coreboot-kgpe-d16/src/southbridge/intel/i82801gx/i82801gx_smihandler.c
Stefan Reinauer 3b387458b5 * fix a minor power state issue in the ich7 smm handler
* move mainboard dependent code into a mainboard SMI handler.

Signed-off-by: Stefan Reinauer <stepan@coresystems.de>
Acked-by: Peter Stuge <peter@stuge.se>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@3982 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2009-03-06 19:52:36 +00:00

418 lines
11 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008-2009 coresystems GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <arch/io.h>
#include <arch/romcc_io.h>
#include <console/console.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/smm.h>
//#include "chip.h"
// Future TODO: Move to i82801gx directory
#include "../../../northbridge/intel/i945/ich7.h"
#define DEBUG_SMI
#define APM_CNT 0xb2
#define APM_STS 0xb3
#define ACPI_DISABLE 0x1e
#define ACPI_ENABLE 0xe1
/* I945 */
#define SMRAM 0x9d
#define D_OPEN (1 << 6)
#define D_CLS (1 << 5)
#define D_LCK (1 << 4)
#define G_SMRANE (1 << 3)
#define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0))
/* ICH7 */
#define PM1_STS 0x00
#define PM1_EN 0x02
#define PM1_CNT 0x04
#define PM1_TMR 0x08
#define PROC_CNT 0x10
#define LV2 0x14
#define LV3 0x15
#define LV4 0x16
#define PM2_CNT 0x20 // mobile only
#define GPE0_STS 0x28
#define GPE0_EN 0x2c
#define SMI_EN 0x30
#define EL_SMI_EN (1 << 25) // Intel Quick Resume Technology
#define INTEL_USB2_EN (1 << 18) // Intel-Specific USB2 SMI logic
#define LEGACY_USB2_EN (1 << 17) // Legacy USB2 SMI logic
#define PERIODIC_EN (1 << 14) // SMI on PERIODIC_STS in SMI_STS
#define TCO_EN (1 << 13) // Enable TCO Logic (BIOSWE et al)
#define MCSMI_EN (1 << 11) // Trap microcontroller range access
#define BIOS_RLS (1 << 7) // asserts SCI on bit set
#define SWSMI_TMR_EN (1 << 6) // start software smi timer on bit set
#define APMC_EN (1 << 5) // Writes to APM_CNT cause SMI#
#define SLP_SMI_EN (1 << 4) // Write to SLP_EN in PM1_CNT asserts SMI#
#define LEGACY_USB_EN (1 << 3) // Legacy USB circuit SMI logic
#define BIOS_EN (1 << 2) // Assert SMI# on setting GBL_RLS bit
#define EOS (1 << 1) // End of SMI (deassert SMI#)
#define GBL_SMI_EN (1 << 0) // SMI# generation at all?
#define SMI_STS 0x34
#define ALT_GP_SMI_EN 0x38
#define ALT_GP_SMI_STS 0x3a
#define GPE_CNTL 0x42
#define DEVACT_STS 0x44
#define SS_CNT 0x50
#define C3_RES 0x54
#include "i82801gx_nvs.h"
/* While we read PMBASE dynamically in case it changed, let's
* initialize it with a sane value
*/
static u16 pmbase = DEFAULT_PMBASE;
/**
* @brief read and clear PM1_STS
* @return PM1_STS register
*/
static u16 reset_pm1_status(void)
{
u16 reg16;
reg16 = inw(pmbase + PM1_STS);
/* set status bits are cleared by writing 1 to them */
outw(reg16, pmbase + PM1_STS);
return reg16;
}
static void dump_pm1_status(u16 pm1_sts)
{
printk_debug("PM1_STS: ");
if (pm1_sts & (1 << 15)) printk_debug("WAK ");
if (pm1_sts & (1 << 14)) printk_debug("PCIEXPWAK ");
if (pm1_sts & (1 << 11)) printk_debug("PRBTNOR ");
if (pm1_sts & (1 << 10)) printk_debug("RTC ");
if (pm1_sts & (1 << 8)) printk_debug("PWRBTN ");
if (pm1_sts & (1 << 5)) printk_debug("GBL ");
if (pm1_sts & (1 << 4)) printk_debug("BM ");
if (pm1_sts & (1 << 0)) printk_debug("TMROF ");
printk_debug("\n");
}
/**
* @brief read and clear SMI_STS
* @return SMI_STS register
*/
static u32 reset_smi_status(void)
{
u32 reg32;
reg32 = inl(pmbase + SMI_STS);
/* set status bits are cleared by writing 1 to them */
outl(reg32, pmbase + SMI_STS);
return reg32;
}
static void dump_smi_status(u32 smi_sts)
{
printk_debug("SMI_STS: ");
if (smi_sts & (1 << 26)) printk_debug("SPI ");
if (smi_sts & (1 << 25)) printk_debug("EL_SMI ");
if (smi_sts & (1 << 21)) printk_debug("MONITOR ");
if (smi_sts & (1 << 20)) printk_debug("PCI_EXP_SMI ");
if (smi_sts & (1 << 18)) printk_debug("INTEL_USB2 ");
if (smi_sts & (1 << 17)) printk_debug("LEGACY_USB2 ");
if (smi_sts & (1 << 16)) printk_debug("SMBUS_SMI ");
if (smi_sts & (1 << 15)) printk_debug("SERIRQ_SMI ");
if (smi_sts & (1 << 14)) printk_debug("PERIODIC ");
if (smi_sts & (1 << 13)) printk_debug("TCO ");
if (smi_sts & (1 << 12)) printk_debug("DEVMON ");
if (smi_sts & (1 << 11)) printk_debug("MCSMI ");
if (smi_sts & (1 << 10)) printk_debug("GPI ");
if (smi_sts & (1 << 9)) printk_debug("GPE0 ");
if (smi_sts & (1 << 8)) printk_debug("PM1 ");
if (smi_sts & (1 << 6)) printk_debug("SWSMI_TMR ");
if (smi_sts & (1 << 5)) printk_debug("APM ");
if (smi_sts & (1 << 4)) printk_debug("SLP_SMI ");
if (smi_sts & (1 << 3)) printk_debug("LEGACY_USB ");
if (smi_sts & (1 << 2)) printk_debug("BIOS ");
printk_debug("\n");
}
/**
* @brief read and clear GPE0_STS
* @return GPE0_STS register
*/
static u32 reset_gpe0_status(void)
{
u32 reg32;
reg32 = inl(pmbase + GPE0_STS);
/* set status bits are cleared by writing 1 to them */
outl(reg32, pmbase + GPE0_STS);
return reg32;
}
static void dump_gpe0_status(u32 gpe0_sts)
{
int i;
printk_debug("GPE0_STS: ");
for (i=31; i<= 16; i--) {
if (gpe0_sts & (1 << i)) printk_debug("GPIO%d ", (i-16));
}
if (gpe0_sts & (1 << 14)) printk_debug("USB4 ");
if (gpe0_sts & (1 << 13)) printk_debug("PME_B0 ");
if (gpe0_sts & (1 << 12)) printk_debug("USB3 ");
if (gpe0_sts & (1 << 11)) printk_debug("PME ");
if (gpe0_sts & (1 << 10)) printk_debug("EL_SCI/BATLOW ");
if (gpe0_sts & (1 << 9)) printk_debug("PCI_EXP ");
if (gpe0_sts & (1 << 8)) printk_debug("RI ");
if (gpe0_sts & (1 << 7)) printk_debug("SMB_WAK ");
if (gpe0_sts & (1 << 6)) printk_debug("TCO_SCI ");
if (gpe0_sts & (1 << 5)) printk_debug("AC97 ");
if (gpe0_sts & (1 << 4)) printk_debug("USB2 ");
if (gpe0_sts & (1 << 3)) printk_debug("USB1 ");
if (gpe0_sts & (1 << 2)) printk_debug("HOT_PLUG ");
if (gpe0_sts & (1 << 0)) printk_debug("THRM ");
printk_debug("\n");
}
/**
* @brief read and clear TCOx_STS
* @return TCOx_STS registers
*/
static u32 reset_tco_status(void)
{
u32 tcobase = pmbase + 0x60;
u32 reg32;
reg32 = inl(tcobase + 0x04);
/* set status bits are cleared by writing 1 to them */
outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS
if (reg32 & (1 << 18))
outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS
return reg32;
}
static void dump_tco_status(u32 tco_sts)
{
printk_debug("TCO_STS: ");
if (tco_sts & (1 << 20)) printk_debug("SMLINK_SLV ");
if (tco_sts & (1 << 18)) printk_debug("BOOT ");
if (tco_sts & (1 << 17)) printk_debug("SECOND_TO ");
if (tco_sts & (1 << 16)) printk_debug("INTRD_DET ");
if (tco_sts & (1 << 12)) printk_debug("DMISERR ");
if (tco_sts & (1 << 10)) printk_debug("DMISMI ");
if (tco_sts & (1 << 9)) printk_debug("DMISCI ");
if (tco_sts & (1 << 8)) printk_debug("BIOSWR ");
if (tco_sts & (1 << 7)) printk_debug("NEWCENTURY ");
if (tco_sts & (1 << 3)) printk_debug("TIMEOUT ");
if (tco_sts & (1 << 2)) printk_debug("TCO_INT ");
if (tco_sts & (1 << 1)) printk_debug("SW_TCO ");
if (tco_sts & (1 << 0)) printk_debug("NMI2SMI ");
printk_debug("\n");
}
/* We are using PCIe accesses for now
* 1. the chipset can do it
* 2. we don't need to worry about how we leave 0xcf8/0xcfc behind
*/
#include "../../../northbridge/intel/i945/pcie_config.c"
int southbridge_io_trap_handler(int smif)
{
global_nvs_t *gnvs = (global_nvs_t *)0xc00;
switch (smif) {
case 0x32:
printk_debug("OS Init\n");
//gnvs->smif = 0;
break;
default:
/* Not handled */
return 0;
}
/* On success, the IO Trap Handler returns 0
* On failure, the IO Trap Handler returns a value != 0
*
* For now, we force the return value to 0 and log all traps to
* see what's going on.
*/
//gnvs->smif = 0;
return 1; /* IO trap handled */
}
/**
* @brief Set the EOS bit
*/
void southbridge_smi_set_eos(void)
{
u8 reg8;
reg8 = inb(pmbase + SMI_EN);
reg8 |= EOS;
outb(reg8, pmbase + SMI_EN);
}
/**
* @brief Interrupt handler for SMI#
*
* @param smm_revision revision of the smm state save map
*/
void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_save)
{
u8 reg8;
u16 pmctrl;
u16 pm1_sts;
u32 smi_sts, gpe0_sts, tco_sts;
pmbase = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0x40) & 0xfffc;
printk_spew("SMI#: pmbase = 0x%04x\n", pmbase);
/* We need to clear the SMI status registers, or we won't see what's
* happening in the following calls.
*/
smi_sts = reset_smi_status();
dump_smi_status(smi_sts);
if (smi_sts & (1 << 21)) { // MONITOR
global_nvs_t *gnvs = (global_nvs_t *)0xc00;
int i;
u32 reg32;
reg32 = RCBA32(0x1e00); // TRSR - Trap Status Register
#if 0
/* Comment in for some useful debug */
for (i=0; i<4; i++) {
if (reg32 & (1 << i)) {
printk_debug(" io trap #%d\n", i);
}
}
#endif
RCBA32(0x1e00) = reg32; // TRSR
reg32 = RCBA32(0x1e10);
if ((reg32 & 0xfffc) != 0x808) {
printk_debug(" trapped io address = 0x%x\n", reg32 & 0xfffc);
printk_debug(" AHBE = %x\n", (reg32 >> 16) & 0xf);
printk_debug(" read/write: %s\n", (reg32 & (1 << 24)) ? "read" :
"write");
}
if (!(reg32 & (1 << 24))) {
/* Write Cycle */
reg32 = RCBA32(0x1e18);
printk_debug(" iotrap written data = 0x%08x\n", reg32);
}
if (gnvs->smif)
io_trap_handler(gnvs->smif); // call function smif
}
if (smi_sts & (1 << 13)) { // TCO
tco_sts = reset_tco_status();
dump_tco_status(tco_sts);
if (tco_sts & (1 << 8)) { // BIOSWR
u8 bios_cntl;
bios_cntl = pcie_read_config16(PCI_DEV(0, 0x1f, 0), 0xdc);
if (bios_cntl & 1) {
/* BWE is RW, so the SMI was caused by a
* write to BWE, not by a write to the BIOS
*/
/* This is the place where we notice someone
* is trying to tinker with the BIOS. We are
* trying to be nice and just ignore it. A more
* resolute answer would be to power down the
* box.
*/
printk_debug("Switching back to RO\n");
pcie_write_config32(PCI_DEV(0, 0x1f, 0), 0xdc, (bios_cntl & ~1));
} /* No else for now? */
}
}
if (smi_sts & (1 << 8)) { // PM1
pm1_sts = reset_pm1_status();
dump_pm1_status(pm1_sts);
}
if (smi_sts & (1 << 9)) { // GPE0
gpe0_sts = reset_gpe0_status();
dump_gpe0_status(gpe0_sts);
}
if (smi_sts & (1 << 5)) { // APM
/* Emulate B2 register as the FADT / Linux expects it */
reg8 = inb(0xb2);
switch (reg8) {
case ACPI_DISABLE:
pmctrl = inw(pmbase + 0x04);
pmctrl |= (1 << 0);
outw(pmctrl, pmbase + 0x04);
printk_debug("SMI#: ACPI disabled.\n");
break;
case ACPI_ENABLE:
pmctrl = inw(pmbase + 0x04);
pmctrl &= ~(1 << 0);
outw(pmctrl, pmbase + 0x04);
printk_debug("SMI#: ACPI enabled.\n");
break;
}
}
if (smi_sts & (1 << 4)) { // SLP_SMI
u32 reg32;
/* First, disable further SMIs */
reg8 = inb(pmbase + SMI_EN);
reg8 &= ~SLP_SMI_EN;
outb(reg8, pmbase + SMI_EN);
/* Next, do the deed, we should change
* power on after power loss bits here
* if we're going to S5
*/
/* Write back to the SLP register to cause the
* originally intended event again. We need to set BIT13
* (SLP_EN) though to make the sleep happen.
*/
reg32 = inl(pmbase + 0x04);
printk_debug("SMI#: SLP = 0x%08x\n", reg32);
printk_debug("SMI#: Powering off.\n");
outl(reg32 | (1 << 13), pmbase + 0x04);
}
}