size(b));
return -1;
}
return 0;
}
static void
elf_ehdr(struct buffer *input, Elf64_Ehdr *ehdr, struct xdr *xdr, int bit64)
{
ehdr->e_type = xdr->get16(input);
ehdr->e_machine = xdr->get16(input);
ehdr->e_version = xdr->get32(input);
if (bit64){
ehdr->e_entry = xdr->get64(input);
ehdr->e_phoff = xdr->get64(input);
ehdr->e_shoff = xdr->get64(input);
} else {
ehdr->e_entry = xdr->get32(input);
ehdr->e_phoff = xdr->get32(input);
ehdr->e_shoff = xdr->get32(input);
}
ehdr->e_flags = xdr->get32(input);
ehdr->e_ehsize = xdr->get16(input);
ehdr->e_phentsize = xdr->get16(input);
ehdr->e_phnum = xdr->get16(input);
ehdr->e_shentsize = xdr->get16(input);
ehdr->e_shnum = xdr->get16(input);
ehdr->e_shstrndx = xdr->get16(input);
}
static void
elf_phdr(struct buffer *pinput, Elf64_Phdr *phdr,
int entsize, struct xdr *xdr, int bit64)
{
/*
* The entsize need not be sizeof(*phdr).
* Hence, it is easier to keep a copy of the input,
* as the xdr functions may not advance the input
* pointer the full entsize; rather than get tricky
* we just advance it below.
*/
struct buffer input;
buffer_clone(&input, pinput);
if (bit64){
phdr->p_type = xdr->get32(&input);
phdr->p_flags = xdr->get32(&input);
phdr->p_offset = xdr->get64(&input);
phdr->p_vaddr = xdr->get64(&input);
phdr->p_paddr = xdr->get64(&input);
phdr->p_filesz = xdr->get64(&input);
phdr->p_memsz = xdr->get64(&input);
phdr->p_align = xdr->get64(&input);
} else {
phdr->p_type = xdr->get32(&input);
phdr->p_offset = xdr->get32(&input);
phdr->p_vaddr = xdr->get32(&input);
phdr->p_paddr = xdr->get32(&input);
phdr->p_filesz = xdr->get32(&input);
phdr->p_memsz = xdr->get32(&input);
phdr->p_flags = xdr->get32(&input);
phdr->p_align = xdr->get32(&input);
}
buffer_seek(pinput, entsize);
}
static void
elf_shdr(struct buffer *pinput, Elf64_Shdr *shdr,
int entsize, struct xdr *xdr, int bit64)
{
/*
* The entsize need not be sizeof(*shdr).
* Hence, it is easier to keep a copy of the input,
* as the xdr functions may not advance the input
* pointer the full entsize; rather than get tricky
* we just advance it below.
*/
struct buffer input = *pinput;
if (bit64){
shdr->sh_name = xdr->get32(&input);
shdr->sh_type = xdr->get32(&input);
shdr->sh_flags = xdr->get64(&input);
shdr->sh_addr = xdr->get64(&input);
shdr->sh_offset = xdr->get64(&input);
shdr->sh_size= xdr->get64(&input);
shdr->sh_link = xdr->get32(&input);
shdr->sh_info = xdr->get32(&input);
shdr->sh_addralign = xdr->get64(&input);
shdr->sh_entsize = xdr->get64(&input);
} else {
shdr->sh_name = xdr->get32(&input);
shdr->sh_type = xdr->get32(&input);
shdr->sh_flags = xdr->get32(&input);
shdr->sh_addr = xdr->get32(&input);
shdr->sh_offset = xdr->get32(&input);
shdr->sh_size = xdr->get32(&input);
shdr->sh_link = xdr->get32(&input);
shdr->sh_info = xdr->get32(&input);
shdr->sh_addralign = xdr->get32(&input);
shdr->sh_entsize = xdr->get32(&input);
}
buffer_seek(pinput, entsize);
}
static Elf64_Phdr *
phdr_read(const struct buffer *in, Elf64_Ehdr *ehdr, struct xdr *xdr, int bit64)
{
struct buffer b;
Elf64_Phdr *phdr;
int i;
/* cons up an input buffer for the headers.
* Note that the program headers can be anywhere,
* per the ELF spec, You'd be surprised how many ELF
* readers miss this little detail.
*/
buffer_splice(&b, in, ehdr->e_phoff, ehdr->e_phentsize * ehdr->e_phnum);
if (check_size(in, ehdr->e_phoff, buffer_size(&b), "program headers"))
return NULL;
/* gather up all the phdrs.
* We do them all at once because there is more
* than one loop over all the phdrs.
*/
phdr = calloc(ehdr->e_phnum, sizeof(*phdr));
for (i = 0; i < ehdr->e_phnum; i++) {
DEBUG("Parsing segment %d\n", i);
elf_phdr(&b, &phdr[i], ehdr->e_phentsize, xdr, bit64);
/* Ensure the contents are valid within the elf file. */
if (check_size(in, phdr[i].p_offset, phdr[i].p_filesz,
"segment contents"))
return NULL;
}
return phdr;
}
static Elf64_Shdr *
shdr_read(const struct buffer *in, Elf64_Ehdr *ehdr, struct xdr *xdr, int bit64)
{
struct buffer b;
Elf64_Shdr *shdr;
int i;
/* cons up an input buffer for the section headers.
* Note that the section headers can be anywhere,
* per the ELF spec, You'd be surprised how many ELF
* readers miss this little detail.
*/
buffer_splice(&b, in, ehdr->e_shoff, ehdr->e_shentsize * ehdr->e_shnum);
if (check_size(in, ehdr->e_shoff, buffer_size(&b), "section headers"))
return NULL;
/* gather up all the shdrs. */
shdr = calloc(ehdr->e_shnum, sizeof(*shdr));
for (i = 0; i < ehdr->e_shnum; i++) {
DEBUG("Parsing section %d\n", i);
elf_shdr(&b, &shdr[i], ehdr->e_shentsize, xdr, bit64);
/* Ensure the contents are valid within the elf file. */
if (check_size(in, shdr[i].sh_offset, shdr[i].sh_size,
"section contents"))
return NULL;
}
return shdr;
}
/* Get the headers from the buffer.
* Return -1 in the event of an error.
* The section headers are optional; if NULL
* is passed in for pshdr they won't be parsed.
* We don't (yet) make payload parsing optional
* because we've never seen a use case.
*/
int
elf_headers(const struct buffer *pinput,
uint32_t arch,
Elf64_Ehdr *ehdr,
Elf64_Phdr **pphdr,
Elf64_Shdr **pshdr)
{
struct xdr *xdr = &xdr_le;
int bit64 = 0;
struct buffer input;
buffer_clone(&input, pinput);
if (!iself(buffer_get(pinput))) {
ERROR("The stage file is not in ELF format!\n");
return -1;
}
elf_eident(&input, ehdr);
bit64 = ehdr->e_ident[EI_CLASS] == ELFCLASS64;
/* Assume LE unless we are sure otherwise.
* We're not going to take on the task of
* fully validating the ELF file. That way
* lies madness.
*/
if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
xdr = &xdr_be;
elf_ehdr(&input, ehdr, xdr, bit64);
// The tool may work in architecture-independent way.
if (arch != CBFS_ARCHITECTURE_UNKNOWN &&
!((ehdr->e_machine == EM_ARM) && (arch == CBFS_ARCHITECTURE_ARMV7)) &&
!((ehdr->e_machine == EM_386) && (arch == CBFS_ARCHITECTURE_X86))) {
ERROR("The stage file has the wrong architecture\n");
return -1;
}
*pphdr = phdr_read(pinput, ehdr, xdr, bit64);
if (*pphdr == NULL)
return -1;
if (!pshdr)
return 0;
*pshdr = shdr_read(pinput, ehdr, xdr, bit64);
if (*pshdr == NULL)
return -1;
return 0;
}