coreboot-kgpe-d16/payloads/libpayload/drivers/usb/dwc2.c
Keith Short bf2c693f89 libpayload/usb: Increase USB request timeout to 5 s
Increase the timeout for USB requests to 5 seconds for all USB host
controllers.

Prior to this fix, the xCHI driver was detecting false timeouts during
SET ADDRESS requests when nested downstream hubs were connected to the
xHCI root hub.

BUG=b:124730179
BRANCH=sarien
TEST=Build libpayload and depthcharge on sarien/arcada.
TEST=Without change replicate USB set address timeouts in depthcharge
when dock and 4K monitor connected (which includes a total of 4 USB
hubs).  With timeout fix, depthcharge boots OS with no USB errors and
the same USB topology.  Note that this tests xHCI operation only.

Change-Id: I53e3e67d893420e7c9e8b52c47dd0edb979e5468
Signed-off-by: Keith Short <keithshort@chromium.org>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/33671
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Julius Werner <jwerner@chromium.org>
2019-07-02 17:42:18 +00:00

611 lines
15 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Rockchip Electronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <libpayload.h>
#include <arch/cache.h>
#include "dwc2.h"
#include "dwc2_private.h"
static void dummy(hci_t *controller)
{
}
static void dwc2_reinit(hci_t *controller)
{
dwc2_reg_t *reg = DWC2_REG(controller);
gusbcfg_t gusbcfg = { .d32 = 0 };
grstctl_t grstctl = { .d32 = 0 };
gintsts_t gintsts = { .d32 = 0 };
gahbcfg_t gahbcfg = { .d32 = 0 };
grxfsiz_t grxfsiz = { .d32 = 0 };
ghwcfg3_t hwcfg3 = { .d32 = 0 };
hcintmsk_t hcintmsk = { .d32 = 0 };
gtxfsiz_t gnptxfsiz = { .d32 = 0 };
gtxfsiz_t hptxfsiz = { .d32 = 0 };
const int timeout = 10000;
int i, fifo_blocks, tx_blocks;
/* Wait for AHB idle */
for (i = 0; i < timeout; i++) {
udelay(1);
grstctl.d32 = readl(&reg->core.grstctl);
if (grstctl.ahbidle)
break;
}
if (i == timeout)
fatal("DWC2 Init error AHB Idle\n");
/* Restart the Phy Clock */
writel(0x0, &reg->pcgr.pcgcctl);
/* Core soft reset */
grstctl.csftrst = 1;
writel(grstctl.d32, &reg->core.grstctl);
for (i = 0; i < timeout; i++) {
udelay(1);
grstctl.d32 = readl(&reg->core.grstctl);
if (!grstctl.csftrst)
break;
}
if (i == timeout)
fatal("DWC2 Init error reset fail\n");
/* Set 16bit PHY if & Force host mode */
gusbcfg.d32 = readl(&reg->core.gusbcfg);
gusbcfg.phyif = 1;
gusbcfg.forcehstmode = 1;
gusbcfg.forcedevmode = 0;
writel(gusbcfg.d32, &reg->core.gusbcfg);
/* Wait for force host mode effect, it may takes 100ms */
for (i = 0; i < timeout; i++) {
udelay(10);
gintsts.d32 = readl(&reg->core.gintsts);
if (gintsts.curmod)
break;
}
if (i == timeout)
fatal("DWC2 Init error force host mode fail\n");
/*
* Config FIFO
* The non-periodic tx fifo and rx fifo share one continuous
* piece of IP-internal SRAM.
*/
/*
* Read total data FIFO depth from HWCFG3
* this value is in terms of 32-bit words
*/
hwcfg3.d32 = readl(&reg->core.ghwcfg3);
/*
* Reserve 2 spaces for the status entries of received packets
* and 2 spaces for bulk and control OUT endpoints. Calculate how
* many blocks can be alloted, assume largest packet size is 512.
* 16 locations reserved for periodic TX .
*/
fifo_blocks = (hwcfg3.dfifodepth - 4 - 16) / (512 / 4);
tx_blocks = fifo_blocks / 2;
grxfsiz.rxfdep = (fifo_blocks - tx_blocks) * (512 / 4) + 4;
writel(grxfsiz.d32, &reg->core.grxfsiz);
gnptxfsiz.txfstaddr = grxfsiz.rxfdep;
gnptxfsiz.txfdep = tx_blocks * (512 / 4);
writel(gnptxfsiz.d32, &reg->core.gnptxfsiz);
hptxfsiz.txfstaddr = gnptxfsiz.txfstaddr + gnptxfsiz.txfdep;
hptxfsiz.txfdep = 16;
writel(hptxfsiz.d32, &reg->core.hptxfsiz);
/* Init host channels */
hcintmsk.xfercomp = 1;
hcintmsk.xacterr = 1;
hcintmsk.stall = 1;
hcintmsk.chhltd = 1;
hcintmsk.bblerr = 1;
for (i = 0; i < MAX_EPS_CHANNELS; i++)
writel(hcintmsk.d32, &reg->host.hchn[i].hcintmaskn);
/* Unmask interrupt and configure DMA mode */
gahbcfg.glblintrmsk = 1;
gahbcfg.hbstlen = DMA_BURST_INCR8;
gahbcfg.dmaen = 1;
writel(gahbcfg.d32, &reg->core.gahbcfg);
DWC2_INST(controller)->hprt0 = &reg->host.hprt;
usb_debug("DWC2 init finished!\n");
}
static void dwc2_shutdown(hci_t *controller)
{
detach_controller(controller);
free(DWC2_INST(controller)->dma_buffer);
free(DWC2_INST(controller));
free(controller);
}
/* Test root port device connect status */
static int dwc2_disconnected(hci_t *controller)
{
dwc2_reg_t *reg = DWC2_REG(controller);
hprt_t hprt;
hprt.d32 = readl(&reg->host.hprt);
return !(hprt.prtena && hprt.prtconnsts);
}
#define DWC2_SLEEP_TIME_US 5
/*
* This function returns the actual transfer length when the transfer succeeded
* or an error code if the transfer failed
*/
static int
wait_for_complete(endpoint_t *ep, uint32_t ch_num)
{
hcint_t hcint;
hcchar_t hcchar;
hctsiz_t hctsiz;
dwc2_reg_t *reg = DWC2_REG(ep->dev->controller);
int timeout = USB_MAX_PROCESSING_TIME_US / DWC_SLEEP_TIME_US;
/*
* TODO: We should take care of up to three times of transfer error
* retry here, according to the USB 2.0 spec 4.5.2
*/
do {
udelay(DWC_SLEEP_TIME_US);
hcint.d32 = readl(&reg->host.hchn[ch_num].hcintn);
hctsiz.d32 = readl(&reg->host.hchn[ch_num].hctsizn);
if (hcint.chhltd) {
writel(hcint.d32, &reg->host.hchn[ch_num].hcintn);
if (hcint.xfercomp || hcint.ack)
return hctsiz.xfersize;
else if (hcint.nak || hcint.frmovrun)
return -HCSTAT_NAK;
else if (hcint.xacterr)
return -HCSTAT_XFERERR;
else if (hcint.bblerr)
return -HCSTAT_BABBLE;
else if (hcint.stall)
return -HCSTAT_STALL;
else if (hcint.nyet)
return -HCSTAT_NYET;
else
return -HCSTAT_UNKNOW;
}
if (dwc2_disconnected(ep->dev->controller))
return -HCSTAT_DISCONNECTED;
} while (timeout--);
/* Release the channel when hit timeout condition */
hcchar.d32 = readl(&reg->host.hchn[ch_num].hccharn);
if (hcchar.chen) {
/*
* Programming the HCCHARn register with the chdis and
* chena bits set to 1 at the same time to disable the
* channel and the core will generate a channel halted
* interrupt.
*/
hcchar.chdis = 1;
writel(hcchar.d32, &reg->host.hchn[ch_num].hccharn);
do {
hcchar.d32 = readl(&reg->host.hchn[ch_num].hccharn);
} while (hcchar.chen);
}
/* Clear all pending interrupt flags */
hcint.d32 = ~0;
writel(hcint.d32, &reg->host.hchn[ch_num].hcintn);
return -HCSTAT_TIMEOUT;
}
static int
dwc2_do_xfer(endpoint_t *ep, int size, int pid, ep_dir_t dir,
uint32_t ch_num, u8 *data_buf, int *short_pkt)
{
uint32_t do_copy;
int ret;
uint32_t packet_cnt;
uint32_t packet_size;
uint32_t transferred = 0;
uint32_t inpkt_length;
hctsiz_t hctsiz = { .d32 = 0 };
hcchar_t hcchar = { .d32 = 0 };
void *aligned_buf;
dwc2_reg_t *reg = DWC2_REG(ep->dev->controller);
packet_size = ep->maxpacketsize;
packet_cnt = ALIGN_UP(size, packet_size) / packet_size;
inpkt_length = packet_cnt * packet_size;
/* At least 1 packet should be programed */
packet_cnt = (packet_cnt == 0) ? 1 : packet_cnt;
/*
* For an IN, this field is the buffer size that the application has
* reserved for the transfer. The application should program this field
* as integer multiple of the maximum packet size for IN transactions.
*/
hctsiz.xfersize = (dir == EPDIR_OUT) ? size : inpkt_length;
hctsiz.pktcnt = packet_cnt;
hctsiz.pid = pid;
hcchar.mps = packet_size;
hcchar.epnum = ep->endpoint & 0xf;
hcchar.epdir = dir;
hcchar.eptype = ep->type;
hcchar.multicnt = 1;
hcchar.devaddr = ep->dev->address;
hcchar.chdis = 0;
hcchar.chen = 1;
if (ep->dev->speed == LOW_SPEED)
hcchar.lspddev = 1;
if (size > DMA_SIZE) {
usb_debug("Transfer too large: %d\n", size);
return -1;
}
/*
* Check the buffer address which should be 4-byte aligned and DMA
* coherent
*/
do_copy = !dma_coherent(data_buf) || ((uintptr_t)data_buf & 0x3);
aligned_buf = do_copy ? DWC2_INST(ep->dev->controller)->dma_buffer :
data_buf;
if (do_copy && (dir == EPDIR_OUT))
memcpy(aligned_buf, data_buf, size);
if (dwc2_disconnected(ep->dev->controller))
return -HCSTAT_DISCONNECTED;
writel(hctsiz.d32, &reg->host.hchn[ch_num].hctsizn);
writel((uint32_t)virt_to_bus(aligned_buf),
&reg->host.hchn[ch_num].hcdman);
writel(hcchar.d32, &reg->host.hchn[ch_num].hccharn);
ret = wait_for_complete(ep, ch_num);
if (ret >= 0) {
/* Calculate actual transferred length */
transferred = (dir == EPDIR_IN) ? inpkt_length - ret : size;
if (do_copy && (dir == EPDIR_IN))
memcpy(data_buf, aligned_buf, transferred);
if ((short_pkt != NULL) && (dir == EPDIR_IN))
*short_pkt = (ret > 0) ? 1 : 0;
}
/* Save data toggle */
hctsiz.d32 = readl(&reg->host.hchn[ch_num].hctsizn);
ep->toggle = hctsiz.pid;
if (ret < 0) {
usb_debug("%s Transfer stop code: %x\n", __func__, ret);
return ret;
}
return transferred;
}
static int
dwc2_split_transfer(endpoint_t *ep, int size, int pid, ep_dir_t dir,
uint32_t ch_num, u8 *data_buf, split_info_t *split,
int *short_pkt)
{
dwc2_reg_t *reg = DWC2_REG(ep->dev->controller);
hfnum_t hfnum;
hcsplit_t hcsplit = { .d32 = 0 };
int ret, transferred = 0;
hcsplit.hubaddr = split->hubaddr;
hcsplit.prtaddr = split->hubport;
hcsplit.spltena = 1;
writel(hcsplit.d32, &reg->host.hchn[ch_num].hcspltn);
/* Wait for next frame boundary */
do {
hfnum.d32 = readl(&reg->host.hfnum);
if (dwc2_disconnected(ep->dev->controller)) {
ret = -HCSTAT_DISCONNECTED;
goto out;
}
} while (hfnum.frnum % 8 != 0);
/* Handle Start-Split */
ret = dwc2_do_xfer(ep, dir == EPDIR_IN ? 0 : size, pid, dir, ch_num,
data_buf, NULL);
if (ret < 0)
goto out;
hcsplit.spltena = 1;
hcsplit.compsplt = 1;
writel(hcsplit.d32, &reg->host.hchn[ch_num].hcspltn);
ep->toggle = pid;
if (dir == EPDIR_OUT)
transferred += ret;
/* Handle Complete-Split */
do {
ret = dwc2_do_xfer(ep, dir == EPDIR_OUT ? 0 : size, ep->toggle,
dir, ch_num, data_buf, short_pkt);
} while (ret == -HCSTAT_NYET);
if (dir == EPDIR_IN)
transferred += ret;
out:
/* Clear hcsplit reg */
hcsplit.spltena = 0;
hcsplit.compsplt = 0;
writel(hcsplit.d32, &reg->host.hchn[ch_num].hcspltn);
if (ret < 0)
return ret;
return transferred;
}
static int dwc2_need_split(usbdev_t *dev, split_info_t *split)
{
if (dev->speed == HIGH_SPEED)
return 0;
if (closest_usb2_hub(dev, &split->hubaddr, &split->hubport))
return 0;
return 1;
}
#define USB_FULL_LOW_SPEED_FRAME_US 1000
static int
dwc2_transfer(endpoint_t *ep, int size, int pid, ep_dir_t dir, uint32_t ch_num,
u8 *src, uint8_t skip_nak)
{
split_info_t split;
int ret, short_pkt, transferred = 0;
int timeout = USB_MAX_PROCESSING_TIME_US / USB_FULL_LOW_SPEED_FRAME_US;
ep->toggle = pid;
do {
short_pkt = 0;
if (dwc2_need_split(ep->dev, &split)) {
nak_retry:
ret = dwc2_split_transfer(ep, MIN(ep->maxpacketsize,
size), ep->toggle, dir, 0, src, &split,
&short_pkt);
/*
* dwc2_split_transfer() waits for the next FullSpeed
* frame boundary, so we only need to delay 500 us
* here to have one try per millisecond.
*/
if (ret == -HCSTAT_NAK && !skip_nak && --timeout) {
udelay(USB_FULL_LOW_SPEED_FRAME_US / 2);
goto nak_retry;
}
} else {
ret = dwc2_do_xfer(ep, MIN(DMA_SIZE, size), pid, dir, 0,
src, &short_pkt);
}
if (ret < 0)
return ret;
size -= ret;
src += ret;
transferred += ret;
} while (size > 0 && !short_pkt);
return transferred;
}
static int
dwc2_bulk(endpoint_t *ep, int size, u8 *src, int finalize)
{
ep_dir_t data_dir;
if (ep->direction == IN)
data_dir = EPDIR_IN;
else if (ep->direction == OUT)
data_dir = EPDIR_OUT;
else
return -1;
return dwc2_transfer(ep, size, ep->toggle, data_dir, 0, src, 0);
}
static int
dwc2_control(usbdev_t *dev, direction_t dir, int drlen, void *setup,
int dalen, u8 *src)
{
int ret = 0;
ep_dir_t data_dir;
endpoint_t *ep = &dev->endpoints[0];
if (dir == IN)
data_dir = EPDIR_IN;
else if (dir == OUT)
data_dir = EPDIR_OUT;
else
return -1;
/* Setup Phase */
if (dwc2_transfer(ep, drlen, PID_SETUP, EPDIR_OUT, 0, setup, 0) < 0)
return -1;
/* Data Phase */
ep->toggle = PID_DATA1;
if (dalen > 0) {
ret = dwc2_transfer(ep, dalen, ep->toggle, data_dir, 0, src, 0);
if (ret < 0)
return -1;
}
/* Status Phase */
if (dwc2_transfer(ep, 0, PID_DATA1, !data_dir, 0, NULL, 0) < 0)
return -1;
return ret;
}
static int
dwc2_intr(endpoint_t *ep, int size, u8 *src)
{
ep_dir_t data_dir;
if (ep->direction == IN)
data_dir = EPDIR_IN;
else if (ep->direction == OUT)
data_dir = EPDIR_OUT;
else
return -1;
return dwc2_transfer(ep, size, ep->toggle, data_dir, 0, src, 1);
}
static u32 dwc2_intr_get_timestamp(intr_queue_t *q)
{
hprt_t hprt;
hfnum_t hfnum;
hci_t *controller = q->endp->dev->controller;
dwc_ctrl_t *dwc2 = DWC2_INST(controller);
dwc2_reg_t *reg = DWC2_REG(controller);
hfnum.d32 = readl(&reg->host.hfnum);
hprt.d32 = readl(dwc2->hprt0);
/*
* hfnum.frnum increments when a new SOF is transmitted on
* the USB, and is reset to 0 when it reaches 16'h3FFF
*/
switch (hprt.prtspd) {
case PRTSPD_HIGH:
/* 8 micro-frame per ms for high-speed */
return hfnum.frnum / 8;
case PRTSPD_FULL:
case PRTSPD_LOW:
default:
/* 1 micro-frame per ms for high-speed */
return hfnum.frnum / 1;
}
}
/* create and hook-up an intr queue into device schedule */
static void *
dwc2_create_intr_queue(endpoint_t *ep, const int reqsize,
const int reqcount, const int reqtiming)
{
intr_queue_t *q = (intr_queue_t *)xzalloc(sizeof(intr_queue_t));
q->data = dma_memalign(4, reqsize);
q->endp = ep;
q->reqsize = reqsize;
q->reqtiming = reqtiming;
return q;
}
static void
dwc2_destroy_intr_queue(endpoint_t *ep, void *_q)
{
intr_queue_t *q = (intr_queue_t *)_q;
free(q->data);
free(q);
}
/*
* read one intr-packet from queue, if available. extend the queue for
* new input. Return NULL if nothing new available.
* Recommended use: while (data=poll_intr_queue(q)) process(data);
*/
static u8 *
dwc2_poll_intr_queue(void *_q)
{
intr_queue_t *q = (intr_queue_t *)_q;
int ret = 0;
u32 timestamp = dwc2_intr_get_timestamp(q);
/*
* If hfnum.frnum run overflow it will schedule
* an interrupt transfer immediately
*/
if (timestamp - q->timestamp < q->reqtiming)
return NULL;
q->timestamp = timestamp;
ret = dwc2_intr(q->endp, q->reqsize, q->data);
if (ret > 0)
return q->data;
else
return NULL;
}
hci_t *dwc2_init(void *bar)
{
hci_t *controller = new_controller();
controller->instance = xzalloc(sizeof(dwc_ctrl_t));
DWC2_INST(controller)->dma_buffer = dma_malloc(DMA_SIZE);
if (!DWC2_INST(controller)->dma_buffer) {
usb_debug("Not enough DMA memory for DWC2 bounce buffer\n");
goto free_dwc2;
}
controller->type = DWC2;
controller->start = dummy;
controller->stop = dummy;
controller->reset = dummy;
controller->init = dwc2_reinit;
controller->shutdown = dwc2_shutdown;
controller->bulk = dwc2_bulk;
controller->control = dwc2_control;
controller->set_address = generic_set_address;
controller->finish_device_config = NULL;
controller->destroy_device = NULL;
controller->create_intr_queue = dwc2_create_intr_queue;
controller->destroy_intr_queue = dwc2_destroy_intr_queue;
controller->poll_intr_queue = dwc2_poll_intr_queue;
controller->reg_base = (uintptr_t)bar;
init_device_entry(controller, 0);
/* Init controller */
controller->init(controller);
/* Setup up root hub */
controller->devices[0]->controller = controller;
controller->devices[0]->init = dwc2_rh_init;
controller->devices[0]->init(controller->devices[0]);
return controller;
free_dwc2:
detach_controller(controller);
free(DWC2_INST(controller));
free(controller);
return NULL;
}