coreboot-kgpe-d16/src/include/spi_flash.h
Julius Werner df5062215f drivers: spi_flash: Add Fast Read Dual I/O support
The Fast Read Dual Output and Fast Read Dual I/O commands are
practically identical, the only difference being how the read address is
transferred (saving a whooping 2 bytes which is totally irrelevant for
the amounts of data coreboot tends to read). We originally implemented
Fast Read Dual Output since it's the older command and some older
Winbond chips only supported that one... but it seems that some older
Macronix parts for whatever reason chose to only support Fast Read Dual
I/O instead. So in order to make this work for as many parts as
possible, I guess we'll have to implement both. (Also, the Macronix
device ID situation is utter madness with different chips with different
capabilities often having the same ID, so we basically have to make a
best-effort guess to strike a trade-off between fast speeds and best
chance at supporting all chips. If this turns out to be a problem later,
we may have to add Kconfig overrides for this or resort to SFDP parsing,
although that would defeat the whole point of trying to be fast.)

BUG=b:193486682
TEST=Booted CoachZ (with Dual I/O)

Signed-off-by: Julius Werner <jwerner@chromium.org>
Change-Id: Ia1a20581f251615127f132eadea367b7b66c4709
Reviewed-on: https://review.coreboot.org/c/coreboot/+/56287
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Furquan Shaikh <furquan@google.com>
2021-07-15 14:05:34 +00:00

237 lines
8 KiB
C

/* Interface to SPI flash */
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef _SPI_FLASH_H_
#define _SPI_FLASH_H_
#include <stdint.h>
#include <stddef.h>
#include <spi-generic.h>
#include <boot/coreboot_tables.h>
/* SPI Flash opcodes */
#define SPI_OPCODE_WREN 0x06
#define SPI_OPCODE_FAST_READ 0x0b
struct spi_flash;
/*
* SPI write protection is enforced by locking the status register.
* The following modes are known. It depends on the flash chip if the
* mode is actually supported.
*
* PRESERVE : Keep the previous status register lock-down setting (noop)
* NONE : Status register isn't locked
* PIN : Status register is locked as long as the ~WP pin is active
* REBOOT : Status register is locked until power failure
* PERMANENT: Status register is permanently locked
*/
enum spi_flash_status_reg_lockdown {
SPI_WRITE_PROTECTION_PRESERVE = -1,
SPI_WRITE_PROTECTION_NONE = 0,
SPI_WRITE_PROTECTION_PIN,
SPI_WRITE_PROTECTION_REBOOT,
SPI_WRITE_PROTECTION_PERMANENT
};
/*
* Representation of SPI flash operations:
* read: Flash read operation.
* write: Flash write operation.
* erase: Flash erase operation.
* status: Read flash status register.
*/
struct spi_flash_ops {
int (*read)(const struct spi_flash *flash, u32 offset, size_t len,
void *buf);
int (*write)(const struct spi_flash *flash, u32 offset, size_t len,
const void *buf);
int (*erase)(const struct spi_flash *flash, u32 offset, size_t len);
int (*status)(const struct spi_flash *flash, u8 *reg);
};
/* Current code assumes all callbacks are supplied in this object. */
struct spi_flash_protection_ops {
/*
* Returns 1 if the whole region is software write protected.
* Hardware write protection mechanism aren't accounted.
* If the write protection could be changed, due to unlocked status
* register for example, 0 should be returned.
* Returns 0 on success.
*/
int (*get_write)(const struct spi_flash *flash,
const struct region *region);
/*
* Enable the status register write protection, if supported on the
* requested region, and optionally enable status register lock-down.
* Returns 0 if the whole region was software write protected.
* Hardware write protection mechanism aren't accounted.
* If the status register is locked and the requested configuration
* doesn't match the selected one, return an error.
* Only a single region is supported !
*
* @return 0 on success
*/
int
(*set_write)(const struct spi_flash *flash,
const struct region *region,
const enum spi_flash_status_reg_lockdown mode);
};
struct spi_flash_part_id;
struct spi_flash {
struct spi_slave spi;
u8 vendor;
union {
u8 raw;
struct {
u8 dual_output : 1;
u8 dual_io : 1;
u8 _reserved : 6;
};
} flags;
u16 model;
u32 size;
u32 sector_size;
u32 page_size;
u8 erase_cmd;
u8 status_cmd;
u8 pp_cmd; /* Page program command. */
u8 wren_cmd; /* Write Enable command. */
const struct spi_flash_ops *ops;
/* If !NULL all protection callbacks exist. */
const struct spi_flash_protection_ops *prot_ops;
const struct spi_flash_part_id *part;
};
void lb_spi_flash(struct lb_header *header);
/* SPI Flash Driver Public API */
/*
* Probe for SPI flash chip on given SPI bus and chip select and fill info in
* spi_flash structure.
*
* Params:
* bus = SPI Bus # for the flash chip
* cs = Chip select # for the flash chip
* flash = Pointer to spi flash structure that needs to be filled
*
* Return value:
* 0 = success
* non-zero = error
*/
int spi_flash_probe(unsigned int bus, unsigned int cs, struct spi_flash *flash);
/*
* Generic probing for SPI flash chip based on the different flashes provided.
*
* Params:
* spi = Pointer to spi_slave structure
* flash = Pointer to spi_flash structure that needs to be filled.
*
* Return value:
* 0 = success
* non-zero = error
*/
int spi_flash_generic_probe(const struct spi_slave *slave,
struct spi_flash *flash);
/* All the following functions return 0 on success and non-zero on error. */
int spi_flash_read(const struct spi_flash *flash, u32 offset, size_t len,
void *buf);
int spi_flash_write(const struct spi_flash *flash, u32 offset, size_t len,
const void *buf);
int spi_flash_erase(const struct spi_flash *flash, u32 offset, size_t len);
int spi_flash_status(const struct spi_flash *flash, u8 *reg);
/*
* Return the vendor dependent SPI flash write protection state.
* @param flash : A SPI flash device
* @param region: A subregion of the device's region
*
* Returns:
* -1 on error
* 0 if the device doesn't support block protection
* 0 if the device doesn't enable block protection
* 0 if given range isn't covered by block protection
* 1 if given range is covered by block protection
*/
int spi_flash_is_write_protected(const struct spi_flash *flash,
const struct region *region);
/*
* Enable the vendor dependent SPI flash write protection. The region not
* covered by write-protection will be set to write-able state.
* Only a single write-protected region is supported.
* Some flash ICs require the region to be aligned in the block size, sector
* size or page size.
* Some flash ICs require the region to start at TOP or BOTTOM.
*
* @param flash : A SPI flash device
* @param region: A subregion of the device's region
* @param mode: Optional lock-down of status register
* @return 0 on success
*/
int
spi_flash_set_write_protected(const struct spi_flash *flash,
const struct region *region,
const enum spi_flash_status_reg_lockdown mode);
/*
* Some SPI controllers require exclusive access to SPI flash when volatile
* operations like erase or write are being performed. In such cases,
* volatile_group_begin will gain exclusive access to SPI flash if not already
* acquired and volatile_group_end will end exclusive access if this was the
* last request in the group. spi_flash_{write,erase} operations call
* volatile_group_begin at the start of function and volatile_group_end after
* erase/write operation is performed. These functions can also be used by any
* components that wish to club multiple volatile operations into a single
* group.
*/
int spi_flash_volatile_group_begin(const struct spi_flash *flash);
int spi_flash_volatile_group_end(const struct spi_flash *flash);
/*
* These are callbacks for marking the start and end of volatile group as
* handled by the chipset. Not every chipset requires this special handling. So,
* these functions are expected to be implemented in Kconfig option for volatile
* group is enabled (SPI_FLASH_HAS_VOLATILE_GROUP).
*/
int chipset_volatile_group_begin(const struct spi_flash *flash);
int chipset_volatile_group_end(const struct spi_flash *flash);
/* Return spi_flash object reference for the boot device. This is only valid
* if CONFIG(BOOT_DEVICE_SPI_FLASH) is enabled. */
const struct spi_flash *boot_device_spi_flash(void);
/* Protect a region of spi flash using its controller, if available. Returns
* < 0 on error, else 0 on success. */
int spi_flash_ctrlr_protect_region(const struct spi_flash *flash,
const struct region *region,
const enum ctrlr_prot_type type);
/*
* This function is provided to support spi flash command-response transactions.
* Only 2 vectors are supported and the 'func' is called with appropriate
* write and read buffers together. This can be used for chipsets that
* have specific spi flash controllers that don't conform to the normal
* spi xfer API because they are specialized controllers and not generic.
*
* Returns 0 on success and non-zero on failure.
*/
int spi_flash_vector_helper(const struct spi_slave *slave,
struct spi_op vectors[], size_t count,
int (*func)(const struct spi_slave *slave, const void *dout,
size_t bytesout, void *din, size_t bytesin));
/*
* Fill in the memory mapped windows used by the SPI flash device. This is useful for payloads
* to identify SPI flash to host space mapping.
*
* Returns number of windows added to the table.
*/
uint32_t spi_flash_get_mmap_windows(struct flash_mmap_window *table);
#endif /* _SPI_FLASH_H_ */