coreboot-kgpe-d16/util/x86emu/yabel/vbe.c
Stefan Reinauer d650e9934f YABEL update
- drop x86emu + old biosemu in favor of YABEL
- Add YABEL_DIRECTHW to get the old biosemu behavior
- add support for vesa console using YABEL
- add coreboot table entry with console information
- add bootsplash support (reads /bootsplash.jpg from CBFS)

Signed-off-by: Stefan Reinauer <stepan@coresystems.de>
Acked-by: Pattrick Hueper <phueper@hueper.net>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5135 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2010-02-22 04:33:13 +00:00

844 lines
23 KiB
C

/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include <string.h>
#include <types.h>
#if CONFIG_BOOTSPLASH
#include <boot/coreboot_tables.h>
#endif
#include <arch/byteorder.h>
#define ntohl(x) be32_to_cpu(x)
#include "debug.h"
#include <x86emu/x86emu.h>
#include <x86emu/regs.h>
#include "../x86emu/prim_ops.h"
#include "biosemu.h"
#include "io.h"
#include "mem.h"
#include "interrupt.h"
#include "device.h"
#include <cbfs.h>
#include <delay.h>
#include "../../src/lib/jpeg.h"
// pointer to VBEInfoBuffer, set by vbe_prepare
u8 *vbe_info_buffer = 0;
// virtual BIOS Memory
u8 *biosmem;
u32 biosmem_size;
// these structs are for input from and output to OF
typedef struct {
u8 display_type; // 0=NONE, 1= analog, 2=digital
u16 screen_width;
u16 screen_height;
u16 screen_linebytes; // bytes per line in framebuffer, may be more than screen_width
u8 color_depth; // color depth in bpp
u32 framebuffer_address;
u8 edid_block_zero[128];
} __attribute__ ((__packed__)) screen_info_t;
typedef struct {
u8 signature[4];
u16 size_reserved;
u8 monitor_number;
u16 max_screen_width;
u8 color_depth;
} __attribute__ ((__packed__)) screen_info_input_t;
// these structs only store a subset of the VBE defined fields
// only those needed.
typedef struct {
char signature[4];
u16 version;
u8 *oem_string_ptr;
u32 capabilities;
u16 video_mode_list[256]; // lets hope we never have more than 256 video modes...
u16 total_memory;
} vbe_info_t;
typedef struct {
u16 mode_attributes; // 00
u8 win_a_attributes; // 02
u8 win_b_attributes; // 03
u16 win_granularity; // 04
u16 win_size; // 06
u16 win_a_segment; // 08
u16 win_b_segment; // 0a
u32 win_func_ptr; // 0c
u16 bytes_per_scanline; // 10
u16 x_resolution; // 12
u16 y_resolution; // 14
u8 x_charsize; // 16
u8 y_charsize; // 17
u8 number_of_planes; // 18
u8 bits_per_pixel; // 19
u8 number_of_banks; // 20
u8 memory_model; // 21
u8 bank_size; // 22
u8 number_of_image_pages; // 23
u8 reserved_page;
u8 red_mask_size;
u8 red_mask_pos;
u8 green_mask_size;
u8 green_mask_pos;
u8 blue_mask_size;
u8 blue_mask_pos;
u8 reserved_mask_size;
u8 reserved_mask_pos;
u8 direct_color_mode_info;
u32 phys_base_ptr;
u32 offscreen_mem_offset;
u16 offscreen_mem_size;
u8 reserved[206];
} __attribute__ ((__packed__)) vesa_mode_info_t;
typedef struct {
u16 video_mode;
union {
vesa_mode_info_t vesa;
u8 mode_info_block[256];
};
// our crap
//u16 attributes;
//u16 linebytes;
//u16 x_resolution;
//u16 y_resolution;
//u8 x_charsize;
//u8 y_charsize;
//u8 bits_per_pixel;
//u8 memory_model;
//u32 framebuffer_address;
} vbe_mode_info_t;
typedef struct {
u8 port_number; // i.e. monitor number
u8 edid_transfer_time;
u8 ddc_level;
u8 edid_block_zero[128];
} vbe_ddc_info_t;
static inline u8
vbe_prepare(void)
{
vbe_info_buffer = biosmem + (VBE_SEGMENT << 4); // segment:offset off VBE Data Area
//clear buffer
memset(vbe_info_buffer, 0, 512);
//set VbeSignature to "VBE2" to indicate VBE 2.0+ request
vbe_info_buffer[0] = 'V';
vbe_info_buffer[0] = 'B';
vbe_info_buffer[0] = 'E';
vbe_info_buffer[0] = '2';
// ES:DI store pointer to buffer in virtual mem see vbe_info_buffer above...
M.x86.R_EDI = 0x0;
M.x86.R_ES = VBE_SEGMENT;
return 0; // successfull init
}
// VBE Function 00h
u8
vbe_info(vbe_info_t * info)
{
vbe_prepare();
// call VBE function 00h (Info Function)
M.x86.R_EAX = 0x4f00;
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE("%s: VBE Info Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: VBE Info Function Return Code NOT OK! AH=%x\n",
__func__, M.x86.R_AH);
return M.x86.R_AH;
}
//printf("VBE Info Dump:");
//dump(vbe_info_buffer, 64);
//offset 0: signature
info->signature[0] = vbe_info_buffer[0];
info->signature[1] = vbe_info_buffer[1];
info->signature[2] = vbe_info_buffer[2];
info->signature[3] = vbe_info_buffer[3];
// offset 4: 16bit le containing VbeVersion
info->version = in16le(vbe_info_buffer + 4);
// offset 6: 32bit le containg segment:offset of OEM String in virtual Mem.
info->oem_string_ptr =
biosmem + ((in16le(vbe_info_buffer + 8) << 4) +
in16le(vbe_info_buffer + 6));
// offset 10: 32bit le capabilities
info->capabilities = in32le(vbe_info_buffer + 10);
// offset 14: 32 bit le containing segment:offset of supported video mode table
u16 *video_mode_ptr;
video_mode_ptr =
(u16 *) (biosmem +
((in16le(vbe_info_buffer + 16) << 4) +
in16le(vbe_info_buffer + 14)));
u32 i = 0;
do {
info->video_mode_list[i] = in16le(video_mode_ptr + i);
i++;
}
while ((i <
(sizeof(info->video_mode_list) /
sizeof(info->video_mode_list[0])))
&& (info->video_mode_list[i - 1] != 0xFFFF));
//offset 18: 16bit le total memory in 64KB blocks
info->total_memory = in16le(vbe_info_buffer + 18);
return 0;
}
// VBE Function 01h
u8
vbe_get_mode_info(vbe_mode_info_t * mode_info)
{
vbe_prepare();
// call VBE function 01h (Return VBE Mode Info Function)
M.x86.R_EAX = 0x4f01;
M.x86.R_CX = mode_info->video_mode;
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE
("%s: VBE Return Mode Info Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: VBE Return Mode Info (mode: %04x) Function Return Code NOT OK! AH=%02x\n",
__func__, mode_info->video_mode, M.x86.R_AH);
return M.x86.R_AH;
}
//pointer to mode_info_block is in ES:DI
memcpy(mode_info->mode_info_block,
biosmem + ((M.x86.R_ES << 4) + M.x86.R_DI),
sizeof(mode_info->mode_info_block));
//printf("Mode Info Dump:");
//dump(mode_info_block, 64);
return 0;
}
// VBE Function 02h
u8
vbe_set_mode(vbe_mode_info_t * mode_info)
{
vbe_prepare();
// call VBE function 02h (Set VBE Mode Function)
M.x86.R_EAX = 0x4f02;
M.x86.R_BX = mode_info->video_mode;
M.x86.R_BX |= 0x4000; // set bit 14 to request linear framebuffer mode
M.x86.R_BX &= 0x7FFF; // clear bit 15 to request clearing of framebuffer
DEBUG_PRINTF_VBE("%s: setting mode: 0x%04x\n", __func__,
M.x86.R_BX);
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE
("%s: VBE Set Mode Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: mode: %x VBE Set Mode Function Return Code NOT OK! AH=%x\n",
__func__, mode_info->video_mode, M.x86.R_AH);
return M.x86.R_AH;
}
return 0;
}
//VBE Function 08h
u8
vbe_set_palette_format(u8 format)
{
vbe_prepare();
// call VBE function 09h (Set/Get Palette Data Function)
M.x86.R_EAX = 0x4f08;
M.x86.R_BL = 0x00; // set format
M.x86.R_BH = format;
DEBUG_PRINTF_VBE("%s: setting palette format: %d\n", __func__,
format);
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE
("%s: VBE Set Palette Format Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: VBE Set Palette Format Function Return Code NOT OK! AH=%x\n",
__func__, M.x86.R_AH);
return M.x86.R_AH;
}
return 0;
}
// VBE Function 09h
u8
vbe_set_color(u16 color_number, u32 color_value)
{
vbe_prepare();
// call VBE function 09h (Set/Get Palette Data Function)
M.x86.R_EAX = 0x4f09;
M.x86.R_BL = 0x00; // set color
M.x86.R_CX = 0x01; // set only one entry
M.x86.R_DX = color_number;
// ES:DI is address where color_value is stored, we store it at 2000:0000
M.x86.R_ES = 0x2000;
M.x86.R_DI = 0x0;
// store color value at ES:DI
out32le(biosmem + (M.x86.R_ES << 4) + M.x86.R_DI, color_value);
DEBUG_PRINTF_VBE("%s: setting color #%x: 0x%04x\n", __func__,
color_number, color_value);
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE
("%s: VBE Set Palette Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: VBE Set Palette Function Return Code NOT OK! AH=%x\n",
__func__, M.x86.R_AH);
return M.x86.R_AH;
}
return 0;
}
u8
vbe_get_color(u16 color_number, u32 * color_value)
{
vbe_prepare();
// call VBE function 09h (Set/Get Palette Data Function)
M.x86.R_EAX = 0x4f09;
M.x86.R_BL = 0x00; // get color
M.x86.R_CX = 0x01; // get only one entry
M.x86.R_DX = color_number;
// ES:DI is address where color_value is stored, we store it at 2000:0000
M.x86.R_ES = 0x2000;
M.x86.R_DI = 0x0;
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE
("%s: VBE Set Palette Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: VBE Set Palette Function Return Code NOT OK! AH=%x\n",
__func__, M.x86.R_AH);
return M.x86.R_AH;
}
// read color value from ES:DI
*color_value = in32le(biosmem + (M.x86.R_ES << 4) + M.x86.R_DI);
DEBUG_PRINTF_VBE("%s: getting color #%x --> 0x%04x\n", __func__,
color_number, *color_value);
return 0;
}
// VBE Function 15h
u8
vbe_get_ddc_info(vbe_ddc_info_t * ddc_info)
{
vbe_prepare();
// call VBE function 15h (DDC Info Function)
M.x86.R_EAX = 0x4f15;
M.x86.R_BL = 0x00; // get DDC Info
M.x86.R_CX = ddc_info->port_number;
M.x86.R_ES = 0x0;
M.x86.R_DI = 0x0;
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE
("%s: VBE Get DDC Info Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: port: %x VBE Get DDC Info Function Return Code NOT OK! AH=%x\n",
__func__, ddc_info->port_number, M.x86.R_AH);
return M.x86.R_AH;
}
// BH = approx. time in seconds to transfer one EDID block
ddc_info->edid_transfer_time = M.x86.R_BH;
// BL = DDC Level
ddc_info->ddc_level = M.x86.R_BL;
vbe_prepare();
// call VBE function 15h (DDC Info Function)
M.x86.R_EAX = 0x4f15;
M.x86.R_BL = 0x01; // read EDID
M.x86.R_CX = ddc_info->port_number;
M.x86.R_DX = 0x0; // block number
// ES:DI is address where EDID is stored, we store it at 2000:0000
M.x86.R_ES = 0x2000;
M.x86.R_DI = 0x0;
// enable trace
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
// run VESA Interrupt
runInt10();
if (M.x86.R_AL != 0x4f) {
DEBUG_PRINTF_VBE
("%s: VBE Read EDID Function NOT supported! AL=%x\n",
__func__, M.x86.R_AL);
return -1;
}
if (M.x86.R_AH != 0x0) {
DEBUG_PRINTF_VBE
("%s: port: %x VBE Read EDID Function Return Code NOT OK! AH=%x\n",
__func__, ddc_info->port_number, M.x86.R_AH);
return M.x86.R_AH;
}
memcpy(ddc_info->edid_block_zero,
biosmem + (M.x86.R_ES << 4) + M.x86.R_DI,
sizeof(ddc_info->edid_block_zero));
return 0;
}
u32
vbe_get_info(void)
{
u8 rval;
int i;
// XXX FIXME these need to be filled with sane values
// get a copy of input struct...
screen_info_input_t input;
// output is pointer to the address passed as argv[4]
screen_info_t local_output;
screen_info_t *output = &local_output;
// zero input
memset(&input, 0, sizeof(screen_info_input_t));
// zero output
memset(&output, 0, sizeof(screen_info_t));
vbe_info_t info;
rval = vbe_info(&info);
if (rval != 0)
return rval;
DEBUG_PRINTF_VBE("VbeSignature: %s\n", info.signature);
DEBUG_PRINTF_VBE("VbeVersion: 0x%04x\n", info.version);
DEBUG_PRINTF_VBE("OemString: %s\n", info.oem_string_ptr);
DEBUG_PRINTF_VBE("Capabilities:\n");
DEBUG_PRINTF_VBE("\tDAC: %s\n",
(info.capabilities & 0x1) ==
0 ? "fixed 6bit" : "switchable 6/8bit");
DEBUG_PRINTF_VBE("\tVGA: %s\n",
(info.capabilities & 0x2) ==
0 ? "compatible" : "not compatible");
DEBUG_PRINTF_VBE("\tRAMDAC: %s\n",
(info.capabilities & 0x4) ==
0 ? "normal" : "use blank bit in Function 09h");
// argv[4] may be a pointer with enough space to return screen_info_t
// as input, it must contain a screen_info_input_t with the following content:
// byte[0:3] = "DDC\0" (zero-terminated signature header)
// byte[4:5] = reserved space for the return struct... just in case we ever change
// the struct and dont have reserved enough memory (and let's hope the struct
// never gets larger than 64KB)
// byte[6] = monitor port number for DDC requests ("only" one byte... so lets hope we never have more than 255 monitors...
// byte[7:8] = max. screen width (OF may want to limit this)
// byte[9] = required color depth in bpp
if (strncmp((char *) input.signature, "DDC", 4) != 0) {
printf
("%s: Invalid input signature! expected: %s, is: %s\n",
__func__, "DDC", input.signature);
return -1;
}
if (input.size_reserved != sizeof(screen_info_t)) {
printf
("%s: Size of return struct is wrong, required: %d, available: %d\n",
__func__, (int) sizeof(screen_info_t),
input.size_reserved);
return -1;
}
vbe_ddc_info_t ddc_info;
ddc_info.port_number = input.monitor_number;
vbe_get_ddc_info(&ddc_info);
#if 0
DEBUG_PRINTF_VBE("DDC: edid_tranfer_time: %d\n",
ddc_info.edid_transfer_time);
DEBUG_PRINTF_VBE("DDC: ddc_level: %x\n", ddc_info.ddc_level);
DEBUG_PRINTF_VBE("DDC: EDID: \n");
CHECK_DBG(DEBUG_VBE) {
dump(ddc_info.edid_block_zero,
sizeof(ddc_info.edid_block_zero));
}
#endif
if (*((u64 *) ddc_info.edid_block_zero) !=
(u64) 0x00FFFFFFFFFFFF00) {
// invalid EDID signature... probably no monitor
output->display_type = 0x0;
return 0;
} else if ((ddc_info.edid_block_zero[20] & 0x80) != 0) {
// digital display
output->display_type = 2;
} else {
// analog
output->display_type = 1;
}
DEBUG_PRINTF_VBE("DDC: found display type %d\n", output->display_type);
memcpy(output->edid_block_zero, ddc_info.edid_block_zero,
sizeof(ddc_info.edid_block_zero));
i = 0;
vbe_mode_info_t mode_info;
vbe_mode_info_t best_mode_info;
// initialize best_mode to 0
memset(&best_mode_info, 0, sizeof(best_mode_info));
while ((mode_info.video_mode = info.video_mode_list[i]) != 0xFFFF) {
//DEBUG_PRINTF_VBE("%x: Mode: %04x\n", i, mode_info.video_mode);
vbe_get_mode_info(&mode_info);
// FIXME all these values are little endian!
DEBUG_PRINTF_VBE("Video Mode 0x%04x available, %s\n",
mode_info.video_mode,
(mode_info.attributes & 0x1) ==
0 ? "not supported" : "supported");
DEBUG_PRINTF_VBE("\tTTY: %s\n",
(mode_info.attributes & 0x4) ==
0 ? "no" : "yes");
DEBUG_PRINTF_VBE("\tMode: %s %s\n",
(mode_info.attributes & 0x8) ==
0 ? "monochrome" : "color",
(mode_info.attributes & 0x10) ==
0 ? "text" : "graphics");
DEBUG_PRINTF_VBE("\tVGA: %s\n",
(mode_info.attributes & 0x20) ==
0 ? "compatible" : "not compatible");
DEBUG_PRINTF_VBE("\tWindowed Mode: %s\n",
(mode_info.attributes & 0x40) ==
0 ? "yes" : "no");
DEBUG_PRINTF_VBE("\tFramebuffer: %s\n",
(mode_info.attributes & 0x80) ==
0 ? "no" : "yes");
DEBUG_PRINTF_VBE("\tResolution: %dx%d\n",
mode_info.x_resolution,
mode_info.y_resolution);
DEBUG_PRINTF_VBE("\tChar Size: %dx%d\n",
mode_info.x_charsize, mode_info.y_charsize);
DEBUG_PRINTF_VBE("\tColor Depth: %dbpp\n",
mode_info.bits_per_pixel);
DEBUG_PRINTF_VBE("\tMemory Model: 0x%x\n",
mode_info.memory_model);
DEBUG_PRINTF_VBE("\tFramebuffer Offset: %08x\n",
mode_info.framebuffer_address);
if ((mode_info.vesa.bits_per_pixel == input.color_depth)
&& (le16_to_cpu(mode_info.vesa.x_resolution) <= input.max_screen_width)
&& ((le16_to_cpu(mode_info.vesa.mode_attributes) & 0x80) != 0) // framebuffer mode
&& ((le16_to_cpu(mode_info.vesa.mode_attributes) & 0x10) != 0) // graphics
&& ((le16_to_cpu(mode_info.vesa.mode_attributes) & 0x8) != 0) // color
&& (le16_to_cpu(mode_info.vesa.x_resolution) > le16_to_cpu(best_mode_info.vesa.x_resolution))) // better than previous best_mode
{
// yiiiihaah... we found a new best mode
memcpy(&best_mode_info, &mode_info, sizeof(mode_info));
}
i++;
}
if (best_mode_info.video_mode != 0) {
DEBUG_PRINTF_VBE
("Best Video Mode found: 0x%x, %dx%d, %dbpp, framebuffer_address: 0x%x\n",
best_mode_info.video_mode,
best_mode_info.x_resolution,
best_mode_info.y_resolution,
best_mode_info.bits_per_pixel,
best_mode_info.framebuffer_address);
//printf("Mode Info Dump:");
//dump(best_mode_info.mode_info_block, 64);
// set the video mode
vbe_set_mode(&best_mode_info);
if ((info.capabilities & 0x1) != 0) {
// switch to 8 bit palette format
vbe_set_palette_format(8);
}
// setup a palette:
// - first 216 colors are mixed colors for each component in 6 steps
// (6*6*6=216)
// - then 10 shades of the three primary colors
// - then 10 shades of grey
// -------
// = 256 colors
//
// - finally black is color 0 and white color FF (because SLOF expects it
// this way...)
// this resembles the palette that the kernel/X Server seems to expect...
u8 mixed_color_values[6] =
{ 0xFF, 0xDA, 0xB3, 0x87, 0x54, 0x00 };
u8 primary_color_values[10] =
{ 0xF3, 0xE7, 0xCD, 0xC0, 0xA5, 0x96, 0x77, 0x66, 0x3F,
0x27
};
u8 mc_size = sizeof(mixed_color_values);
u8 prim_size = sizeof(primary_color_values);
u8 curr_color_index;
u32 curr_color;
u8 r, g, b;
// 216 mixed colors
for (r = 0; r < mc_size; r++) {
for (g = 0; g < mc_size; g++) {
for (b = 0; b < mc_size; b++) {
curr_color_index =
(r * mc_size * mc_size) +
(g * mc_size) + b;
curr_color = 0;
curr_color |= ((u32) mixed_color_values[r]) << 16; //red value
curr_color |= ((u32) mixed_color_values[g]) << 8; //green value
curr_color |= (u32) mixed_color_values[b]; //blue value
vbe_set_color(curr_color_index,
curr_color);
}
}
}
// 10 shades of each primary color
// red
for (r = 0; r < prim_size; r++) {
curr_color_index = mc_size * mc_size * mc_size + r;
curr_color = ((u32) primary_color_values[r]) << 16;
vbe_set_color(curr_color_index, curr_color);
}
//green
for (g = 0; g < prim_size; g++) {
curr_color_index =
mc_size * mc_size * mc_size + prim_size + g;
curr_color = ((u32) primary_color_values[g]) << 8;
vbe_set_color(curr_color_index, curr_color);
}
//blue
for (b = 0; b < prim_size; b++) {
curr_color_index =
mc_size * mc_size * mc_size + prim_size * 2 + b;
curr_color = (u32) primary_color_values[b];
vbe_set_color(curr_color_index, curr_color);
}
// 10 shades of grey
for (i = 0; i < prim_size; i++) {
curr_color_index =
mc_size * mc_size * mc_size + prim_size * 3 + i;
curr_color = 0;
curr_color |= ((u32) primary_color_values[i]) << 16; //red
curr_color |= ((u32) primary_color_values[i]) << 8; //green
curr_color |= ((u32) primary_color_values[i]); //blue
vbe_set_color(curr_color_index, curr_color);
}
// SLOF is using color 0x0 (black) and 0xFF (white) to draw to the screen...
vbe_set_color(0x00, 0x00000000);
vbe_set_color(0xFF, 0x00FFFFFF);
output->screen_width = le16_to_cpu(best_mode_info.vesa.x_resolution);
output->screen_height = le16_to_cpu(best_mode_info.vesa.y_resolution);
output->screen_linebytes = le16_to_cpu(best_mode_info.vesa.bytes_per_scanline);
output->color_depth = best_mode_info.vesa.bits_per_pixel;
output->framebuffer_address =
le32_to_cpu(best_mode_info.vesa.phys_base_ptr);
} else {
printf("%s: No suitable video mode found!\n", __func__);
//unset display_type...
output->display_type = 0;
}
return 0;
}
#if CONFIG_BOOTSPLASH
vbe_mode_info_t mode_info;
void vbe_set_graphics(void)
{
u8 rval;
int i;
vbe_info_t info;
rval = vbe_info(&info);
if (rval != 0)
return;
DEBUG_PRINTF_VBE("VbeSignature: %s\n", info.signature);
DEBUG_PRINTF_VBE("VbeVersion: 0x%04x\n", info.version);
DEBUG_PRINTF_VBE("OemString: %s\n", info.oem_string_ptr);
DEBUG_PRINTF_VBE("Capabilities:\n");
DEBUG_PRINTF_VBE("\tDAC: %s\n",
(info.capabilities & 0x1) ==
0 ? "fixed 6bit" : "switchable 6/8bit");
DEBUG_PRINTF_VBE("\tVGA: %s\n",
(info.capabilities & 0x2) ==
0 ? "compatible" : "not compatible");
DEBUG_PRINTF_VBE("\tRAMDAC: %s\n",
(info.capabilities & 0x4) ==
0 ? "normal" : "use blank bit in Function 09h");
mode_info.video_mode = (1 << 14) | CONFIG_FRAMEBUFFER_VESA_MODE;
vbe_get_mode_info(&mode_info);
unsigned char *framebuffer =
(unsigned char *) le32_to_cpu(mode_info.vesa.phys_base_ptr);
DEBUG_PRINTF_VBE("FRAMEBUFFER: 0x%08x\n", framebuffer);
vbe_set_mode(&mode_info);
struct jpeg_decdata *decdata;
decdata = malloc(sizeof(*decdata));
/* Switching Intel IGD to 1MB video memory will break this. Who
* cares. */
int imagesize = 1024*768*2;
struct cbfs_file *file = cbfs_find("bootsplash.jpg");
if (!file) {
DEBUG_PRINTF_VBE("Could not find bootsplash.jpg\n");
return;
}
unsigned char *jpeg = ((unsigned char *)file) + ntohl(file->offset);
DEBUG_PRINTF_VBE("Splash at %08x ...\n", jpeg);
dump(jpeg, 64);
int ret = 0;
DEBUG_PRINTF_VBE("Decompressing boot splash screen...\n");
ret = jpeg_decode(jpeg, framebuffer, 1024, 768, 16, decdata);
DEBUG_PRINTF_VBE("returns %x\n", ret);
}
void fill_lb_framebuffer(struct lb_framebuffer *framebuffer)
{
framebuffer->physical_address = le32_to_cpu(mode_info.vesa.phys_base_ptr);
framebuffer->x_resolution = le16_to_cpu(mode_info.vesa.x_resolution);
framebuffer->y_resolution = le16_to_cpu(mode_info.vesa.y_resolution);
framebuffer->bytes_per_line = le16_to_cpu(mode_info.vesa.bytes_per_scanline);
framebuffer->bits_per_pixel = mode_info.vesa.bits_per_pixel;
framebuffer->red_mask_pos = mode_info.vesa.red_mask_pos;
framebuffer->red_mask_size = mode_info.vesa.red_mask_size;
framebuffer->green_mask_pos = mode_info.vesa.green_mask_pos;
framebuffer->green_mask_size = mode_info.vesa.green_mask_size;
framebuffer->blue_mask_pos = mode_info.vesa.blue_mask_pos;
framebuffer->blue_mask_size = mode_info.vesa.blue_mask_size;
framebuffer->reserved_mask_pos = mode_info.vesa.reserved_mask_pos;
framebuffer->reserved_mask_size = mode_info.vesa.reserved_mask_size;
}
void vbe_textmode_console(void)
{
/* Wait, just a little bit more, pleeeease ;-) */
delay(2);
M.x86.R_EAX = 0x0003;
runInt10();
}
#endif