coreboot-kgpe-d16/util/cbfstool/rmodule.c
Aaron Durbin b39a974d75 cbfstool: expose rmodule logic
In order to allow cbfstool to add XIP romstage on x86 without
doing the 'cbfstool locate', relink, then 'cbfstool add' dance
expose the core logic and of rmodule including proving an optional
filter. The filter will be used for ignoring relocations to the
.car.global region.

BUG=chrome-os-partner:44827
BRANCH=None
TEST=Built rambi.

Change-Id: I192ae2e2f2e727d3183d32fd3eef8b64aacd92f4
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11598
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-09-16 14:10:51 +00:00

679 lines
15 KiB
C

/*
;* Copyright (C) 2014 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "elfparsing.h"
#include "rmodule.h"
#include "../../src/include/rmodule-defs.h"
/*
* Architecture specific support operations.
*/
static int valid_reloc_386(Elf64_Rela *rel)
{
int type;
type = ELF64_R_TYPE(rel->r_info);
/* Only these 2 relocations are expected to be found. */
return (type == R_386_32 || type == R_386_PC32);
}
static int should_emit_386(Elf64_Rela *rel)
{
int type;
type = ELF64_R_TYPE(rel->r_info);
/* R_386_32 relocations are absolute. Must emit these. */
return (type == R_386_32);
}
static int valid_reloc_arm(Elf64_Rela *rel)
{
int type;
type = ELF64_R_TYPE(rel->r_info);
/* Only these 6 relocations are expected to be found. */
return (type == R_ARM_ABS32 || type == R_ARM_THM_PC22 ||
type == R_ARM_THM_JUMP24 || type == R_ARM_V4BX ||
type == R_ARM_CALL || type == R_ARM_JUMP24);
}
static int should_emit_arm(Elf64_Rela *rel)
{
int type;
type = ELF64_R_TYPE(rel->r_info);
/* R_ARM_ABS32 relocations are absolute. Must emit these. */
return (type == R_ARM_ABS32);
}
static int valid_reloc_aarch64(Elf64_Rela *rel)
{
int type;
type = ELF64_R_TYPE(rel->r_info);
return (type == R_AARCH64_ADR_PREL_PG_HI21 ||
type == R_AARCH64_ADD_ABS_LO12_NC ||
type == R_AARCH64_LDST8_ABS_LO12_NC ||
type == R_AARCH64_CONDBR19 ||
type == R_AARCH64_JUMP26 ||
type == R_AARCH64_LDST32_ABS_LO12_NC ||
type == R_AARCH64_LDST64_ABS_LO12_NC ||
type == R_AARCH64_CALL26 ||
type == R_AARCH64_ABS64 ||
type == R_AARCH64_LD_PREL_LO19 ||
type == R_AARCH64_ADR_PREL_LO21);
}
static int should_emit_aarch64(Elf64_Rela *rel)
{
int type;
type = ELF64_R_TYPE(rel->r_info);
return (type == R_AARCH64_ABS64);
}
static const struct arch_ops reloc_ops[] = {
{
.arch = EM_386,
.valid_type = valid_reloc_386,
.should_emit = should_emit_386,
},
{
.arch = EM_ARM,
.valid_type = valid_reloc_arm,
.should_emit = should_emit_arm,
},
{
.arch = EM_AARCH64,
.valid_type = valid_reloc_aarch64,
.should_emit = should_emit_aarch64,
},
};
/*
* Relocation processing loops.
*/
static int for_each_reloc(struct rmod_context *ctx, struct reloc_filter *f,
int do_emit)
{
Elf64_Half i;
struct parsed_elf *pelf = &ctx->pelf;
for (i = 0; i < pelf->ehdr.e_shnum; i++) {
Elf64_Shdr *shdr;
Elf64_Rela *relocs;
Elf64_Xword nrelocs;
Elf64_Xword j;
relocs = pelf->relocs[i];
/* No relocations in this section. */
if (relocs == NULL)
continue;
shdr = &pelf->shdr[i];
nrelocs = shdr->sh_size / shdr->sh_entsize;
for (j = 0; j < nrelocs; j++) {
int filter_emit = 1;
Elf64_Rela *r = &relocs[j];
if (!ctx->ops->valid_type(r)) {
ERROR("Invalid reloc type: %u\n",
(unsigned int)ELF64_R_TYPE(r->r_info));
return -1;
}
/* Allow the provided filter to have precedence. */
if (f != NULL) {
filter_emit = f->filter(f, r);
if (filter_emit < 0)
return filter_emit;
}
if (filter_emit && ctx->ops->should_emit(r)) {
int n = ctx->nrelocs;
if (do_emit)
ctx->emitted_relocs[n] = r->r_offset;
ctx->nrelocs++;
}
}
}
return 0;
}
static int find_program_segment(struct rmod_context *ctx)
{
int i;
int nsegments;
struct parsed_elf *pelf;
Elf64_Phdr *phdr = NULL;
pelf = &ctx->pelf;
/* There should only be a single loadable segment. */
nsegments = 0;
for (i = 0; i < pelf->ehdr.e_phnum; i++) {
if (pelf->phdr[i].p_type != PT_LOAD)
continue;
phdr = &pelf->phdr[i];
nsegments++;
}
if (nsegments != 1) {
ERROR("Unexepcted number of loadable segments: %d.\n",
nsegments);
return -1;
}
INFO("Segment at 0x%0llx, file size 0x%0llx, mem size 0x%0llx.\n",
(long long)phdr->p_vaddr, (long long)phdr->p_filesz,
(long long)phdr->p_memsz);
ctx->phdr = phdr;
return 0;
}
static int
filter_relocation_sections(struct rmod_context *ctx)
{
int i;
const char *shstrtab;
struct parsed_elf *pelf;
const Elf64_Phdr *phdr;
pelf = &ctx->pelf;
phdr = ctx->phdr;
shstrtab = buffer_get(pelf->strtabs[pelf->ehdr.e_shstrndx]);
/*
* Find all relocation sections that contain relocation entries
* for sections that fall within the bounds of the segment. For
* easier processing the pointer to the relocation array for the
* sections that don't fall within the loadable program are NULL'd
* out.
*/
for (i = 0; i < pelf->ehdr.e_shnum; i++) {
Elf64_Shdr *shdr;
Elf64_Word sh_info;
const char *section_name;
shdr = &pelf->shdr[i];
/* Ignore non-relocation sections. */
if (shdr->sh_type != SHT_RELA && shdr->sh_type != SHT_REL)
continue;
/* Obtain section which relocations apply. */
sh_info = shdr->sh_info;
shdr = &pelf->shdr[sh_info];
section_name = &shstrtab[shdr->sh_name];
DEBUG("Relocation section found for '%s' section.\n",
section_name);
/* Do not process relocations for debug sections. */
if (strstr(section_name, ".debug") != NULL) {
pelf->relocs[i] = NULL;
continue;
}
/*
* If relocations apply to a non program section ignore the
* relocations for future processing.
*/
if (shdr->sh_type != SHT_PROGBITS) {
pelf->relocs[i] = NULL;
continue;
}
if (shdr->sh_addr < phdr->p_vaddr ||
((shdr->sh_addr + shdr->sh_size) >
(phdr->p_vaddr + phdr->p_memsz))) {
ERROR("Relocations being applied to section %d not "
"within segment region.\n", sh_info);
return -1;
}
}
return 0;
}
static int vaddr_cmp(const void *a, const void *b)
{
const Elf64_Addr *pa = a;
const Elf64_Addr *pb = b;
if (*pa < *pb)
return -1;
if (*pa > *pb)
return 1;
return 0;
}
int rmodule_collect_relocations(struct rmod_context *ctx,
struct reloc_filter *f)
{
Elf64_Xword nrelocs;
/*
* The relocs array in the pelf should only contain relocations that
* apply to the program. Count the number relocations. Then collect
* them into the allocated buffer.
*/
if (for_each_reloc(ctx, f, 0))
return -1;
nrelocs = ctx->nrelocs;
INFO("%" PRIu64 " relocations to be emitted.\n", nrelocs);
if (!nrelocs)
return 0;
/* Reset the counter for indexing into the array. */
ctx->nrelocs = 0;
ctx->emitted_relocs = calloc(nrelocs, sizeof(Elf64_Addr));
/* Write out the relocations into the emitted_relocs array. */
if (for_each_reloc(ctx, f, 1))
return -1;
if (ctx->nrelocs != nrelocs) {
ERROR("Mismatch counted and emitted relocations: %zu vs %zu.\n",
(size_t)nrelocs, (size_t)ctx->nrelocs);
return -1;
}
/* Sort the relocations by their address. */
qsort(ctx->emitted_relocs, nrelocs, sizeof(Elf64_Addr), vaddr_cmp);
return 0;
}
static int
populate_sym(struct rmod_context *ctx, const char *sym_name, Elf64_Addr *addr,
int nsyms, const char *strtab, int optional)
{
int i;
Elf64_Sym *syms;
syms = ctx->pelf.syms;
for (i = 0; i < nsyms; i++) {
if (syms[i].st_name == 0)
continue;
if (strcmp(sym_name, &strtab[syms[i].st_name]))
continue;
DEBUG("%s -> 0x%llx\n", sym_name, (long long)syms[i].st_value);
*addr = syms[i].st_value;
return 0;
}
if (optional) {
DEBUG("optional symbol '%s' not found.\n", sym_name);
*addr = 0;
return 0;
}
ERROR("symbol '%s' not found.\n", sym_name);
return -1;
}
static int populate_rmodule_info(struct rmod_context *ctx)
{
int i;
const char *strtab;
struct parsed_elf *pelf;
Elf64_Ehdr *ehdr;
int nsyms;
pelf = &ctx->pelf;
ehdr = &pelf->ehdr;
/* Obtain the string table. */
strtab = NULL;
for (i = 0; i < ehdr->e_shnum; i++) {
if (ctx->pelf.strtabs[i] == NULL)
continue;
/* Don't use the section headers' string table. */
if (i == ehdr->e_shstrndx)
continue;
strtab = buffer_get(ctx->pelf.strtabs[i]);
break;
}
if (strtab == NULL) {
ERROR("No string table found.\n");
return -1;
}
/* Determine number of symbols. */
nsyms = 0;
for (i = 0; i < ehdr->e_shnum; i++) {
if (pelf->shdr[i].sh_type != SHT_SYMTAB)
continue;
nsyms = pelf->shdr[i].sh_size / pelf->shdr[i].sh_entsize;
break;
}
if (populate_sym(ctx, "_rmodule_params", &ctx->parameters_begin,
nsyms, strtab, 1))
return -1;
if (populate_sym(ctx, "_ermodule_params", &ctx->parameters_end,
nsyms, strtab, 1))
return -1;
if (populate_sym(ctx, "_bss", &ctx->bss_begin, nsyms, strtab, 0))
return -1;
if (populate_sym(ctx, "_ebss", &ctx->bss_end, nsyms, strtab, 0))
return -1;
return 0;
}
static int
add_section(struct elf_writer *ew, struct buffer *data, const char *name,
Elf64_Addr addr, Elf64_Word size)
{
Elf64_Shdr shdr;
int ret;
memset(&shdr, 0, sizeof(shdr));
if (data != NULL) {
shdr.sh_type = SHT_PROGBITS;
shdr.sh_flags = SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR;
} else {
shdr.sh_type = SHT_NOBITS;
shdr.sh_flags = SHF_ALLOC;
}
shdr.sh_addr = addr;
shdr.sh_offset = addr;
shdr.sh_size = size;
ret = elf_writer_add_section(ew, &shdr, data, name);
if (ret)
ERROR("Could not add '%s' section.\n", name);
return ret;
}
static int
write_elf(const struct rmod_context *ctx, const struct buffer *in,
struct buffer *out)
{
int ret;
int bit64;
size_t loc;
size_t rmod_data_size;
struct elf_writer *ew;
struct buffer rmod_data;
struct buffer rmod_header;
struct buffer program;
struct buffer relocs;
Elf64_Xword total_size;
Elf64_Addr addr;
Elf64_Ehdr ehdr;
bit64 = ctx->pelf.ehdr.e_ident[EI_CLASS] == ELFCLASS64;
/*
* 3 sections will be added to the ELF file.
* +------------------+
* | rmodule header |
* +------------------+
* | program |
* +------------------+
* | relocations |
* +------------------+
*/
/* Create buffer for header and relocations. */
rmod_data_size = sizeof(struct rmodule_header);
if (bit64)
rmod_data_size += ctx->nrelocs * sizeof(Elf64_Addr);
else
rmod_data_size += ctx->nrelocs * sizeof(Elf32_Addr);
if (buffer_create(&rmod_data, rmod_data_size, "rmod"))
return -1;
buffer_splice(&rmod_header, &rmod_data,
0, sizeof(struct rmodule_header));
buffer_clone(&relocs, &rmod_data);
buffer_seek(&relocs, sizeof(struct rmodule_header));
/* Reset current location. */
buffer_set_size(&rmod_header, 0);
buffer_set_size(&relocs, 0);
/* Program contents. */
buffer_splice(&program, in, ctx->phdr->p_offset, ctx->phdr->p_filesz);
/* Create ELF writer with modified entry point. */
memcpy(&ehdr, &ctx->pelf.ehdr, sizeof(ehdr));
ew = elf_writer_init(&ehdr);
if (ew == NULL) {
ERROR("Failed to create ELF writer.\n");
buffer_delete(&rmod_data);
return -1;
}
/* Write out rmodule_header. */
ctx->xdr->put16(&rmod_header, RMODULE_MAGIC);
ctx->xdr->put8(&rmod_header, RMODULE_VERSION_1);
ctx->xdr->put8(&rmod_header, 0);
/* payload_begin_offset */
loc = sizeof(struct rmodule_header);
ctx->xdr->put32(&rmod_header, loc);
/* payload_end_offset */
loc += ctx->phdr->p_filesz;
ctx->xdr->put32(&rmod_header, loc);
/* relocations_begin_offset */
ctx->xdr->put32(&rmod_header, loc);
/* relocations_end_offset */
if (bit64)
loc += ctx->nrelocs * sizeof(Elf64_Addr);
else
loc += ctx->nrelocs * sizeof(Elf32_Addr);
ctx->xdr->put32(&rmod_header, loc);
/* module_link_start_address */
ctx->xdr->put32(&rmod_header, ctx->phdr->p_vaddr);
/* module_program_size */
ctx->xdr->put32(&rmod_header, ctx->phdr->p_memsz);
/* module_entry_point */
ctx->xdr->put32(&rmod_header, ctx->pelf.ehdr.e_entry);
/* parameters_begin */
ctx->xdr->put32(&rmod_header, ctx->parameters_begin);
/* parameters_end */
ctx->xdr->put32(&rmod_header, ctx->parameters_end);
/* bss_begin */
ctx->xdr->put32(&rmod_header, ctx->bss_begin);
/* bss_end */
ctx->xdr->put32(&rmod_header, ctx->bss_end);
/* padding[4] */
ctx->xdr->put32(&rmod_header, 0);
ctx->xdr->put32(&rmod_header, 0);
ctx->xdr->put32(&rmod_header, 0);
ctx->xdr->put32(&rmod_header, 0);
/* Write the relocations. */
for (unsigned i = 0; i < ctx->nrelocs; i++) {
if (bit64)
ctx->xdr->put64(&relocs, ctx->emitted_relocs[i]);
else
ctx->xdr->put32(&relocs, ctx->emitted_relocs[i]);
}
total_size = 0;
addr = 0;
/*
* There are 2 cases to deal with. The program has a large NOBITS
* section and the relocations can fit entirely within occupied memory
* region for the program. The other is that the relocations increase
* the memory footprint of the program if it was loaded directly into
* the region it would run. The rmdoule header is a fixed cost that
* is considered a part of the program.
*/
total_size += buffer_size(&rmod_header);
if (buffer_size(&relocs) + ctx->phdr->p_filesz > ctx->phdr->p_memsz) {
total_size += buffer_size(&relocs);
total_size += ctx->phdr->p_filesz;
} else {
total_size += ctx->phdr->p_memsz;
}
ret = add_section(ew, &rmod_header, ".header", addr,
buffer_size(&rmod_header));
if (ret < 0)
goto out;
addr += buffer_size(&rmod_header);
ret = add_section(ew, &program, ".program", addr, ctx->phdr->p_filesz);
if (ret < 0)
goto out;
addr += ctx->phdr->p_filesz;
if (ctx->nrelocs) {
ret = add_section(ew, &relocs, ".relocs", addr,
buffer_size(&relocs));
if (ret < 0)
goto out;
addr += buffer_size(&relocs);
}
if (total_size != addr) {
ret = add_section(ew, NULL, ".empty", addr, total_size - addr);
if (ret < 0)
goto out;
}
/*
* Ensure last section has a memory usage that meets the required
* total size of the program in memory.
*/
ret = elf_writer_serialize(ew, out);
if (ret < 0)
ERROR("Failed to serialize ELF to buffer.\n");
out:
buffer_delete(&rmod_data);
elf_writer_destroy(ew);
return ret;
}
int rmodule_init(struct rmod_context *ctx, const struct buffer *elfin)
{
struct parsed_elf *pelf;
int i;
int ret;
ret = -1;
memset(ctx, 0, sizeof(*ctx));
pelf = &ctx->pelf;
if (parse_elf(elfin, pelf, ELF_PARSE_ALL)) {
ERROR("Couldn't parse ELF!\n");
return -1;
}
/* Only allow executables to be turned into rmodules. */
if (pelf->ehdr.e_type != ET_EXEC) {
ERROR("ELF is not an executable: %u.\n", pelf->ehdr.e_type);
goto out;
}
/* Determine if architecture is supported. */
for (i = 0; i < ARRAY_SIZE(reloc_ops); i++) {
if (reloc_ops[i].arch == pelf->ehdr.e_machine) {
ctx->ops = &reloc_ops[i];
break;
}
}
if (ctx->ops == NULL) {
ERROR("ELF is unsupported arch: %u.\n", pelf->ehdr.e_machine);
goto out;
}
/* Set the endian ops. */
if (ctx->pelf.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
ctx->xdr = &xdr_be;
else
ctx->xdr = &xdr_le;
if (find_program_segment(ctx))
goto out;
if (filter_relocation_sections(ctx))
goto out;
ret = 0;
out:
return ret;
}
void rmodule_cleanup(struct rmod_context *ctx)
{
free(ctx->emitted_relocs);
parsed_elf_destroy(&ctx->pelf);
}
int rmodule_create(const struct buffer *elfin, struct buffer *elfout)
{
struct rmod_context ctx;
int ret = -1;
if (rmodule_init(&ctx, elfin))
goto out;
if (rmodule_collect_relocations(&ctx, NULL))
goto out;
if (populate_rmodule_info(&ctx))
goto out;
if (write_elf(&ctx, elfin, elfout))
goto out;
ret = 0;
out:
rmodule_cleanup(&ctx);
return ret;
}