c893197352
We had the addrspace_32bit rdev in prog_loaders.c for a while to help represent memory ranges as an rdev, and we've found it useful for a couple of things that have nothing to do with program loading. This patch moves the concept straight into commonlib/region.c so it is no longer anchored in such a weird place, and easier to use in unit tests. Also expand the concept to the whole address space (there's no real need to restrict it to 32 bits in 64-bit environments) and introduce an rdev_chain_mem() helper function to make it a bit easier to use. Replace some direct uses of struct mem_region_device with this new API where it seems to make sense. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Ie4c763b77f77d227768556a9528681d771a08dca Reviewed-on: https://review.coreboot.org/c/coreboot/+/52533 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
331 lines
11 KiB
C
331 lines
11 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
#include "../lib/region_file.c"
|
|
|
|
#include <tests/test.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <commonlib/region.h>
|
|
#include <tests/lib/region_file_data.h>
|
|
|
|
static void clear_region_file(struct region_device *rdev)
|
|
{
|
|
memset(rdev_mmap_full(rdev), 0xff, REGION_FILE_BUFFER_SIZE);
|
|
}
|
|
|
|
static int setup_region_file_test_group(void **state)
|
|
{
|
|
void *mem_buffer = malloc(REGION_FILE_BUFFER_SIZE);
|
|
struct region_device *dev = malloc(sizeof(struct region_device));
|
|
|
|
if (mem_buffer == NULL || dev == NULL) {
|
|
free(mem_buffer);
|
|
free(dev);
|
|
return -1;
|
|
}
|
|
|
|
rdev_chain_mem_rw(dev, mem_buffer, REGION_FILE_BUFFER_SIZE);
|
|
*state = dev;
|
|
|
|
clear_region_file(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int teardown_region_file_test_group(void **state)
|
|
{
|
|
struct region_device *dev = *state;
|
|
void *mem_buffer = rdev_mmap_full(dev);
|
|
|
|
free(mem_buffer);
|
|
free(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function clears buffer associated with used region_device, so tests will be in clear
|
|
state at the beginning and leave no trace after successful execution. The cost of memsetting
|
|
everything twice is known, but acceptable as it grants safety and makes tests independent. */
|
|
static int setup_teardown_region_file_test(void **state)
|
|
{
|
|
struct region_device *dev = *state;
|
|
|
|
clear_region_file(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void test_region_file_init_empty(void **state)
|
|
{
|
|
struct region_device *rdev = *state;
|
|
struct region_file regf;
|
|
|
|
/* Test general approach using valid mem_region_device with buffer filled with 0xff.
|
|
Parameters cannot be NULL. */
|
|
assert_int_equal(0, region_file_init(®f, rdev));
|
|
assert_int_equal(RF_EMPTY, regf.slot);
|
|
}
|
|
|
|
static void test_region_file_init_invalid_metadata(void **state)
|
|
{
|
|
struct region_device *rdev = *state;
|
|
uint16_t *mem_buffer16 = (uint16_t *)rdev_mmap_full(rdev);
|
|
struct region_file regf;
|
|
|
|
/* Set number of metadata blocks to 0 */
|
|
mem_buffer16[0] = 0;
|
|
assert_int_equal(0, region_file_init(®f, rdev));
|
|
assert_int_equal(RF_NEED_TO_EMPTY, regf.slot);
|
|
}
|
|
|
|
static void test_region_file_init_valid_no_data(void **state)
|
|
{
|
|
struct region_device *rdev = *state;
|
|
uint16_t *mem_buffer16 = (uint16_t *)rdev_mmap_full(rdev);
|
|
struct region_file regf;
|
|
|
|
/* Manually allocate 4 metadata blocks and no data. */
|
|
mem_buffer16[0] = 4;
|
|
assert_int_equal(0, region_file_init(®f, rdev));
|
|
assert_int_equal(0, regf.slot);
|
|
}
|
|
|
|
static void test_region_file_init_invalid_data_offset(void **state)
|
|
{
|
|
struct region_device *rdev = *state;
|
|
uint16_t *mem_buffer16 = (uint16_t *)rdev_mmap_full(rdev);
|
|
struct region_file regf;
|
|
|
|
/* Manually allocate 4 metadata blocks and no data. */
|
|
mem_buffer16[0] = 4;
|
|
mem_buffer16[1] = 4;
|
|
assert_int_equal(0, region_file_init(®f, rdev));
|
|
assert_int_equal(RF_NEED_TO_EMPTY, regf.slot);
|
|
|
|
/* Set data size to be larger than region */
|
|
mem_buffer16[0] = 4;
|
|
mem_buffer16[1] = 4 + 4096;
|
|
assert_int_equal(0, region_file_init(®f, rdev));
|
|
assert_int_equal(RF_NEED_TO_EMPTY, regf.slot);
|
|
}
|
|
|
|
static void test_region_file_init_correct_data_offset(void **state)
|
|
{
|
|
struct region_device *rdev = *state;
|
|
uint16_t *mem_buffer16 = (uint16_t *)rdev_mmap_full(rdev);
|
|
struct region_file regf;
|
|
|
|
/* Set data size to 8 blocks which is correct value. */
|
|
mem_buffer16[0] = 4;
|
|
mem_buffer16[1] = 4 + 8;
|
|
assert_int_equal(0, region_file_init(®f, rdev));
|
|
assert_int_equal(1, regf.slot);
|
|
}
|
|
|
|
static void test_region_file_init_real_data(void **state)
|
|
{
|
|
struct region_device rdev;
|
|
struct region_file regf;
|
|
|
|
rdev_chain_mem_rw(&rdev, region_file_data_buffer1, REGION_FILE_BUFFER_SIZE);
|
|
|
|
/* Check on real example with one update */
|
|
assert_int_equal(0, region_file_init(®f, &rdev));
|
|
/* There is one update available */
|
|
assert_int_equal(1, regf.slot);
|
|
|
|
|
|
/* Check on real example with multiple updates */
|
|
rdev_chain_mem_rw(&rdev, region_file_data_buffer2, REGION_FILE_BUFFER_SIZE);
|
|
assert_int_equal(0, region_file_init(®f, &rdev));
|
|
/* There are three update available */
|
|
assert_int_equal(3, regf.slot);
|
|
}
|
|
|
|
static void test_region_file_init_invalid_region_device(void **state)
|
|
{
|
|
struct region_device bad_dev;
|
|
struct region_file regf;
|
|
|
|
rdev_chain_mem_rw(&bad_dev, NULL, 0);
|
|
|
|
/* Expect fail when passing invalid region_device. */
|
|
assert_int_equal(-1, region_file_init(®f, &bad_dev));
|
|
}
|
|
|
|
static void test_region_file_data(void **state)
|
|
{
|
|
/* region_device with empty data buffer */
|
|
struct region_device *mrdev = *state;
|
|
/* region_device with prepared data buffer */
|
|
struct region_device rdev;
|
|
rdev_chain_mem_rw(&rdev, region_file_data_buffer1, REGION_FILE_BUFFER_SIZE);
|
|
|
|
struct region_file regf;
|
|
struct region_device read_rdev;
|
|
int ret;
|
|
|
|
/* Check if region_file_data() fails to return region_device for empty region_file */
|
|
ret = region_file_init(®f, mrdev);
|
|
assert_int_equal(0, ret);
|
|
ret = region_file_data(®f, &read_rdev);
|
|
assert_int_equal(-1, ret);
|
|
|
|
/* Check if region_file_data() correctly returns region_device for hardcoded
|
|
region_file data with update of 256 bytes */
|
|
ret = region_file_init(®f, &rdev);
|
|
assert_int_equal(0, ret);
|
|
ret = region_file_data(®f, &read_rdev);
|
|
assert_int_equal(0, ret);
|
|
assert_int_equal(region_device_sz(&read_rdev),
|
|
ALIGN_UP(region_file_data_buffer1_update_sz, 16));
|
|
}
|
|
|
|
static void test_region_file_update_data(void **state)
|
|
{
|
|
struct region_device *rdev = *state;
|
|
struct region_file regf;
|
|
struct region_device read_rdev;
|
|
const size_t dummy_data_size = 256;
|
|
uint8_t dummy_data[dummy_data_size];
|
|
uint8_t output_buffer[dummy_data_size];
|
|
int ret;
|
|
|
|
for (int i = 0; i < dummy_data_size; ++i)
|
|
dummy_data[i] = 'A' + i % ('Z' - 'A');
|
|
|
|
ret = region_file_init(®f, rdev);
|
|
assert_int_equal(0, ret);
|
|
|
|
/* Write half of buffer, read it and check, if it is the same.
|
|
region_file_update_data() should be able to deal with empty region_file. */
|
|
ret = region_file_update_data(®f, dummy_data, dummy_data_size / 2);
|
|
assert_int_equal(0, ret);
|
|
region_file_data(®f, &read_rdev);
|
|
assert_int_equal(ALIGN_UP(dummy_data_size / 2, 16), region_device_sz(&read_rdev));
|
|
rdev_readat(&read_rdev, output_buffer, 0, dummy_data_size / 2);
|
|
assert_memory_equal(dummy_data, output_buffer, dummy_data_size / 2);
|
|
|
|
/* Update data to a bigger size */
|
|
ret = region_file_update_data(®f, dummy_data, dummy_data_size);
|
|
assert_int_equal(0, ret);
|
|
region_file_data(®f, &read_rdev);
|
|
assert_int_equal(ALIGN_UP(dummy_data_size, 16), region_device_sz(&read_rdev));
|
|
rdev_readat(&read_rdev, output_buffer, 0, dummy_data_size);
|
|
assert_memory_equal(dummy_data, output_buffer, dummy_data_size);
|
|
|
|
/* Update data to smaller size and check if it was properly stored */
|
|
ret = region_file_update_data(®f, dummy_data, dummy_data_size / 2 + 3);
|
|
assert_int_equal(0, ret);
|
|
region_file_data(®f, &read_rdev);
|
|
assert_int_equal(ALIGN_UP(dummy_data_size / 2 + 3, 16), region_device_sz(&read_rdev));
|
|
rdev_readat(&read_rdev, output_buffer, 0, dummy_data_size / 2 + 3);
|
|
assert_memory_equal(dummy_data, output_buffer, dummy_data_size / 2 + 3);
|
|
}
|
|
|
|
static void test_region_file_update_data_arr(void **state)
|
|
{
|
|
struct region_device *rdev = *state;
|
|
struct region_file regf;
|
|
struct region_device read_rdev;
|
|
const size_t dummy_data_size = 256;
|
|
uint8_t dummy_data[dummy_data_size];
|
|
uint8_t output_buffer[dummy_data_size * 4];
|
|
struct update_region_file_entry update_entries[3];
|
|
const size_t data1_size = dummy_data_size;
|
|
const size_t data2_size = dummy_data_size / 2;
|
|
const size_t data3_size = dummy_data_size / 4 + 3;
|
|
const size_t data1_offset = 0;
|
|
const size_t data2_offset = dummy_data_size / 4 + 2;
|
|
const size_t data3_offset = dummy_data_size / 8 + 5;
|
|
int ret;
|
|
|
|
for (int i = 0; i < dummy_data_size; ++i)
|
|
dummy_data[i] = 'A' + i % ('Z' - 'A');
|
|
|
|
update_entries[0] = (struct update_region_file_entry)
|
|
{ .size = data1_size, .data = &dummy_data[data1_offset] };
|
|
update_entries[1] = (struct update_region_file_entry)
|
|
{ .size = data2_size, .data = &dummy_data[data2_offset] };
|
|
update_entries[2] = (struct update_region_file_entry)
|
|
{ .size = data3_size, .data = &dummy_data[data3_offset] };
|
|
|
|
ret = region_file_init(®f, rdev);
|
|
assert_int_equal(0, ret);
|
|
|
|
/* Write two update blocks as first data state. region_file_update_data_arr() should
|
|
be able to deal with empty region_file. */
|
|
ret = region_file_update_data_arr(®f, update_entries, 2);
|
|
assert_int_equal(0, ret);
|
|
region_file_data(®f, &read_rdev);
|
|
assert_int_equal(ALIGN_UP(data1_size + data2_size, 16), region_device_sz(&read_rdev));
|
|
ret = rdev_readat(&read_rdev, output_buffer, 0, data1_size + data2_size);
|
|
assert_int_equal(data1_size + data2_size, ret);
|
|
assert_memory_equal(&dummy_data[data1_offset], output_buffer, data1_size);
|
|
assert_memory_equal(&dummy_data[data1_offset + data2_offset],
|
|
&output_buffer[data1_size], data2_size);
|
|
|
|
/* Check if new block of data is added correctly */
|
|
ret = region_file_update_data_arr(®f, update_entries, 3);
|
|
assert_int_equal(0, ret);
|
|
region_file_data(®f, &read_rdev);
|
|
assert_int_equal(ALIGN_UP(data1_size + data2_size + data3_size, 16),
|
|
region_device_sz(&read_rdev));
|
|
ret = rdev_readat(&read_rdev, output_buffer, 0, data1_size + data2_size + data3_size);
|
|
assert_int_equal(data1_size + data2_size + data3_size, ret);
|
|
assert_memory_equal(&dummy_data[data1_offset], output_buffer, data1_size);
|
|
assert_memory_equal(&dummy_data[data2_offset],
|
|
&output_buffer[data1_size], data2_size);
|
|
assert_memory_equal(&dummy_data[data3_offset],
|
|
&output_buffer[data1_size + data2_size], data3_size);
|
|
|
|
/* Check if data is correctly shrunk down to smaller size and different content */
|
|
ret = region_file_update_data_arr(®f, &update_entries[1], 2);
|
|
assert_int_equal(0, ret);
|
|
region_file_data(®f, &read_rdev);
|
|
assert_int_equal(ALIGN_UP(data2_size + data3_size, 16), region_device_sz(&read_rdev));
|
|
ret = rdev_readat(&read_rdev, output_buffer, 0, data2_size + data3_size);
|
|
assert_int_equal(data2_size + data3_size, ret);
|
|
assert_memory_equal(&dummy_data[data2_offset], &output_buffer[0], data2_size);
|
|
assert_memory_equal(&dummy_data[data3_offset], &output_buffer[data2_size], data3_size);
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
const struct CMUnitTest tests[] = {
|
|
cmocka_unit_test_setup_teardown(test_region_file_init_empty,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_init_invalid_metadata,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_init_valid_no_data,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_init_invalid_data_offset,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_init_correct_data_offset,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_init_real_data,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_init_invalid_region_device,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_data,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_update_data,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
cmocka_unit_test_setup_teardown(test_region_file_update_data_arr,
|
|
setup_teardown_region_file_test,
|
|
setup_teardown_region_file_test),
|
|
};
|
|
|
|
return cmocka_run_group_tests(tests,
|
|
setup_region_file_test_group,
|
|
teardown_region_file_test_group);
|
|
}
|