coreboot-kgpe-d16/src/device/device.c
Paul Menzel 662380f157 device: Stop and output time in scan_bus()
Output how long it took to scan a bus.

Note, that the function `scan_bus()` is called recursively.

Change-Id: I6335e10db783f092ea18d3a1c79f93135bee5826
Signed-off-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-on: http://review.coreboot.org/12103
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2015-10-27 17:14:11 +01:00

1244 lines
34 KiB
C

/*
* This file is part of the coreboot project.
*
* It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
*
* Modifications are:
* Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
* Copyright (C) 2003-2004 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
* Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
* Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
*/
/*
* (c) 1999--2000 Martin Mares <mj@suse.cz>
*/
/*
* Lots of mods by Ron Minnich <rminnich@lanl.gov>, with
* the final architecture guidance from Tom Merritt <tjm@codegen.com>.
*
* In particular, we changed from the one-pass original version to
* Tom's recommended multiple-pass version. I wasn't sure about doing
* it with multiple passes, until I actually started doing it and saw
* the wisdom of Tom's recommendations...
*
* Lots of cleanups by Eric Biederman to handle bridges, and to
* handle resource allocation for non-PCI devices.
*/
#include <console/console.h>
#include <arch/io.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include <stdlib.h>
#include <string.h>
#include <smp/spinlock.h>
#if CONFIG_ARCH_X86
#include <arch/ebda.h>
#endif
#include <timer.h>
/** Linked list of ALL devices */
struct device *all_devices = &dev_root;
/** Pointer to the last device */
extern struct device *last_dev;
/** Linked list of free resources */
struct resource *free_resources = NULL;
/**
* Initialize all chips of statically known devices.
*
* Will be called before bus enumeration to initialize chips stated in the
* device tree.
*/
void dev_initialize_chips(void)
{
struct device *dev;
for (dev = all_devices; dev; dev = dev->next) {
/* Initialize chip if we haven't yet. */
if (dev->chip_ops && dev->chip_ops->init &&
!dev->chip_ops->initialized) {
post_log_path(dev);
dev->chip_ops->init(dev->chip_info);
dev->chip_ops->initialized = 1;
}
}
post_log_clear();
}
/**
* Finalize all chips of statically known devices.
*
* This is the last call before calling the payload. This is a good place
* to lock registers or other final cleanup.
*/
void dev_finalize_chips(void)
{
struct device *dev;
for (dev = all_devices; dev; dev = dev->next) {
/* Initialize chip if we haven't yet. */
if (dev->chip_ops && dev->chip_ops->final &&
!dev->chip_ops->finalized) {
dev->chip_ops->final(dev->chip_info);
dev->chip_ops->finalized = 1;
}
}
}
DECLARE_SPIN_LOCK(dev_lock)
#if CONFIG_GFXUMA
/* IGD UMA memory */
uint64_t uma_memory_base = 0;
uint64_t uma_memory_size = 0;
#endif
/**
* Allocate a new device structure.
*
* Allocate a new device structure and attach it to the device tree as a
* child of the parent bus.
*
* @param parent Parent bus the newly created device should be attached to.
* @param path Path to the device to be created.
* @return Pointer to the newly created device structure.
*
* @see device_path
*/
static device_t __alloc_dev(struct bus *parent, struct device_path *path)
{
device_t dev, child;
/* Find the last child of our parent. */
for (child = parent->children; child && child->sibling; /* */ )
child = child->sibling;
dev = malloc(sizeof(*dev));
if (dev == 0)
die("alloc_dev(): out of memory.\n");
memset(dev, 0, sizeof(*dev));
memcpy(&dev->path, path, sizeof(*path));
/* By default devices are enabled. */
dev->enabled = 1;
/* Add the new device to the list of children of the bus. */
dev->bus = parent;
if (child)
child->sibling = dev;
else
parent->children = dev;
/* Append a new device to the global device list.
* The list is used to find devices once everything is set up.
*/
last_dev->next = dev;
last_dev = dev;
return dev;
}
device_t alloc_dev(struct bus *parent, struct device_path *path)
{
device_t dev;
spin_lock(&dev_lock);
dev = __alloc_dev(parent, path);
spin_unlock(&dev_lock);
return dev;
}
/**
* See if a device structure already exists and if not allocate it.
*
* @param parent The bus to find the device on.
* @param path The relative path from the bus to the appropriate device.
* @return Pointer to a device structure for the device on bus at path.
*/
device_t alloc_find_dev(struct bus *parent, struct device_path *path)
{
device_t child;
spin_lock(&dev_lock);
child = find_dev_path(parent, path);
if (!child)
child = __alloc_dev(parent, path);
spin_unlock(&dev_lock);
return child;
}
/**
* Round a number up to an alignment.
*
* @param val The starting value.
* @param pow Alignment as a power of two.
* @return Rounded up number.
*/
static resource_t round(resource_t val, unsigned long pow)
{
resource_t mask;
mask = (1ULL << pow) - 1ULL;
val += mask;
val &= ~mask;
return val;
}
static const char * resource2str(struct resource *res)
{
if (res->flags & IORESOURCE_IO)
return "io";
if (res->flags & IORESOURCE_PREFETCH)
return "prefmem";
if (res->flags & IORESOURCE_MEM)
return "mem";
return "undefined";
}
/**
* Read the resources on all devices of a given bus.
*
* @param bus Bus to read the resources on.
*/
static void read_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s %s bus %x link: %d\n", dev_path(bus->dev),
__func__, bus->secondary, bus->link_num);
/* Walk through all devices and find which resources they need. */
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
struct bus *link;
if (!curdev->enabled)
continue;
if (!curdev->ops || !curdev->ops->read_resources) {
printk(BIOS_ERR, "%s missing read_resources\n",
dev_path(curdev));
continue;
}
post_log_path(curdev);
curdev->ops->read_resources(curdev);
/* Read in the resources behind the current device's links. */
for (link = curdev->link_list; link; link = link->next)
read_resources(link);
}
post_log_clear();
printk(BIOS_SPEW, "%s read_resources bus %d link: %d done\n",
dev_path(bus->dev), bus->secondary, bus->link_num);
}
struct pick_largest_state {
struct resource *last;
struct device *result_dev;
struct resource *result;
int seen_last;
};
static void pick_largest_resource(void *gp, struct device *dev,
struct resource *resource)
{
struct pick_largest_state *state = gp;
struct resource *last;
last = state->last;
/* Be certain to pick the successor to last. */
if (resource == last) {
state->seen_last = 1;
return;
}
if (resource->flags & IORESOURCE_FIXED)
return; /* Skip it. */
if (last && ((last->align < resource->align) ||
((last->align == resource->align) &&
(last->size < resource->size)) ||
((last->align == resource->align) &&
(last->size == resource->size) && (!state->seen_last)))) {
return;
}
if (!state->result ||
(state->result->align < resource->align) ||
((state->result->align == resource->align) &&
(state->result->size < resource->size))) {
state->result_dev = dev;
state->result = resource;
}
}
static struct device *largest_resource(struct bus *bus,
struct resource **result_res,
unsigned long type_mask,
unsigned long type)
{
struct pick_largest_state state;
state.last = *result_res;
state.result_dev = NULL;
state.result = NULL;
state.seen_last = 0;
search_bus_resources(bus, type_mask, type, pick_largest_resource,
&state);
*result_res = state.result;
return state.result_dev;
}
/**
* This function is the guts of the resource allocator.
*
* The problem.
* - Allocate resource locations for every device.
* - Don't overlap, and follow the rules of bridges.
* - Don't overlap with resources in fixed locations.
* - Be efficient so we don't have ugly strategies.
*
* The strategy.
* - Devices that have fixed addresses are the minority so don't
* worry about them too much. Instead only use part of the address
* space for devices with programmable addresses. This easily handles
* everything except bridges.
*
* - PCI devices are required to have their sizes and their alignments
* equal. In this case an optimal solution to the packing problem
* exists. Allocate all devices from highest alignment to least
* alignment or vice versa. Use this.
*
* - So we can handle more than PCI run two allocation passes on bridges. The
* first to see how large the resources are behind the bridge, and what
* their alignment requirements are. The second to assign a safe address to
* the devices behind the bridge. This allows us to treat a bridge as just
* a device with a couple of resources, and not need to special case it in
* the allocator. Also this allows handling of other types of bridges.
*
* @param bus The bus we are traversing.
* @param bridge The bridge resource which must contain the bus' resources.
* @param type_mask This value gets ANDed with the resource type.
* @param type This value must match the result of the AND.
* @return TODO
*/
static void compute_resources(struct bus *bus, struct resource *bridge,
unsigned long type_mask, unsigned long type)
{
struct device *dev;
struct resource *resource;
resource_t base;
base = round(bridge->base, bridge->align);
printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
" limit: %llx\n", dev_path(bus->dev), resource2str(bridge),
base, bridge->size, bridge->align,
bridge->gran, bridge->limit);
/* For each child which is a bridge, compute the resource needs. */
for (dev = bus->children; dev; dev = dev->sibling) {
struct resource *child_bridge;
if (!dev->link_list)
continue;
/* Find the resources with matching type flags. */
for (child_bridge = dev->resource_list; child_bridge;
child_bridge = child_bridge->next) {
struct bus* link;
if (!(child_bridge->flags & IORESOURCE_BRIDGE)
|| (child_bridge->flags & type_mask) != type)
continue;
/*
* Split prefetchable memory if combined. Many domains
* use the same address space for prefetchable memory
* and non-prefetchable memory. Bridges below them need
* it separated. Add the PREFETCH flag to the type_mask
* and type.
*/
link = dev->link_list;
while (link && link->link_num !=
IOINDEX_LINK(child_bridge->index))
link = link->next;
if (link == NULL) {
printk(BIOS_ERR, "link %ld not found on %s\n",
IOINDEX_LINK(child_bridge->index),
dev_path(dev));
}
compute_resources(link, child_bridge,
type_mask | IORESOURCE_PREFETCH,
type | (child_bridge->flags &
IORESOURCE_PREFETCH));
}
}
/* Remember we haven't found anything yet. */
resource = NULL;
/*
* Walk through all the resources on the current bus and compute the
* amount of address space taken by them. Take granularity and
* alignment into account.
*/
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
/* Size 0 resources can be skipped. */
if (!resource->size)
continue;
/* Propagate the resource alignment to the bridge resource. */
if (resource->align > bridge->align)
bridge->align = resource->align;
/* Propagate the resource limit to the bridge register. */
if (bridge->limit > resource->limit)
bridge->limit = resource->limit;
/* Warn if it looks like APICs aren't declared. */
if ((resource->limit == 0xffffffff) &&
(resource->flags & IORESOURCE_ASSIGNED)) {
printk(BIOS_ERR,
"Resource limit looks wrong! (no APIC?)\n");
printk(BIOS_ERR, "%s %02lx limit %08llx\n",
dev_path(dev), resource->index, resource->limit);
}
if (resource->flags & IORESOURCE_IO) {
/*
* Don't allow potential aliases over the legacy PCI
* expansion card addresses. The legacy PCI decodes
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
* 0x00 - 0xff can be used out of each 0x400 block of
* I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
/*
* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
/* Base must be aligned. */
base = round(base, resource->align);
resource->base = base;
base += resource->size;
printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
dev_path(dev), resource->index, resource->base,
resource->base + resource->size - 1,
resource2str(resource));
}
/*
* A PCI bridge resource does not need to be a power of two size, but
* it does have a minimum granularity. Round the size up to that
* minimum granularity so we know not to place something else at an
* address positively decoded by the bridge.
*/
bridge->size = round(base, bridge->gran) -
round(bridge->base, bridge->align);
printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
" limit: %llx done\n", dev_path(bus->dev),
resource2str(bridge),
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
}
/**
* This function is the second part of the resource allocator.
*
* See the compute_resources function for a more detailed explanation.
*
* This function assigns the resources a value.
*
* @param bus The bus we are traversing.
* @param bridge The bridge resource which must contain the bus' resources.
* @param type_mask This value gets ANDed with the resource type.
* @param type This value must match the result of the AND.
*
* @see compute_resources
*/
static void allocate_resources(struct bus *bus, struct resource *bridge,
unsigned long type_mask, unsigned long type)
{
struct device *dev;
struct resource *resource;
resource_t base;
base = bridge->base;
printk(BIOS_SPEW, "%s %s: base:%llx size:%llx align:%d gran:%d "
"limit:%llx\n", dev_path(bus->dev),
resource2str(bridge),
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
/* Remember we haven't found anything yet. */
resource = NULL;
/*
* Walk through all the resources on the current bus and allocate them
* address space.
*/
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
/* Propagate the bridge limit to the resource register. */
if (resource->limit > bridge->limit)
resource->limit = bridge->limit;
/* Size 0 resources can be skipped. */
if (!resource->size) {
/* Set the base to limit so it doesn't confuse tolm. */
resource->base = resource->limit;
resource->flags |= IORESOURCE_ASSIGNED;
continue;
}
if (resource->flags & IORESOURCE_IO) {
/*
* Don't allow potential aliases over the legacy PCI
* expansion card addresses. The legacy PCI decodes
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
* 0x00 - 0xff can be used out of each 0x400 block of
* I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
/*
* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
if ((round(base, resource->align) + resource->size - 1) <=
resource->limit) {
/* Base must be aligned. */
base = round(base, resource->align);
resource->base = base;
resource->limit = resource->base + resource->size - 1;
resource->flags |= IORESOURCE_ASSIGNED;
resource->flags &= ~IORESOURCE_STORED;
base += resource->size;
} else {
printk(BIOS_ERR, "!! Resource didn't fit !!\n");
printk(BIOS_ERR, " aligned base %llx size %llx "
"limit %llx\n", round(base, resource->align),
resource->size, resource->limit);
printk(BIOS_ERR, " %llx needs to be <= %llx "
"(limit)\n", (round(base, resource->align) +
resource->size) - 1, resource->limit);
printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]"
" %s\n", (resource->flags & IORESOURCE_ASSIGNED)
? "Assigned: " : "", dev_path(dev),
resource->index, resource->base,
resource->base + resource->size - 1,
resource2str(resource));
}
printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
dev_path(dev), resource->index, resource->base,
resource->size ? resource->base + resource->size - 1 :
resource->base, resource2str(resource));
}
/*
* A PCI bridge resource does not need to be a power of two size, but
* it does have a minimum granularity. Round the size up to that
* minimum granularity so we know not to place something else at an
* address positively decoded by the bridge.
*/
bridge->flags |= IORESOURCE_ASSIGNED;
printk(BIOS_SPEW, "%s %s: next_base: %llx size: %llx align: %d "
"gran: %d done\n", dev_path(bus->dev),
resource2str(bridge), base, bridge->size, bridge->align,
bridge->gran);
/* For each child which is a bridge, allocate_resources. */
for (dev = bus->children; dev; dev = dev->sibling) {
struct resource *child_bridge;
if (!dev->link_list)
continue;
/* Find the resources with matching type flags. */
for (child_bridge = dev->resource_list; child_bridge;
child_bridge = child_bridge->next) {
struct bus* link;
if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
(child_bridge->flags & type_mask) != type)
continue;
/*
* Split prefetchable memory if combined. Many domains
* use the same address space for prefetchable memory
* and non-prefetchable memory. Bridges below them need
* it separated. Add the PREFETCH flag to the type_mask
* and type.
*/
link = dev->link_list;
while (link && link->link_num !=
IOINDEX_LINK(child_bridge->index))
link = link->next;
if (link == NULL)
printk(BIOS_ERR, "link %ld not found on %s\n",
IOINDEX_LINK(child_bridge->index),
dev_path(dev));
allocate_resources(link, child_bridge,
type_mask | IORESOURCE_PREFETCH,
type | (child_bridge->flags &
IORESOURCE_PREFETCH));
}
}
}
static int resource_is(struct resource *res, u32 type)
{
return (res->flags & IORESOURCE_TYPE_MASK) == type;
}
struct constraints {
struct resource io, mem;
};
static struct resource * resource_limit(struct constraints *limits, struct resource *res)
{
struct resource *lim = NULL;
/* MEM, or I/O - skip any others. */
if (resource_is(res, IORESOURCE_MEM))
lim = &limits->mem;
else if (resource_is(res, IORESOURCE_IO))
lim = &limits->io;
return lim;
}
static void constrain_resources(struct device *dev, struct constraints* limits)
{
struct device *child;
struct resource *res;
struct resource *lim;
struct bus *link;
/* Constrain limits based on the fixed resources of this device. */
for (res = dev->resource_list; res; res = res->next) {
if (!(res->flags & IORESOURCE_FIXED))
continue;
if (!res->size) {
/* It makes no sense to have 0-sized, fixed resources.*/
printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
"size=0!\n", dev_path(dev), res->index);
continue;
}
lim = resource_limit(limits, res);
if (!lim)
continue;
/*
* Is it a fixed resource outside the current known region?
* If so, we don't have to consider it - it will be handled
* correctly and doesn't affect current region's limits.
*/
if (((res->base + res->size -1) < lim->base)
|| (res->base > lim->limit))
continue;
printk(BIOS_SPEW, "%s: %s %02lx base %08llx limit %08llx %s (fixed)\n",
__func__, dev_path(dev), res->index, res->base,
res->base + res->size - 1, resource2str(res));
/*
* Choose to be above or below fixed resources. This check is
* signed so that "negative" amounts of space are handled
* correctly.
*/
if ((signed long long)(lim->limit - (res->base + res->size -1))
> (signed long long)(res->base - lim->base))
lim->base = res->base + res->size;
else
lim->limit = res->base -1;
}
/* Descend into every enabled child and look for fixed resources. */
for (link = dev->link_list; link; link = link->next) {
for (child = link->children; child; child = child->sibling) {
if (child->enabled)
constrain_resources(child, limits);
}
}
}
static void avoid_fixed_resources(struct device *dev)
{
struct constraints limits;
struct resource *res;
struct resource *lim;
printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
/* Initialize constraints to maximum size. */
limits.io.base = 0;
limits.io.limit = 0xffffffffffffffffULL;
limits.mem.base = 0;
limits.mem.limit = 0xffffffffffffffffULL;
/* Constrain the limits to dev's initial resources. */
for (res = dev->resource_list; res; res = res->next) {
if ((res->flags & IORESOURCE_FIXED))
continue;
printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
dev_path(dev), res->index, res->limit);
lim = resource_limit(&limits, res);
if (!lim)
continue;
if (res->base > lim->base)
lim->base = res->base;
if (res->limit < lim->limit)
lim->limit = res->limit;
}
/* Look through the tree for fixed resources and update the limits. */
constrain_resources(dev, &limits);
/* Update dev's resources with new limits. */
for (res = dev->resource_list; res; res = res->next) {
if ((res->flags & IORESOURCE_FIXED))
continue;
lim = resource_limit(&limits, res);
if (!lim)
continue;
/* Is the resource outside the limits? */
if (lim->base > res->base)
res->base = lim->base;
if (res->limit > lim->limit)
res->limit = lim->limit;
/* MEM resources need to start at the highest address manageable. */
if (res->flags & IORESOURCE_MEM)
res->base = resource_max(res);
printk(BIOS_SPEW, "%s:@%s %02lx base %08llx limit %08llx\n",
__func__, dev_path(dev), res->index, res->base, res->limit);
}
}
device_t vga_pri = 0;
static void set_vga_bridge_bits(void)
{
/*
* FIXME: Modify set_vga_bridge() so it is less PCI-centric!
* This function knows too much about PCI stuff, it should be just
* an iterator/visitor.
*/
/* FIXME: Handle the VGA palette snooping. */
struct device *dev, *vga, *vga_onboard;
struct bus *bus;
bus = 0;
vga = 0;
vga_onboard = 0;
dev = NULL;
while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
if (!dev->enabled)
continue;
printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));
if (dev->on_mainboard) {
vga_onboard = dev;
} else {
vga = dev;
}
/* It isn't safe to enable all VGA cards. */
dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
}
if (!vga)
vga = vga_onboard;
if (CONFIG_ONBOARD_VGA_IS_PRIMARY && vga_onboard)
vga = vga_onboard;
/* If we prefer plugin VGA over chipset VGA, the chipset might
want to know. */
if (!CONFIG_ONBOARD_VGA_IS_PRIMARY && (vga != vga_onboard) &&
vga_onboard && vga_onboard->ops && vga_onboard->ops->disable) {
printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
vga_onboard->ops->disable(vga_onboard);
}
if (vga) {
/* VGA is first add-on card or the only onboard VGA. */
printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
/* All legacy VGA cards have MEM & I/O space registers. */
vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
vga_pri = vga;
bus = vga->bus;
}
/* Now walk up the bridges setting the VGA enable. */
while (bus) {
printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
dev_path(bus->dev));
bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
}
}
/**
* Assign the computed resources to the devices on the bus.
*
* Use the device specific set_resources() method to store the computed
* resources to hardware. For bridge devices, the set_resources() method
* has to recurse into every down stream buses.
*
* Mutual recursion:
* assign_resources() -> device_operation::set_resources()
* device_operation::set_resources() -> assign_resources()
*
* @param bus Pointer to the structure for this bus.
*/
void assign_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
dev_path(bus->dev), bus->secondary, bus->link_num);
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
if (!curdev->enabled || !curdev->resource_list)
continue;
if (!curdev->ops || !curdev->ops->set_resources) {
printk(BIOS_ERR, "%s missing set_resources\n",
dev_path(curdev));
continue;
}
post_log_path(curdev);
curdev->ops->set_resources(curdev);
}
post_log_clear();
printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
dev_path(bus->dev), bus->secondary, bus->link_num);
}
/**
* Enable the resources for devices on a link.
*
* Enable resources of the device by calling the device specific
* enable_resources() method.
*
* The parent's resources should be enabled first to avoid having enabling
* order problem. This is done by calling the parent's enable_resources()
* method before its children's enable_resources() methods.
*
* @param link The link whose devices' resources are to be enabled.
*/
static void enable_resources(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling) {
if (dev->enabled && dev->ops && dev->ops->enable_resources) {
post_log_path(dev);
dev->ops->enable_resources(dev);
}
}
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
enable_resources(c_link);
}
post_log_clear();
}
/**
* Reset all of the devices on a bus and clear the bus's reset_needed flag.
*
* @param bus Pointer to the bus structure.
* @return 1 if the bus was successfully reset, 0 otherwise.
*/
int reset_bus(struct bus *bus)
{
if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
bus->dev->ops->reset_bus(bus);
bus->reset_needed = 0;
return 1;
}
return 0;
}
/**
* Scan for devices on a bus.
*
* If there are bridges on the bus, recursively scan the buses behind the
* bridges. If the setting up and tuning of the bus causes a reset to be
* required, reset the bus and scan it again.
*
* @param busdev Pointer to the bus device.
*/
static void scan_bus(struct device *busdev)
{
int do_scan_bus;
struct stopwatch sw;
stopwatch_init(&sw);
if (!busdev->enabled)
return;
printk(BIOS_SPEW, "%s scanning...\n", dev_path(busdev));
post_log_path(busdev);
do_scan_bus = 1;
while (do_scan_bus) {
struct bus *link;
busdev->ops->scan_bus(busdev);
do_scan_bus = 0;
for (link = busdev->link_list; link; link = link->next) {
if (link->reset_needed) {
if (reset_bus(link))
do_scan_bus = 1;
else
busdev->bus->reset_needed = 1;
}
}
}
printk(BIOS_DEBUG, "%s: scanning of bus %s took %ld usecs\n",
__func__, dev_path(busdev), stopwatch_duration_usecs(&sw));
}
void scan_bridges(struct bus *bus)
{
struct device *child;
for (child = bus->children; child; child = child->sibling) {
if (!child->ops || !child->ops->scan_bus)
continue;
scan_bus(child);
}
}
/**
* Determine the existence of devices and extend the device tree.
*
* Most of the devices in the system are listed in the mainboard devicetree.cb
* file. The device structures for these devices are generated at compile
* time by the config tool and are organized into the device tree. This
* function determines if the devices created at compile time actually exist
* in the physical system.
*
* For devices in the physical system but not listed in devicetree.cb,
* the device structures have to be created at run time and attached to the
* device tree.
*
* This function starts from the root device 'dev_root', scans the buses in
* the system recursively, and modifies the device tree according to the
* result of the probe.
*
* This function has no idea how to scan and probe buses and devices at all.
* It depends on the bus/device specific scan_bus() method to do it. The
* scan_bus() method also has to create the device structure and attach
* it to the device tree.
*/
void dev_enumerate(void)
{
struct device *root;
printk(BIOS_INFO, "Enumerating buses...\n");
root = &dev_root;
show_all_devs(BIOS_SPEW, "Before device enumeration.");
printk(BIOS_SPEW, "Compare with tree...\n");
show_devs_tree(root, BIOS_SPEW, 0, 0);
if (root->chip_ops && root->chip_ops->enable_dev)
root->chip_ops->enable_dev(root);
if (!root->ops || !root->ops->scan_bus) {
printk(BIOS_ERR, "dev_root missing scan_bus operation");
return;
}
scan_bus(root);
post_log_clear();
printk(BIOS_INFO, "done\n");
}
/**
* Configure devices on the devices tree.
*
* Starting at the root of the device tree, travel it recursively in two
* passes. In the first pass, we compute and allocate resources (ranges)
* required by each device. In the second pass, the resources ranges are
* relocated to their final position and stored to the hardware.
*
* I/O resources grow upward. MEM resources grow downward.
*
* Since the assignment is hierarchical we set the values into the dev_root
* struct.
*/
void dev_configure(void)
{
struct resource *res;
struct device *root;
struct device *child;
set_vga_bridge_bits();
printk(BIOS_INFO, "Allocating resources...\n");
root = &dev_root;
/*
* Each domain should create resources which contain the entire address
* space for IO, MEM, and PREFMEM resources in the domain. The
* allocation of device resources will be done from this address space.
*/
/* Read the resources for the entire tree. */
printk(BIOS_INFO, "Reading resources...\n");
read_resources(root->link_list);
printk(BIOS_INFO, "Done reading resources.\n");
print_resource_tree(root, BIOS_SPEW, "After reading.");
/* Compute resources for all domains. */
for (child = root->link_list->children; child; child = child->sibling) {
if (!(child->path.type == DEVICE_PATH_DOMAIN))
continue;
post_log_path(child);
for (res = child->resource_list; res; res = res->next) {
if (res->flags & IORESOURCE_FIXED)
continue;
if (res->flags & IORESOURCE_MEM) {
compute_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
continue;
}
if (res->flags & IORESOURCE_IO) {
compute_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
continue;
}
}
}
/* For all domains. */
for (child = root->link_list->children; child; child=child->sibling)
if (child->path.type == DEVICE_PATH_DOMAIN)
avoid_fixed_resources(child);
/* Store the computed resource allocations into device registers ... */
printk(BIOS_INFO, "Setting resources...\n");
for (child = root->link_list->children; child; child = child->sibling) {
if (!(child->path.type == DEVICE_PATH_DOMAIN))
continue;
post_log_path(child);
for (res = child->resource_list; res; res = res->next) {
if (res->flags & IORESOURCE_FIXED)
continue;
if (res->flags & IORESOURCE_MEM) {
allocate_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
continue;
}
if (res->flags & IORESOURCE_IO) {
allocate_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
continue;
}
}
}
assign_resources(root->link_list);
printk(BIOS_INFO, "Done setting resources.\n");
print_resource_tree(root, BIOS_SPEW, "After assigning values.");
printk(BIOS_INFO, "Done allocating resources.\n");
}
/**
* Enable devices on the device tree.
*
* Starting at the root, walk the tree and enable all devices/bridges by
* calling the device's enable_resources() method.
*/
void dev_enable(void)
{
struct bus *link;
printk(BIOS_INFO, "Enabling resources...\n");
/* Now enable everything. */
for (link = dev_root.link_list; link; link = link->next)
enable_resources(link);
printk(BIOS_INFO, "done.\n");
}
/**
* Initialize a specific device.
*
* The parent should be initialized first to avoid having an ordering problem.
* This is done by calling the parent's init() method before its children's
* init() methods.
*
* @param dev The device to be initialized.
*/
static void init_dev(struct device *dev)
{
if (!dev->enabled)
return;
if (!dev->initialized && dev->ops && dev->ops->init) {
#if CONFIG_HAVE_MONOTONIC_TIMER
struct stopwatch sw;
stopwatch_init(&sw);
#endif
if (dev->path.type == DEVICE_PATH_I2C) {
printk(BIOS_DEBUG, "smbus: %s[%d]->",
dev_path(dev->bus->dev), dev->bus->link_num);
}
printk(BIOS_DEBUG, "%s init ...\n", dev_path(dev));
dev->initialized = 1;
dev->ops->init(dev);
#if CONFIG_HAVE_MONOTONIC_TIMER
printk(BIOS_DEBUG, "%s init finished in %ld usecs\n", dev_path(dev),
stopwatch_duration_usecs(&sw));
#endif
}
}
static void init_link(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling) {
post_code(POST_BS_DEV_INIT);
post_log_path(dev);
init_dev(dev);
}
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
init_link(c_link);
}
}
/**
* Initialize all devices in the global device tree.
*
* Starting at the root device, call the device's init() method to do
* device-specific setup, then call each child's init() method.
*/
void dev_initialize(void)
{
struct bus *link;
printk(BIOS_INFO, "Initializing devices...\n");
#if CONFIG_ARCH_X86
/* Ensure EBDA is prepared before Option ROMs. */
setup_default_ebda();
#endif
/* First call the mainboard init. */
init_dev(&dev_root);
/* Now initialize everything. */
for (link = dev_root.link_list; link; link = link->next)
init_link(link);
post_log_clear();
printk(BIOS_INFO, "Devices initialized\n");
show_all_devs(BIOS_SPEW, "After init.");
}
/**
* Finalize a specific device.
*
* The parent should be finalized first to avoid having an ordering problem.
* This is done by calling the parent's final() method before its childrens'
* final() methods.
*
* @param dev The device to be initialized.
*/
static void final_dev(struct device *dev)
{
if (!dev->enabled)
return;
if (dev->ops && dev->ops->final) {
printk(BIOS_DEBUG, "%s final\n", dev_path(dev));
dev->ops->final(dev);
}
}
static void final_link(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling)
final_dev(dev);
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
final_link(c_link);
}
}
/**
* Finalize all devices in the global device tree.
*
* Starting at the root device, call the device's final() method to do
* device-specific cleanup, then call each child's final() method.
*/
void dev_finalize(void)
{
struct bus *link;
printk(BIOS_INFO, "Finalize devices...\n");
/* First call the mainboard finalize. */
final_dev(&dev_root);
/* Now finalize everything. */
for (link = dev_root.link_list; link; link = link->next)
final_link(link);
printk(BIOS_INFO, "Devices finalized\n");
}