coreboot-kgpe-d16/src/soc/intel/skylake/smihandler.c
Lee Leahy b000513741 soc/intel/skylake: Use Broadwell as comparision base for Skylake SOC
Use the Broadwell implementation as the comparison base for Skylake.

BRANCH=none
BUG=None
TEST=None

Change-Id: I22eb55ea89eb0d6883f98e4c72a6d243e819e6d8
Signed-off-by: Lee Leahy <leroy.p.leahy@intel.com>
Reviewed-on: http://review.coreboot.org/10340
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2015-07-16 17:23:27 +02:00

591 lines
14 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008-2009 coresystems GmbH
* Copyright (C) 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <delay.h>
#include <types.h>
#include <arch/io.h>
#include <console/console.h>
#include <cpu/x86/cache.h>
#include <device/pci_def.h>
#include <cpu/x86/smm.h>
#include <spi-generic.h>
#include <elog.h>
#include <halt.h>
#include <pc80/mc146818rtc.h>
#include <soc/lpc.h>
#include <soc/nvs.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <soc/rcba.h>
#include <soc/smm.h>
#include <soc/xhci.h>
#include <drivers/intel/gma/i915_reg.h>
static u8 smm_initialized = 0;
/*
* GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located
* by coreboot.
*/
static global_nvs_t *gnvs;
global_nvs_t *smm_get_gnvs(void)
{
return gnvs;
}
int southbridge_io_trap_handler(int smif)
{
switch (smif) {
case 0x32:
printk(BIOS_DEBUG, "OS Init\n");
/* gnvs->smif:
* On success, the IO Trap Handler returns 0
* On failure, the IO Trap Handler returns a value != 0
*/
gnvs->smif = 0;
return 1; /* IO trap handled */
}
/* Not handled */
return 0;
}
/**
* @brief Set the EOS bit
*/
void southbridge_smi_set_eos(void)
{
enable_smi(EOS);
}
static void busmaster_disable_on_bus(int bus)
{
int slot, func;
unsigned int val;
unsigned char hdr;
for (slot = 0; slot < 0x20; slot++) {
for (func = 0; func < 8; func++) {
u32 reg32;
device_t dev = PCI_DEV(bus, slot, func);
val = pci_read_config32(dev, PCI_VENDOR_ID);
if (val == 0xffffffff || val == 0x00000000 ||
val == 0x0000ffff || val == 0xffff0000)
continue;
/* Disable Bus Mastering for this one device */
reg32 = pci_read_config32(dev, PCI_COMMAND);
reg32 &= ~PCI_COMMAND_MASTER;
pci_write_config32(dev, PCI_COMMAND, reg32);
/* If this is a bridge, then follow it. */
hdr = pci_read_config8(dev, PCI_HEADER_TYPE);
hdr &= 0x7f;
if (hdr == PCI_HEADER_TYPE_BRIDGE ||
hdr == PCI_HEADER_TYPE_CARDBUS) {
unsigned int buses;
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
busmaster_disable_on_bus((buses >> 8) & 0xff);
}
}
}
}
/*
* Turn off the backlight if it is on, and wait for the specified
* backlight off delay. This will allow panel power timings to meet
* spec and prevent brief garbage on the screen when turned off
* during firmware with power button triggered SMI.
*/
static void backlight_off(void)
{
void *reg_base;
uint32_t pp_ctrl;
uint32_t bl_off_delay;
reg_base = (void *)((uintptr_t)pci_read_config32(SA_DEV_IGD, PCI_BASE_ADDRESS_0) & ~0xf);
/* Check if backlight is enabled */
pp_ctrl = read32(reg_base + PCH_PP_CONTROL);
if (!(pp_ctrl & EDP_BLC_ENABLE))
return;
/* Enable writes to this register */
pp_ctrl &= ~PANEL_UNLOCK_MASK;
pp_ctrl |= PANEL_UNLOCK_REGS;
/* Turn off backlight */
pp_ctrl &= ~EDP_BLC_ENABLE;
write32(reg_base + PCH_PP_CONTROL, pp_ctrl);
read32(reg_base + PCH_PP_CONTROL);
/* Read backlight off delay in 100us units */
bl_off_delay = read32(reg_base + PCH_PP_OFF_DELAYS);
bl_off_delay &= PANEL_LIGHT_OFF_DELAY_MASK;
bl_off_delay *= 100;
/* Wait for backlight to turn off */
udelay(bl_off_delay);
printk(BIOS_INFO, "Backlight turned off\n");
}
static void southbridge_smi_sleep(void)
{
u8 reg8;
u32 reg32;
u8 slp_typ;
u8 s5pwr = CONFIG_MAINBOARD_POWER_ON_AFTER_POWER_FAIL;
/* save and recover RTC port values */
u8 tmp70, tmp72;
tmp70 = inb(0x70);
tmp72 = inb(0x72);
get_option(&s5pwr, "power_on_after_fail");
outb(tmp70, 0x70);
outb(tmp72, 0x72);
/* First, disable further SMIs */
disable_smi(SLP_SMI_EN);
/* Figure out SLP_TYP */
reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT);
printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32);
slp_typ = (reg32 >> 10) & 7;
/* Do any mainboard sleep handling */
mainboard_smi_sleep(slp_typ-2);
/* USB sleep preparations */
usb_xhci_sleep_prepare(PCH_DEV_XHCI, slp_typ);
#if CONFIG_ELOG_GSMI
/* Log S3, S4, and S5 entry */
if (slp_typ >= 5)
elog_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ-2);
#endif
/* Clear pending GPE events */
clear_gpe_status();
/* Next, do the deed.
*/
switch (slp_typ) {
case SLP_TYP_S0:
printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n");
break;
case SLP_TYP_S1:
printk(BIOS_DEBUG, "SMI#: Entering S1 (Assert STPCLK#)\n");
break;
case SLP_TYP_S3:
printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n");
/* Invalidate the cache before going to S3 */
wbinvd();
break;
case SLP_TYP_S4:
printk(BIOS_DEBUG, "SMI#: Entering S4 (Suspend-To-Disk)\n");
break;
case SLP_TYP_S5:
printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n");
/* Turn off backlight if needed */
backlight_off();
/* Disable all GPE */
disable_all_gpe();
/* Always set the flag in case CMOS was changed on runtime. For
* "KEEP", switch to "OFF" - KEEP is software emulated
*/
reg8 = pci_read_config8(PCH_DEV_LPC, GEN_PMCON_3);
if (s5pwr == MAINBOARD_POWER_ON)
reg8 &= ~1;
else
reg8 |= 1;
pci_write_config8(PCH_DEV_LPC, GEN_PMCON_3, reg8);
/* also iterates over all bridges on bus 0 */
busmaster_disable_on_bus(0);
break;
default:
printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n");
break;
}
/*
* Write back to the SLP register to cause the originally intended
* event again. We need to set BIT13 (SLP_EN) though to make the
* sleep happen.
*/
enable_pm1_control(SLP_EN);
/* Make sure to stop executing code here for S3/S4/S5 */
if (slp_typ > 1)
halt();
/*
* In most sleep states, the code flow of this function ends at
* the line above. However, if we entered sleep state S1 and wake
* up again, we will continue to execute code in this function.
*/
reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT);
if (reg32 & SCI_EN) {
/* The OS is not an ACPI OS, so we set the state to S0 */
disable_pm1_control(SLP_EN | SLP_TYP);
}
}
/*
* Look for Synchronous IO SMI and use save state from that
* core in case we are not running on the same core that
* initiated the IO transaction.
*/
static em64t101_smm_state_save_area_t *smi_apmc_find_state_save(u8 cmd)
{
em64t101_smm_state_save_area_t *state;
int node;
/* Check all nodes looking for the one that issued the IO */
for (node = 0; node < CONFIG_MAX_CPUS; node++) {
state = smm_get_save_state(node);
/* Check for Synchronous IO (bit0==1) */
if (!(state->io_misc_info & (1 << 0)))
continue;
/* Make sure it was a write (bit4==0) */
if (state->io_misc_info & (1 << 4))
continue;
/* Check for APMC IO port */
if (((state->io_misc_info >> 16) & 0xff) != APM_CNT)
continue;
/* Check AX against the requested command */
if ((state->rax & 0xff) != cmd)
continue;
return state;
}
return NULL;
}
#if CONFIG_ELOG_GSMI
static void southbridge_smi_gsmi(void)
{
u32 *ret, *param;
u8 sub_command;
em64t101_smm_state_save_area_t *io_smi =
smi_apmc_find_state_save(ELOG_GSMI_APM_CNT);
if (!io_smi)
return;
/* Command and return value in EAX */
ret = (u32*)&io_smi->rax;
sub_command = (u8)(*ret >> 8);
/* Parameter buffer in EBX */
param = (u32*)&io_smi->rbx;
/* drivers/elog/gsmi.c */
*ret = gsmi_exec(sub_command, param);
}
#endif
static void finalize(void)
{
static int finalize_done;
if (finalize_done) {
printk(BIOS_DEBUG, "SMM already finalized.\n");
return;
}
finalize_done = 1;
#if CONFIG_SPI_FLASH_SMM
/* Re-init SPI driver to handle locked BAR */
spi_init();
#endif
}
static void southbridge_smi_apmc(void)
{
u8 reg8;
em64t101_smm_state_save_area_t *state;
/* Emulate B2 register as the FADT / Linux expects it */
reg8 = inb(APM_CNT);
switch (reg8) {
case APM_CNT_CST_CONTROL:
printk(BIOS_DEBUG, "C-state control\n");
break;
case APM_CNT_PST_CONTROL:
printk(BIOS_DEBUG, "P-state control\n");
break;
case APM_CNT_ACPI_DISABLE:
disable_pm1_control(SCI_EN);
printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n");
break;
case APM_CNT_ACPI_ENABLE:
enable_pm1_control(SCI_EN);
printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n");
break;
case APM_CNT_FINALIZE:
finalize();
break;
case APM_CNT_GNVS_UPDATE:
if (smm_initialized) {
printk(BIOS_DEBUG,
"SMI#: SMM structures already initialized!\n");
return;
}
state = smi_apmc_find_state_save(reg8);
if (state) {
/* EBX in the state save contains the GNVS pointer */
gnvs = (global_nvs_t *)((u32)state->rbx);
smm_initialized = 1;
printk(BIOS_DEBUG, "SMI#: Setting GNVS to %p\n", gnvs);
}
break;
#if CONFIG_ELOG_GSMI
case ELOG_GSMI_APM_CNT:
southbridge_smi_gsmi();
break;
#endif
}
mainboard_smi_apmc(reg8);
}
static void southbridge_smi_pm1(void)
{
u16 pm1_sts = clear_pm1_status();
/* While OSPM is not active, poweroff immediately
* on a power button event.
*/
if (pm1_sts & PWRBTN_STS) {
/* power button pressed */
#if CONFIG_ELOG_GSMI
elog_add_event(ELOG_TYPE_POWER_BUTTON);
#endif
disable_pm1_control(-1UL);
enable_pm1_control(SLP_EN | (SLP_TYP_S5 << 10));
}
}
static void southbridge_smi_gpe0(void)
{
clear_gpe_status();
}
static void southbridge_smi_gpi(void)
{
mainboard_smi_gpi(clear_alt_smi_status());
/* Clear again after mainboard handler */
clear_alt_smi_status();
}
static void southbridge_smi_mc(void)
{
u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN);
/* Are microcontroller SMIs enabled? */
if ((reg32 & MCSMI_EN) == 0)
return;
printk(BIOS_DEBUG, "Microcontroller SMI.\n");
}
static void southbridge_smi_tco(void)
{
u32 tco_sts = clear_tco_status();
/* Any TCO event? */
if (!tco_sts)
return;
if (tco_sts & (1 << 8)) { // BIOSWR
u8 bios_cntl = pci_read_config16(PCH_DEV_LPC, BIOS_CNTL);
if (bios_cntl & 1) {
/*
* BWE is RW, so the SMI was caused by a
* write to BWE, not by a write to the BIOS
*
* This is the place where we notice someone
* is trying to tinker with the BIOS. We are
* trying to be nice and just ignore it. A more
* resolute answer would be to power down the
* box.
*/
printk(BIOS_DEBUG, "Switching back to RO\n");
pci_write_config32(PCH_DEV_LPC, BIOS_CNTL,
(bios_cntl & ~1));
} /* No else for now? */
} else if (tco_sts & (1 << 3)) { /* TIMEOUT */
/* Handle TCO timeout */
printk(BIOS_DEBUG, "TCO Timeout.\n");
}
}
static void southbridge_smi_periodic(void)
{
u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN);
/* Are periodic SMIs enabled? */
if ((reg32 & PERIODIC_EN) == 0)
return;
printk(BIOS_DEBUG, "Periodic SMI.\n");
}
static void southbridge_smi_monitor(void)
{
#define IOTRAP(x) (trap_sts & (1 << x))
u32 trap_sts, trap_cycle;
u32 data, mask = 0;
int i;
trap_sts = RCBA32(0x1e00); // TRSR - Trap Status Register
RCBA32(0x1e00) = trap_sts; // Clear trap(s) in TRSR
trap_cycle = RCBA32(0x1e10);
for (i=16; i<20; i++) {
if (trap_cycle & (1 << i))
mask |= (0xff << ((i - 16) << 2));
}
/* IOTRAP(3) SMI function call */
if (IOTRAP(3)) {
if (gnvs && gnvs->smif)
io_trap_handler(gnvs->smif); // call function smif
return;
}
/* IOTRAP(2) currently unused
* IOTRAP(1) currently unused */
/* IOTRAP(0) SMIC */
if (IOTRAP(0)) {
if (!(trap_cycle & (1 << 24))) { // It's a write
printk(BIOS_DEBUG, "SMI1 command\n");
data = RCBA32(0x1e18);
data &= mask;
// if (smi1)
// southbridge_smi_command(data);
// return;
}
// Fall through to debug
}
printk(BIOS_DEBUG, " trapped io address = 0x%x\n",
trap_cycle & 0xfffc);
for (i=0; i < 4; i++)
if(IOTRAP(i)) printk(BIOS_DEBUG, " TRAP = %d\n", i);
printk(BIOS_DEBUG, " AHBE = %x\n", (trap_cycle >> 16) & 0xf);
printk(BIOS_DEBUG, " MASK = 0x%08x\n", mask);
printk(BIOS_DEBUG, " read/write: %s\n",
(trap_cycle & (1 << 24)) ? "read" : "write");
if (!(trap_cycle & (1 << 24))) {
/* Write Cycle */
data = RCBA32(0x1e18);
printk(BIOS_DEBUG, " iotrap written data = 0x%08x\n", data);
}
#undef IOTRAP
}
typedef void (*smi_handler_t)(void);
static smi_handler_t southbridge_smi[32] = {
NULL, // [0] reserved
NULL, // [1] reserved
NULL, // [2] BIOS_STS
NULL, // [3] LEGACY_USB_STS
southbridge_smi_sleep, // [4] SLP_SMI_STS
southbridge_smi_apmc, // [5] APM_STS
NULL, // [6] SWSMI_TMR_STS
NULL, // [7] reserved
southbridge_smi_pm1, // [8] PM1_STS
southbridge_smi_gpe0, // [9] GPE0_STS
southbridge_smi_gpi, // [10] GPI_STS
southbridge_smi_mc, // [11] MCSMI_STS
NULL, // [12] DEVMON_STS
southbridge_smi_tco, // [13] TCO_STS
southbridge_smi_periodic, // [14] PERIODIC_STS
NULL, // [15] SERIRQ_SMI_STS
NULL, // [16] SMBUS_SMI_STS
NULL, // [17] LEGACY_USB2_STS
NULL, // [18] INTEL_USB2_STS
NULL, // [19] reserved
NULL, // [20] PCI_EXP_SMI_STS
southbridge_smi_monitor, // [21] MONITOR_STS
NULL, // [22] reserved
NULL, // [23] reserved
NULL, // [24] reserved
NULL, // [25] EL_SMI_STS
NULL, // [26] SPI_STS
NULL, // [27] reserved
NULL, // [28] reserved
NULL, // [29] reserved
NULL, // [30] reserved
NULL // [31] reserved
};
/**
* @brief Interrupt handler for SMI#
*
* @param smm_revision revision of the smm state save map
*/
void southbridge_smi_handler(void)
{
int i;
u32 smi_sts;
/* We need to clear the SMI status registers, or we won't see what's
* happening in the following calls.
*/
smi_sts = clear_smi_status();
/* Call SMI sub handler for each of the status bits */
for (i = 0; i < 31; i++) {
if (smi_sts & (1 << i)) {
if (southbridge_smi[i]) {
southbridge_smi[i]();
} else {
printk(BIOS_DEBUG,
"SMI_STS[%d] occurred, but no "
"handler available.\n", i);
}
}
}
}