1471 lines
39 KiB
C
1471 lines
39 KiB
C
/*
|
|
* elf header parsing.
|
|
*
|
|
* Copyright (C) 2013 Google, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "elfparsing.h"
|
|
#include "common.h"
|
|
#include "cbfs.h"
|
|
|
|
/*
|
|
* Short form: this is complicated, but we've tried making it simple
|
|
* and we keep hitting problems with our ELF parsing.
|
|
*
|
|
* The ELF parsing situation has always been a bit tricky. In fact,
|
|
* we (and most others) have been getting it wrong in small ways for
|
|
* years. Recently this has caused real trouble for the ARM V8 build.
|
|
* In this file we attempt to finally get it right for all variations
|
|
* of endian-ness and word size and target architectures and
|
|
* architectures we might get run on. Phew!. To do this we borrow a
|
|
* page from the FreeBSD NFS xdr model (see elf_ehdr and elf_phdr),
|
|
* the Plan 9 endianness functions (see xdr.c), and Go interfaces (see
|
|
* how we use buffer structs in this file). This ends up being a bit
|
|
* wordy at the lowest level, but greatly simplifies the elf parsing
|
|
* code and removes a common source of bugs, namely, forgetting to
|
|
* flip type endianness when referencing a struct member.
|
|
*
|
|
* ELF files can have four combinations of data layout: 32/64, and
|
|
* big/little endian. Further, to add to the fun, depending on the
|
|
* word size, the size of the ELF structs varies. The coreboot SELF
|
|
* format is simpler in theory: it's supposed to be always BE, and the
|
|
* various struct members allow room for growth: the entry point is
|
|
* always 64 bits, for example, so the size of a SELF struct is
|
|
* constant, regardless of target architecture word size. Hence, we
|
|
* need to do some transformation of the ELF files.
|
|
*
|
|
* A given architecture, realistically, only supports one of the four
|
|
* combinations at a time as the 'native' format. Hence, our code has
|
|
* been sprinkled with every variation of [nh]to[hn][sll] over the
|
|
* years. We've never quite gotten it all right, however, and a quick
|
|
* pass over this code revealed another bug. It's all worked because,
|
|
* until now, all the working platforms that had CBFS were 32 LE. Even then,
|
|
* however, bugs crept in: we recently realized that we're not
|
|
* transforming the entry point to big format when we store into the
|
|
* SELF image.
|
|
*
|
|
* The problem is essentially an XDR operation:
|
|
* we have something in a foreign format and need to transform it.
|
|
* It's most like XDR because:
|
|
* 1) the byte order can be wrong
|
|
* 2) the word size can be wrong
|
|
* 3) the size of elements in the stream depends on the value
|
|
* of other elements in the stream
|
|
* it's not like XDR because:
|
|
* 1) the byte order can be right
|
|
* 2) the word size can be right
|
|
* 3) the struct members are all on a natural alignment
|
|
*
|
|
* Hence, this new approach. To cover word size issues, we *always*
|
|
* transform the two structs we care about, the file header and
|
|
* program header, into a native struct in the 64 bit format:
|
|
*
|
|
* [32,little] -> [Elf64_Ehdr, Elf64_Phdr]
|
|
* [64,little] -> [Elf64_Ehdr, Elf64_Phdr]
|
|
* [32,big] -> [Elf64_Ehdr, Elf64_Phdr]
|
|
* [64,big] -> [Elf64_Ehdr, Elf64_Phdr]
|
|
* Then we just use those structs, and all the need for inline ntoh* goes away,
|
|
* as well as all the chances for error.
|
|
* This works because all the SELF structs have fields large enough for
|
|
* the largest ELF 64 struct members, and all the Elf64 struct members
|
|
* are at least large enough for all ELF 32 struct members.
|
|
* We end up with one function to do all our ELF parsing, and two functions
|
|
* to transform the headers. For the put case, we also have
|
|
* XDR functions, and hopefully we'll never again spend 5 years with the
|
|
* wrong endian-ness on an output value :-)
|
|
* This should work for all word sizes and endianness we hope to target.
|
|
* I *really* don't want to be here for 128 bit addresses.
|
|
*
|
|
* The parse functions are called with a pointer to an input buffer
|
|
* struct. One might ask: are there enough bytes in the input buffer?
|
|
* We know there need to be at *least* sizeof(Elf32_Ehdr) +
|
|
* sizeof(Elf32_Phdr) bytes. Realistically, there has to be some data
|
|
* too. If we start to worry, though we have not in the past, we
|
|
* might apply the simple test: the input buffer needs to be at least
|
|
* sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) bytes because, even if it's
|
|
* ELF 32, there's got to be *some* data! This is not theoretically
|
|
* accurate but it is actually good enough in practice. It allows the
|
|
* header transformation code to ignore the possibility of underrun.
|
|
*
|
|
* We also must accommodate different ELF files, and hence formats,
|
|
* in the same cbfs invocation. We might load a 64-bit payload
|
|
* on a 32-bit machine; we might even have a mixed armv7/armv8
|
|
* SOC or even a system with an x86/ARM!
|
|
*
|
|
* A possibly problematic (though unlikely to be so) assumption
|
|
* is that we expect the BIOS to remain in the lowest 32 bits
|
|
* of the physical address space. Since ARMV8 has standardized
|
|
* on that, and x86_64 also has, this seems a safe assumption.
|
|
*
|
|
* To repeat, ELF structs are different sizes because ELF struct
|
|
* members are different sizes, depending on values in the ELF file
|
|
* header. For this we use the functions defined in xdr.c, which
|
|
* consume bytes, convert the endianness, and advance the data pointer
|
|
* in the buffer struct.
|
|
*/
|
|
|
|
|
|
static int iself(const void *input)
|
|
{
|
|
const Elf32_Ehdr *ehdr = input;
|
|
return !memcmp(ehdr->e_ident, ELFMAG, 4);
|
|
}
|
|
|
|
/* Get the ident array, so we can figure out
|
|
* endian-ness, word size, and in future other useful
|
|
* parameters
|
|
*/
|
|
static void
|
|
elf_eident(struct buffer *input, Elf64_Ehdr *ehdr)
|
|
{
|
|
bgets(input, ehdr->e_ident, sizeof(ehdr->e_ident));
|
|
}
|
|
|
|
|
|
static int
|
|
check_size(const struct buffer *b, size_t offset, size_t size, const char *desc)
|
|
{
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
if (offset >= buffer_size(b) || (offset + size) > buffer_size(b)) {
|
|
ERROR("The file is not large enough for the '%s'. "
|
|
"%zu bytes @ offset %zu, input %zu bytes.\n",
|
|
desc, size, offset, buffer_size(b));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
elf_ehdr(struct buffer *input, Elf64_Ehdr *ehdr, struct xdr *xdr, int bit64)
|
|
{
|
|
ehdr->e_type = xdr->get16(input);
|
|
ehdr->e_machine = xdr->get16(input);
|
|
ehdr->e_version = xdr->get32(input);
|
|
if (bit64){
|
|
ehdr->e_entry = xdr->get64(input);
|
|
ehdr->e_phoff = xdr->get64(input);
|
|
ehdr->e_shoff = xdr->get64(input);
|
|
} else {
|
|
ehdr->e_entry = xdr->get32(input);
|
|
ehdr->e_phoff = xdr->get32(input);
|
|
ehdr->e_shoff = xdr->get32(input);
|
|
}
|
|
ehdr->e_flags = xdr->get32(input);
|
|
ehdr->e_ehsize = xdr->get16(input);
|
|
ehdr->e_phentsize = xdr->get16(input);
|
|
ehdr->e_phnum = xdr->get16(input);
|
|
ehdr->e_shentsize = xdr->get16(input);
|
|
ehdr->e_shnum = xdr->get16(input);
|
|
ehdr->e_shstrndx = xdr->get16(input);
|
|
}
|
|
|
|
static void
|
|
elf_phdr(struct buffer *pinput, Elf64_Phdr *phdr,
|
|
int entsize, struct xdr *xdr, int bit64)
|
|
{
|
|
/*
|
|
* The entsize need not be sizeof(*phdr).
|
|
* Hence, it is easier to keep a copy of the input,
|
|
* as the xdr functions may not advance the input
|
|
* pointer the full entsize; rather than get tricky
|
|
* we just advance it below.
|
|
*/
|
|
struct buffer input;
|
|
buffer_clone(&input, pinput);
|
|
if (bit64){
|
|
phdr->p_type = xdr->get32(&input);
|
|
phdr->p_flags = xdr->get32(&input);
|
|
phdr->p_offset = xdr->get64(&input);
|
|
phdr->p_vaddr = xdr->get64(&input);
|
|
phdr->p_paddr = xdr->get64(&input);
|
|
phdr->p_filesz = xdr->get64(&input);
|
|
phdr->p_memsz = xdr->get64(&input);
|
|
phdr->p_align = xdr->get64(&input);
|
|
} else {
|
|
phdr->p_type = xdr->get32(&input);
|
|
phdr->p_offset = xdr->get32(&input);
|
|
phdr->p_vaddr = xdr->get32(&input);
|
|
phdr->p_paddr = xdr->get32(&input);
|
|
phdr->p_filesz = xdr->get32(&input);
|
|
phdr->p_memsz = xdr->get32(&input);
|
|
phdr->p_flags = xdr->get32(&input);
|
|
phdr->p_align = xdr->get32(&input);
|
|
}
|
|
buffer_seek(pinput, entsize);
|
|
}
|
|
|
|
static void
|
|
elf_shdr(struct buffer *pinput, Elf64_Shdr *shdr,
|
|
int entsize, struct xdr *xdr, int bit64)
|
|
{
|
|
/*
|
|
* The entsize need not be sizeof(*shdr).
|
|
* Hence, it is easier to keep a copy of the input,
|
|
* as the xdr functions may not advance the input
|
|
* pointer the full entsize; rather than get tricky
|
|
* we just advance it below.
|
|
*/
|
|
struct buffer input = *pinput;
|
|
if (bit64){
|
|
shdr->sh_name = xdr->get32(&input);
|
|
shdr->sh_type = xdr->get32(&input);
|
|
shdr->sh_flags = xdr->get64(&input);
|
|
shdr->sh_addr = xdr->get64(&input);
|
|
shdr->sh_offset = xdr->get64(&input);
|
|
shdr->sh_size= xdr->get64(&input);
|
|
shdr->sh_link = xdr->get32(&input);
|
|
shdr->sh_info = xdr->get32(&input);
|
|
shdr->sh_addralign = xdr->get64(&input);
|
|
shdr->sh_entsize = xdr->get64(&input);
|
|
} else {
|
|
shdr->sh_name = xdr->get32(&input);
|
|
shdr->sh_type = xdr->get32(&input);
|
|
shdr->sh_flags = xdr->get32(&input);
|
|
shdr->sh_addr = xdr->get32(&input);
|
|
shdr->sh_offset = xdr->get32(&input);
|
|
shdr->sh_size = xdr->get32(&input);
|
|
shdr->sh_link = xdr->get32(&input);
|
|
shdr->sh_info = xdr->get32(&input);
|
|
shdr->sh_addralign = xdr->get32(&input);
|
|
shdr->sh_entsize = xdr->get32(&input);
|
|
}
|
|
buffer_seek(pinput, entsize);
|
|
}
|
|
|
|
static int
|
|
phdr_read(const struct buffer *in, struct parsed_elf *pelf,
|
|
struct xdr *xdr, int bit64)
|
|
{
|
|
struct buffer b;
|
|
Elf64_Phdr *phdr;
|
|
Elf64_Ehdr *ehdr;
|
|
int i;
|
|
|
|
ehdr = &pelf->ehdr;
|
|
/* cons up an input buffer for the headers.
|
|
* Note that the program headers can be anywhere,
|
|
* per the ELF spec, You'd be surprised how many ELF
|
|
* readers miss this little detail.
|
|
*/
|
|
buffer_splice(&b, in, ehdr->e_phoff,
|
|
(uint32_t)ehdr->e_phentsize * ehdr->e_phnum);
|
|
if (check_size(in, ehdr->e_phoff, buffer_size(&b), "program headers"))
|
|
return -1;
|
|
|
|
/* gather up all the phdrs.
|
|
* We do them all at once because there is more
|
|
* than one loop over all the phdrs.
|
|
*/
|
|
phdr = calloc(ehdr->e_phnum, sizeof(*phdr));
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
DEBUG("Parsing segment %d\n", i);
|
|
elf_phdr(&b, &phdr[i], ehdr->e_phentsize, xdr, bit64);
|
|
|
|
/* Ensure the contents are valid within the elf file. */
|
|
if (check_size(in, phdr[i].p_offset, phdr[i].p_filesz,
|
|
"segment contents")) {
|
|
free(phdr);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
pelf->phdr = phdr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
shdr_read(const struct buffer *in, struct parsed_elf *pelf,
|
|
struct xdr *xdr, int bit64)
|
|
{
|
|
struct buffer b;
|
|
Elf64_Shdr *shdr;
|
|
Elf64_Ehdr *ehdr;
|
|
int i;
|
|
|
|
ehdr = &pelf->ehdr;
|
|
|
|
/* cons up an input buffer for the section headers.
|
|
* Note that the section headers can be anywhere,
|
|
* per the ELF spec, You'd be surprised how many ELF
|
|
* readers miss this little detail.
|
|
*/
|
|
buffer_splice(&b, in, ehdr->e_shoff,
|
|
(uint32_t)ehdr->e_shentsize * ehdr->e_shnum);
|
|
if (check_size(in, ehdr->e_shoff, buffer_size(&b), "section headers"))
|
|
return -1;
|
|
|
|
/* gather up all the shdrs. */
|
|
shdr = calloc(ehdr->e_shnum, sizeof(*shdr));
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
DEBUG("Parsing section %d\n", i);
|
|
elf_shdr(&b, &shdr[i], ehdr->e_shentsize, xdr, bit64);
|
|
}
|
|
|
|
pelf->shdr = shdr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
reloc_read(const struct buffer *in, struct parsed_elf *pelf,
|
|
struct xdr *xdr, int bit64)
|
|
{
|
|
struct buffer b;
|
|
Elf64_Word i;
|
|
Elf64_Ehdr *ehdr;
|
|
|
|
ehdr = &pelf->ehdr;
|
|
pelf->relocs = calloc(ehdr->e_shnum, sizeof(Elf64_Rela *));
|
|
|
|
/* Allocate array for each section that contains relocation entries. */
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
Elf64_Shdr *shdr;
|
|
Elf64_Rela *rela;
|
|
Elf64_Xword j;
|
|
Elf64_Xword nrelocs;
|
|
int is_rela;
|
|
|
|
shdr = &pelf->shdr[i];
|
|
|
|
/* Only process REL and RELA sections. */
|
|
if (shdr->sh_type != SHT_REL && shdr->sh_type != SHT_RELA)
|
|
continue;
|
|
|
|
DEBUG("Checking relocation section %u\n", i);
|
|
|
|
/* Ensure the section that relocations apply is a valid. */
|
|
if (shdr->sh_info >= ehdr->e_shnum ||
|
|
shdr->sh_info == SHN_UNDEF) {
|
|
ERROR("Relocations apply to an invalid section: %u\n",
|
|
shdr[i].sh_info);
|
|
return -1;
|
|
}
|
|
|
|
is_rela = shdr->sh_type == SHT_RELA;
|
|
|
|
/* Determine the number relocations in this section. */
|
|
nrelocs = shdr->sh_size / shdr->sh_entsize;
|
|
|
|
pelf->relocs[i] = calloc(nrelocs, sizeof(Elf64_Rela));
|
|
|
|
buffer_splice(&b, in, shdr->sh_offset, shdr->sh_size);
|
|
if (check_size(in, shdr->sh_offset, buffer_size(&b),
|
|
"relocation section")) {
|
|
ERROR("Relocation section %u failed.\n", i);
|
|
return -1;
|
|
}
|
|
|
|
rela = pelf->relocs[i];
|
|
for (j = 0; j < nrelocs; j++) {
|
|
if (bit64) {
|
|
rela->r_offset = xdr->get64(&b);
|
|
rela->r_info = xdr->get64(&b);
|
|
if (is_rela)
|
|
rela->r_addend = xdr->get64(&b);
|
|
} else {
|
|
uint32_t r_info;
|
|
|
|
rela->r_offset = xdr->get32(&b);
|
|
r_info = xdr->get32(&b);
|
|
rela->r_info = ELF64_R_INFO(ELF32_R_SYM(r_info),
|
|
ELF32_R_TYPE(r_info));
|
|
if (is_rela)
|
|
rela->r_addend = xdr->get32(&b);
|
|
}
|
|
rela++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int strtab_read(const struct buffer *in, struct parsed_elf *pelf)
|
|
{
|
|
Elf64_Ehdr *ehdr;
|
|
Elf64_Word i;
|
|
|
|
ehdr = &pelf->ehdr;
|
|
|
|
if (ehdr->e_shstrndx >= ehdr->e_shnum) {
|
|
ERROR("Section header string table index out of range: %d\n",
|
|
ehdr->e_shstrndx);
|
|
return -1;
|
|
}
|
|
|
|
/* For each section of type SHT_STRTAB create a symtab buffer. */
|
|
pelf->strtabs = calloc(ehdr->e_shnum, sizeof(struct buffer *));
|
|
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
struct buffer *b;
|
|
Elf64_Shdr *shdr = &pelf->shdr[i];
|
|
|
|
if (shdr->sh_type != SHT_STRTAB)
|
|
continue;
|
|
|
|
b = calloc(1, sizeof(*b));
|
|
buffer_splice(b, in, shdr->sh_offset, shdr->sh_size);
|
|
if (check_size(in, shdr->sh_offset, buffer_size(b), "strtab")) {
|
|
ERROR("STRTAB section not within bounds: %d\n", i);
|
|
free(b);
|
|
return -1;
|
|
}
|
|
pelf->strtabs[i] = b;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
symtab_read(const struct buffer *in, struct parsed_elf *pelf,
|
|
struct xdr *xdr, int bit64)
|
|
{
|
|
Elf64_Ehdr *ehdr;
|
|
Elf64_Shdr *shdr;
|
|
Elf64_Half shnum;
|
|
Elf64_Xword i;
|
|
Elf64_Xword nsyms;
|
|
Elf64_Sym *sym;
|
|
struct buffer b;
|
|
|
|
ehdr = &pelf->ehdr;
|
|
|
|
shdr = NULL;
|
|
for (shnum = 0; shnum < ehdr->e_shnum; shnum++) {
|
|
if (pelf->shdr[shnum].sh_type != SHT_SYMTAB)
|
|
continue;
|
|
|
|
if (shdr != NULL) {
|
|
ERROR("Multiple symbol sections found. %u and %u\n",
|
|
(unsigned int)(shdr - pelf->shdr), shnum);
|
|
return -1;
|
|
}
|
|
|
|
shdr = &pelf->shdr[shnum];
|
|
}
|
|
|
|
if (shdr == NULL) {
|
|
ERROR("No symbol table found.\n");
|
|
return -1;
|
|
}
|
|
|
|
buffer_splice(&b, in, shdr->sh_offset, shdr->sh_size);
|
|
if (check_size(in, shdr->sh_offset, buffer_size(&b), "symtab"))
|
|
return -1;
|
|
|
|
nsyms = shdr->sh_size / shdr->sh_entsize;
|
|
|
|
pelf->syms = calloc(nsyms, sizeof(Elf64_Sym));
|
|
|
|
for (i = 0; i < nsyms; i++) {
|
|
sym = &pelf->syms[i];
|
|
|
|
if (bit64) {
|
|
sym->st_name = xdr->get32(&b);
|
|
sym->st_info = xdr->get8(&b);
|
|
sym->st_other = xdr->get8(&b);
|
|
sym->st_shndx = xdr->get16(&b);
|
|
sym->st_value = xdr->get64(&b);
|
|
sym->st_size = xdr->get64(&b);
|
|
} else {
|
|
sym->st_name = xdr->get32(&b);
|
|
sym->st_value = xdr->get32(&b);
|
|
sym->st_size = xdr->get32(&b);
|
|
sym->st_info = xdr->get8(&b);
|
|
sym->st_other = xdr->get8(&b);
|
|
sym->st_shndx = xdr->get16(&b);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int parse_elf(const struct buffer *pinput, struct parsed_elf *pelf, int flags)
|
|
{
|
|
struct xdr *xdr = &xdr_le;
|
|
int bit64 = 0;
|
|
struct buffer input;
|
|
Elf64_Ehdr *ehdr;
|
|
|
|
/* Zero out the parsed elf structure. */
|
|
memset(pelf, 0, sizeof(*pelf));
|
|
|
|
if (!iself(buffer_get(pinput))) {
|
|
DEBUG("The stage file is not in ELF format!\n");
|
|
return -1;
|
|
}
|
|
|
|
buffer_clone(&input, pinput);
|
|
ehdr = &pelf->ehdr;
|
|
elf_eident(&input, ehdr);
|
|
bit64 = ehdr->e_ident[EI_CLASS] == ELFCLASS64;
|
|
/* Assume LE unless we are sure otherwise.
|
|
* We're not going to take on the task of
|
|
* fully validating the ELF file. That way
|
|
* lies madness.
|
|
*/
|
|
if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
|
|
xdr = &xdr_be;
|
|
|
|
elf_ehdr(&input, ehdr, xdr, bit64);
|
|
|
|
/* Relocation processing requires section header parsing. */
|
|
if (flags & ELF_PARSE_RELOC)
|
|
flags |= ELF_PARSE_SHDR;
|
|
|
|
/* String table processing requires section header parsing. */
|
|
if (flags & ELF_PARSE_STRTAB)
|
|
flags |= ELF_PARSE_SHDR;
|
|
|
|
/* Symbole table processing requires section header parsing. */
|
|
if (flags & ELF_PARSE_SYMTAB)
|
|
flags |= ELF_PARSE_SHDR;
|
|
|
|
if ((flags & ELF_PARSE_PHDR) && phdr_read(pinput, pelf, xdr, bit64))
|
|
goto fail;
|
|
|
|
if ((flags & ELF_PARSE_SHDR) && shdr_read(pinput, pelf, xdr, bit64))
|
|
goto fail;
|
|
|
|
if ((flags & ELF_PARSE_RELOC) && reloc_read(pinput, pelf, xdr, bit64))
|
|
goto fail;
|
|
|
|
if ((flags & ELF_PARSE_STRTAB) && strtab_read(pinput, pelf))
|
|
goto fail;
|
|
|
|
if ((flags & ELF_PARSE_SYMTAB) && symtab_read(pinput, pelf, xdr, bit64))
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
parsed_elf_destroy(pelf);
|
|
return -1;
|
|
}
|
|
|
|
void parsed_elf_destroy(struct parsed_elf *pelf)
|
|
{
|
|
Elf64_Half i;
|
|
|
|
free(pelf->phdr);
|
|
free(pelf->shdr);
|
|
if (pelf->relocs != NULL) {
|
|
for (i = 0; i < pelf->ehdr.e_shnum; i++)
|
|
free(pelf->relocs[i]);
|
|
}
|
|
free(pelf->relocs);
|
|
|
|
if (pelf->strtabs != NULL) {
|
|
for (i = 0; i < pelf->ehdr.e_shnum; i++)
|
|
free(pelf->strtabs[i]);
|
|
}
|
|
free(pelf->strtabs);
|
|
free(pelf->syms);
|
|
}
|
|
|
|
/* Get the headers from the buffer.
|
|
* Return -1 in the event of an error.
|
|
* The section headers are optional; if NULL
|
|
* is passed in for pshdr they won't be parsed.
|
|
* We don't (yet) make payload parsing optional
|
|
* because we've never seen a use case.
|
|
*/
|
|
int
|
|
elf_headers(const struct buffer *pinput,
|
|
Elf64_Ehdr *ehdr,
|
|
Elf64_Phdr **pphdr,
|
|
Elf64_Shdr **pshdr)
|
|
{
|
|
struct parsed_elf pelf;
|
|
int flags;
|
|
|
|
flags = ELF_PARSE_PHDR;
|
|
|
|
if (pshdr != NULL)
|
|
flags |= ELF_PARSE_SHDR;
|
|
|
|
if (parse_elf(pinput, &pelf, flags))
|
|
return -1;
|
|
|
|
/* Copy out the parsed elf header. */
|
|
memcpy(ehdr, &pelf.ehdr, sizeof(*ehdr));
|
|
|
|
*pphdr = calloc(ehdr->e_phnum, sizeof(Elf64_Phdr));
|
|
memcpy(*pphdr, pelf.phdr, ehdr->e_phnum * sizeof(Elf64_Phdr));
|
|
|
|
if (pshdr != NULL) {
|
|
*pshdr = calloc(ehdr->e_shnum, sizeof(Elf64_Shdr));
|
|
memcpy(*pshdr, pelf.shdr, ehdr->e_shnum * sizeof(Elf64_Shdr));
|
|
}
|
|
|
|
parsed_elf_destroy(&pelf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ELF Writing Support
|
|
*
|
|
* The ELF file is written according to the following layout:
|
|
* +------------------+
|
|
* | ELF Header |
|
|
* +------------------+
|
|
* | Section Headers |
|
|
* +------------------+
|
|
* | Program Headers |
|
|
* +------------------+
|
|
* | String table |
|
|
* +------------------+ <- 4KiB Aligned
|
|
* | Code/Data |
|
|
* +------------------+
|
|
*/
|
|
|
|
void elf_init_eheader(Elf64_Ehdr *ehdr, int machine, int nbits, int endian)
|
|
{
|
|
memset(ehdr, 0, sizeof(*ehdr));
|
|
ehdr->e_ident[EI_MAG0] = ELFMAG0;
|
|
ehdr->e_ident[EI_MAG1] = ELFMAG1;
|
|
ehdr->e_ident[EI_MAG2] = ELFMAG2;
|
|
ehdr->e_ident[EI_MAG3] = ELFMAG3;
|
|
ehdr->e_ident[EI_CLASS] = nbits;
|
|
ehdr->e_ident[EI_DATA] = endian;
|
|
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
ehdr->e_type = ET_EXEC;
|
|
ehdr->e_machine = machine;
|
|
ehdr->e_version = EV_CURRENT;
|
|
if (nbits == ELFCLASS64) {
|
|
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
|
|
ehdr->e_phentsize = sizeof(Elf64_Phdr);
|
|
ehdr->e_shentsize = sizeof(Elf64_Shdr);
|
|
} else {
|
|
ehdr->e_ehsize = sizeof(Elf32_Ehdr);
|
|
ehdr->e_phentsize = sizeof(Elf32_Phdr);
|
|
ehdr->e_shentsize = sizeof(Elf32_Shdr);
|
|
}
|
|
}
|
|
|
|
/* Arbitrary maximum number of sections. */
|
|
#define MAX_SECTIONS 16
|
|
struct elf_writer_section {
|
|
Elf64_Shdr shdr;
|
|
struct buffer content;
|
|
const char *name;
|
|
};
|
|
|
|
struct elf_writer_string_table {
|
|
size_t next_offset;
|
|
size_t max_size;
|
|
char *buffer;
|
|
};
|
|
|
|
struct elf_writer_sym_table {
|
|
size_t max_entries;
|
|
size_t num_entries;
|
|
Elf64_Sym *syms;
|
|
};
|
|
|
|
#define MAX_REL_NAME 32
|
|
struct elf_writer_rel {
|
|
size_t num_entries;
|
|
size_t max_entries;
|
|
Elf64_Rel *rels;
|
|
struct elf_writer_section *sec;
|
|
char name[MAX_REL_NAME];
|
|
};
|
|
|
|
struct elf_writer
|
|
{
|
|
Elf64_Ehdr ehdr;
|
|
struct xdr *xdr;
|
|
size_t num_secs;
|
|
struct elf_writer_section sections[MAX_SECTIONS];
|
|
struct elf_writer_rel rel_sections[MAX_SECTIONS];
|
|
Elf64_Phdr *phdrs;
|
|
struct elf_writer_section *shstrtab_sec;
|
|
struct elf_writer_section *strtab_sec;
|
|
struct elf_writer_section *symtab_sec;
|
|
struct elf_writer_string_table strtab;
|
|
struct elf_writer_sym_table symtab;
|
|
int bit64;
|
|
};
|
|
|
|
static size_t section_index(struct elf_writer *ew,
|
|
struct elf_writer_section *sec)
|
|
{
|
|
return sec - &ew->sections[0];
|
|
}
|
|
|
|
static struct elf_writer_section *last_section(struct elf_writer *ew)
|
|
{
|
|
return &ew->sections[ew->num_secs - 1];
|
|
}
|
|
|
|
static void strtab_init(struct elf_writer *ew, size_t size)
|
|
{
|
|
struct buffer b;
|
|
Elf64_Shdr shdr;
|
|
|
|
/* Start adding strings after the initial NUL entry. */
|
|
ew->strtab.next_offset = 1;
|
|
ew->strtab.max_size = size;
|
|
ew->strtab.buffer = calloc(1, ew->strtab.max_size);
|
|
|
|
buffer_init(&b, NULL, ew->strtab.buffer, ew->strtab.max_size);
|
|
memset(&shdr, 0, sizeof(shdr));
|
|
shdr.sh_type = SHT_STRTAB;
|
|
shdr.sh_addralign = 1;
|
|
shdr.sh_size = ew->strtab.max_size;
|
|
elf_writer_add_section(ew, &shdr, &b, ".strtab");
|
|
ew->strtab_sec = last_section(ew);
|
|
}
|
|
|
|
static void symtab_init(struct elf_writer *ew, size_t max_entries)
|
|
{
|
|
struct buffer b;
|
|
Elf64_Shdr shdr;
|
|
|
|
memset(&shdr, 0, sizeof(shdr));
|
|
shdr.sh_type = SHT_SYMTAB;
|
|
|
|
if (ew->bit64) {
|
|
shdr.sh_entsize = sizeof(Elf64_Sym);
|
|
shdr.sh_addralign = sizeof(Elf64_Addr);
|
|
} else {
|
|
shdr.sh_entsize = sizeof(Elf32_Sym);
|
|
shdr.sh_addralign = sizeof(Elf32_Addr);
|
|
}
|
|
|
|
shdr.sh_size = shdr.sh_entsize * max_entries;
|
|
|
|
ew->symtab.syms = calloc(max_entries, sizeof(Elf64_Sym));
|
|
ew->symtab.num_entries = 1;
|
|
ew->symtab.max_entries = max_entries;
|
|
|
|
buffer_init(&b, NULL, ew->symtab.syms, shdr.sh_size);
|
|
|
|
elf_writer_add_section(ew, &shdr, &b, ".symtab");
|
|
ew->symtab_sec = last_section(ew);
|
|
}
|
|
|
|
struct elf_writer *elf_writer_init(const Elf64_Ehdr *ehdr)
|
|
{
|
|
struct elf_writer *ew;
|
|
Elf64_Shdr shdr;
|
|
struct buffer empty_buffer;
|
|
|
|
if (!iself(ehdr))
|
|
return NULL;
|
|
|
|
ew = calloc(1, sizeof(*ew));
|
|
|
|
memcpy(&ew->ehdr, ehdr, sizeof(ew->ehdr));
|
|
|
|
ew->bit64 = ew->ehdr.e_ident[EI_CLASS] == ELFCLASS64;
|
|
|
|
/* Set the endinan ops. */
|
|
if (ew->ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
|
|
ew->xdr = &xdr_be;
|
|
else
|
|
ew->xdr = &xdr_le;
|
|
|
|
/* Reset count and offsets */
|
|
ew->ehdr.e_phoff = 0;
|
|
ew->ehdr.e_shoff = 0;
|
|
ew->ehdr.e_shnum = 0;
|
|
ew->ehdr.e_phnum = 0;
|
|
|
|
memset(&empty_buffer, 0, sizeof(empty_buffer));
|
|
memset(&shdr, 0, sizeof(shdr));
|
|
|
|
/* Add SHT_NULL section header. */
|
|
shdr.sh_type = SHT_NULL;
|
|
elf_writer_add_section(ew, &shdr, &empty_buffer, NULL);
|
|
|
|
/* Add section header string table and maintain reference to it. */
|
|
shdr.sh_type = SHT_STRTAB;
|
|
elf_writer_add_section(ew, &shdr, &empty_buffer, ".shstrtab");
|
|
ew->shstrtab_sec = last_section(ew);
|
|
ew->ehdr.e_shstrndx = section_index(ew, ew->shstrtab_sec);
|
|
|
|
/* Add a small string table and symbol table. */
|
|
strtab_init(ew, 4096);
|
|
symtab_init(ew, 100);
|
|
|
|
return ew;
|
|
}
|
|
|
|
/*
|
|
* Clean up any internal state represented by ew. Aftewards the elf_writer
|
|
* is invalid.
|
|
* It is safe to call elf_writer_destroy with ew as NULL. It returns without
|
|
* performing any action.
|
|
*/
|
|
void elf_writer_destroy(struct elf_writer *ew)
|
|
{
|
|
int i;
|
|
if (ew == NULL)
|
|
return;
|
|
if (ew->phdrs != NULL)
|
|
free(ew->phdrs);
|
|
free(ew->strtab.buffer);
|
|
free(ew->symtab.syms);
|
|
for (i = 0; i < MAX_SECTIONS; i++)
|
|
free(ew->rel_sections[i].rels);
|
|
free(ew);
|
|
}
|
|
|
|
/*
|
|
* Add a section to the ELF file. Section type, flags, and memsize are
|
|
* maintained from the passed in Elf64_Shdr. The buffer represents the
|
|
* content of the section while the name is the name of section itself.
|
|
* Returns < 0 on error, 0 on success.
|
|
*/
|
|
int elf_writer_add_section(struct elf_writer *ew, const Elf64_Shdr *shdr,
|
|
struct buffer *contents, const char *name)
|
|
{
|
|
struct elf_writer_section *newsh;
|
|
|
|
if (ew->num_secs == MAX_SECTIONS)
|
|
return -1;
|
|
|
|
newsh = &ew->sections[ew->num_secs];
|
|
ew->num_secs++;
|
|
|
|
memcpy(&newsh->shdr, shdr, sizeof(newsh->shdr));
|
|
newsh->shdr.sh_offset = 0;
|
|
|
|
newsh->name = name;
|
|
if (contents != NULL)
|
|
buffer_clone(&newsh->content, contents);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ehdr_write(struct elf_writer *ew, struct buffer *m)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < EI_NIDENT; i++)
|
|
ew->xdr->put8(m, ew->ehdr.e_ident[i]);
|
|
ew->xdr->put16(m, ew->ehdr.e_type);
|
|
ew->xdr->put16(m, ew->ehdr.e_machine);
|
|
ew->xdr->put32(m, ew->ehdr.e_version);
|
|
if (ew->bit64) {
|
|
ew->xdr->put64(m, ew->ehdr.e_entry);
|
|
ew->xdr->put64(m, ew->ehdr.e_phoff);
|
|
ew->xdr->put64(m, ew->ehdr.e_shoff);
|
|
} else {
|
|
ew->xdr->put32(m, ew->ehdr.e_entry);
|
|
ew->xdr->put32(m, ew->ehdr.e_phoff);
|
|
ew->xdr->put32(m, ew->ehdr.e_shoff);
|
|
}
|
|
ew->xdr->put32(m, ew->ehdr.e_flags);
|
|
ew->xdr->put16(m, ew->ehdr.e_ehsize);
|
|
ew->xdr->put16(m, ew->ehdr.e_phentsize);
|
|
ew->xdr->put16(m, ew->ehdr.e_phnum);
|
|
ew->xdr->put16(m, ew->ehdr.e_shentsize);
|
|
ew->xdr->put16(m, ew->ehdr.e_shnum);
|
|
ew->xdr->put16(m, ew->ehdr.e_shstrndx);
|
|
}
|
|
|
|
static void shdr_write(struct elf_writer *ew, size_t n, struct buffer *m)
|
|
{
|
|
struct xdr *xdr = ew->xdr;
|
|
int bit64 = ew->bit64;
|
|
struct elf_writer_section *sec = &ew->sections[n];
|
|
Elf64_Shdr *shdr = &sec->shdr;
|
|
|
|
xdr->put32(m, shdr->sh_name);
|
|
xdr->put32(m, shdr->sh_type);
|
|
if (bit64) {
|
|
xdr->put64(m, shdr->sh_flags);
|
|
xdr->put64(m, shdr->sh_addr);
|
|
xdr->put64(m, shdr->sh_offset);
|
|
xdr->put64(m, shdr->sh_size);
|
|
xdr->put32(m, shdr->sh_link);
|
|
xdr->put32(m, shdr->sh_info);
|
|
xdr->put64(m, shdr->sh_addralign);
|
|
xdr->put64(m, shdr->sh_entsize);
|
|
} else {
|
|
xdr->put32(m, shdr->sh_flags);
|
|
xdr->put32(m, shdr->sh_addr);
|
|
xdr->put32(m, shdr->sh_offset);
|
|
xdr->put32(m, shdr->sh_size);
|
|
xdr->put32(m, shdr->sh_link);
|
|
xdr->put32(m, shdr->sh_info);
|
|
xdr->put32(m, shdr->sh_addralign);
|
|
xdr->put32(m, shdr->sh_entsize);
|
|
}
|
|
}
|
|
|
|
static void
|
|
phdr_write(struct elf_writer *ew, struct buffer *m, Elf64_Phdr *phdr)
|
|
{
|
|
if (ew->bit64) {
|
|
ew->xdr->put32(m, phdr->p_type);
|
|
ew->xdr->put32(m, phdr->p_flags);
|
|
ew->xdr->put64(m, phdr->p_offset);
|
|
ew->xdr->put64(m, phdr->p_vaddr);
|
|
ew->xdr->put64(m, phdr->p_paddr);
|
|
ew->xdr->put64(m, phdr->p_filesz);
|
|
ew->xdr->put64(m, phdr->p_memsz);
|
|
ew->xdr->put64(m, phdr->p_align);
|
|
} else {
|
|
ew->xdr->put32(m, phdr->p_type);
|
|
ew->xdr->put32(m, phdr->p_offset);
|
|
ew->xdr->put32(m, phdr->p_vaddr);
|
|
ew->xdr->put32(m, phdr->p_paddr);
|
|
ew->xdr->put32(m, phdr->p_filesz);
|
|
ew->xdr->put32(m, phdr->p_memsz);
|
|
ew->xdr->put32(m, phdr->p_flags);
|
|
ew->xdr->put32(m, phdr->p_align);
|
|
}
|
|
|
|
}
|
|
|
|
static int section_consecutive(struct elf_writer *ew, Elf64_Half secidx)
|
|
{
|
|
Elf64_Half i;
|
|
struct elf_writer_section *prev_alloc = NULL;
|
|
|
|
if (secidx == 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < secidx; i++) {
|
|
if (ew->sections[i].shdr.sh_flags & SHF_ALLOC)
|
|
prev_alloc = &ew->sections[i];
|
|
}
|
|
|
|
if (prev_alloc == NULL)
|
|
return 0;
|
|
|
|
if (prev_alloc->shdr.sh_addr + prev_alloc->shdr.sh_size ==
|
|
ew->sections[secidx].shdr.sh_addr)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void write_phdrs(struct elf_writer *ew, struct buffer *phdrs)
|
|
{
|
|
Elf64_Half i;
|
|
Elf64_Phdr phdr;
|
|
size_t num_written = 0;
|
|
size_t num_needs_write = 0;
|
|
|
|
for (i = 0; i < ew->num_secs; i++) {
|
|
struct elf_writer_section *sec = &ew->sections[i];
|
|
|
|
if (!(sec->shdr.sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
if (!section_consecutive(ew, i)) {
|
|
/* Write out previously set phdr. */
|
|
if (num_needs_write != num_written) {
|
|
phdr_write(ew, phdrs, &phdr);
|
|
num_written++;
|
|
}
|
|
phdr.p_type = PT_LOAD;
|
|
phdr.p_offset = sec->shdr.sh_offset;
|
|
phdr.p_vaddr = sec->shdr.sh_addr;
|
|
phdr.p_paddr = sec->shdr.sh_addr;
|
|
phdr.p_filesz = buffer_size(&sec->content);
|
|
phdr.p_memsz = sec->shdr.sh_size;
|
|
phdr.p_flags = 0;
|
|
if (sec->shdr.sh_flags & SHF_EXECINSTR)
|
|
phdr.p_flags |= PF_X | PF_R;
|
|
if (sec->shdr.sh_flags & SHF_WRITE)
|
|
phdr.p_flags |= PF_W;
|
|
phdr.p_align = sec->shdr.sh_addralign;
|
|
num_needs_write++;
|
|
|
|
} else {
|
|
/* Accumulate file size and memsize. The assumption
|
|
* is that each section is either NOBITS or full
|
|
* (sh_size == file size). This is standard in that
|
|
* an ELF section doesn't have a file size component. */
|
|
if (sec->shdr.sh_flags & SHF_EXECINSTR)
|
|
phdr.p_flags |= PF_X | PF_R;
|
|
if (sec->shdr.sh_flags & SHF_WRITE)
|
|
phdr.p_flags |= PF_W;
|
|
phdr.p_filesz += buffer_size(&sec->content);
|
|
phdr.p_memsz += sec->shdr.sh_size;
|
|
}
|
|
}
|
|
|
|
/* Write out the last phdr. */
|
|
if (num_needs_write != num_written) {
|
|
phdr_write(ew, phdrs, &phdr);
|
|
num_written++;
|
|
}
|
|
assert(num_written == ew->ehdr.e_phnum);
|
|
}
|
|
|
|
static void fixup_symbol_table(struct elf_writer *ew)
|
|
{
|
|
struct elf_writer_section *sec = ew->symtab_sec;
|
|
|
|
/* If there is only the NULL section, mark section as inactive. */
|
|
if (ew->symtab.num_entries == 1) {
|
|
sec->shdr.sh_type = SHT_NULL;
|
|
sec->shdr.sh_size = 0;
|
|
} else {
|
|
size_t i;
|
|
struct buffer wr;
|
|
|
|
buffer_clone(&wr, &sec->content);
|
|
/* To appease xdr. */
|
|
buffer_set_size(&wr, 0);
|
|
for (i = 0; i < ew->symtab.num_entries; i++) {
|
|
/* Create local copy as were over-writing backing
|
|
* store of the symbol. */
|
|
Elf64_Sym sym = ew->symtab.syms[i];
|
|
if (ew->bit64) {
|
|
ew->xdr->put32(&wr, sym.st_name);
|
|
ew->xdr->put8(&wr, sym.st_info);
|
|
ew->xdr->put8(&wr, sym.st_other);
|
|
ew->xdr->put16(&wr, sym.st_shndx);
|
|
ew->xdr->put64(&wr, sym.st_value);
|
|
ew->xdr->put64(&wr, sym.st_size);
|
|
} else {
|
|
ew->xdr->put32(&wr, sym.st_name);
|
|
ew->xdr->put32(&wr, sym.st_value);
|
|
ew->xdr->put32(&wr, sym.st_size);
|
|
ew->xdr->put8(&wr, sym.st_info);
|
|
ew->xdr->put8(&wr, sym.st_other);
|
|
ew->xdr->put16(&wr, sym.st_shndx);
|
|
}
|
|
}
|
|
|
|
/* Update section size. */
|
|
sec->shdr.sh_size = sec->shdr.sh_entsize;
|
|
sec->shdr.sh_size *= ew->symtab.num_entries;
|
|
|
|
/* Fix up sh_link to point to string table. */
|
|
sec->shdr.sh_link = section_index(ew, ew->strtab_sec);
|
|
/* sh_info is supposed to be 1 greater than symbol table
|
|
* index of last local binding. Just use max symbols. */
|
|
sec->shdr.sh_info = ew->symtab.num_entries;
|
|
}
|
|
|
|
buffer_set_size(&sec->content, sec->shdr.sh_size);
|
|
}
|
|
|
|
static void fixup_relocations(struct elf_writer *ew)
|
|
{
|
|
int i;
|
|
Elf64_Xword type;
|
|
|
|
switch (ew->ehdr.e_machine) {
|
|
case EM_386:
|
|
type = R_386_32;
|
|
break;
|
|
case EM_X86_64:
|
|
type = R_AMD64_64;
|
|
break;
|
|
case EM_ARM:
|
|
type = R_ARM_ABS32;
|
|
break;
|
|
case EM_AARCH64:
|
|
type = R_AARCH64_ABS64;
|
|
break;
|
|
case EM_MIPS:
|
|
type = R_MIPS_32;
|
|
break;
|
|
case EM_RISCV:
|
|
type = R_RISCV_32;
|
|
break;
|
|
case EM_PPC64:
|
|
type = R_PPC64_ADDR32;
|
|
break;
|
|
default:
|
|
ERROR("Unable to handle relocations for e_machine %x\n",
|
|
ew->ehdr.e_machine);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < MAX_SECTIONS; i++) {
|
|
struct elf_writer_rel *rel_sec = &ew->rel_sections[i];
|
|
struct elf_writer_section *sec = rel_sec->sec;
|
|
struct buffer writer;
|
|
size_t j;
|
|
|
|
if (sec == NULL)
|
|
continue;
|
|
|
|
/* Update section header size as well as content size. */
|
|
buffer_init(&sec->content, sec->content.name, rel_sec->rels,
|
|
rel_sec->num_entries * sec->shdr.sh_entsize);
|
|
sec->shdr.sh_size = buffer_size(&sec->content);
|
|
buffer_clone(&writer, &sec->content);
|
|
/* To make xdr happy. */
|
|
buffer_set_size(&writer, 0);
|
|
|
|
for (j = 0; j < ew->rel_sections[i].num_entries; j++) {
|
|
/* Make copy as we're overwriting backing store. */
|
|
Elf64_Rel rel = rel_sec->rels[j];
|
|
rel.r_info = ELF64_R_INFO(ELF64_R_SYM(rel.r_info),
|
|
ELF64_R_TYPE(type));
|
|
|
|
if (ew->bit64) {
|
|
ew->xdr->put64(&writer, rel.r_offset);
|
|
ew->xdr->put64(&writer, rel.r_info);
|
|
} else {
|
|
Elf32_Rel rel32;
|
|
rel32.r_offset = rel.r_offset;
|
|
rel32.r_info =
|
|
ELF32_R_INFO(ELF64_R_SYM(rel.r_info),
|
|
ELF64_R_TYPE(rel.r_info));
|
|
ew->xdr->put32(&writer, rel32.r_offset);
|
|
ew->xdr->put32(&writer, rel32.r_info);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Serialize the ELF file to the output buffer. Return < 0 on error,
|
|
* 0 on success.
|
|
*/
|
|
int elf_writer_serialize(struct elf_writer *ew, struct buffer *out)
|
|
{
|
|
Elf64_Half i;
|
|
Elf64_Xword metadata_size;
|
|
Elf64_Xword program_size;
|
|
Elf64_Off shstroffset;
|
|
size_t shstrlen;
|
|
struct buffer metadata;
|
|
struct buffer phdrs;
|
|
struct buffer data;
|
|
struct buffer *strtab;
|
|
|
|
INFO("Writing %zu sections.\n", ew->num_secs);
|
|
|
|
/* Perform any necessary work for special sections. */
|
|
fixup_symbol_table(ew);
|
|
fixup_relocations(ew);
|
|
|
|
/* Determine size of sections to be written. */
|
|
program_size = 0;
|
|
/* Start with 1 byte for first byte of section header string table. */
|
|
shstrlen = 1;
|
|
for (i = 0; i < ew->num_secs; i++) {
|
|
struct elf_writer_section *sec = &ew->sections[i];
|
|
|
|
if (sec->shdr.sh_flags & SHF_ALLOC) {
|
|
if (!section_consecutive(ew, i))
|
|
ew->ehdr.e_phnum++;
|
|
}
|
|
|
|
program_size += buffer_size(&sec->content);
|
|
|
|
/* Keep track of the length sections' names. */
|
|
if (sec->name != NULL) {
|
|
sec->shdr.sh_name = shstrlen;
|
|
shstrlen += strlen(sec->name) + 1;
|
|
}
|
|
}
|
|
ew->ehdr.e_shnum = ew->num_secs;
|
|
metadata_size = 0;
|
|
metadata_size += ew->ehdr.e_ehsize;
|
|
metadata_size += (Elf64_Xword)ew->ehdr.e_shnum * ew->ehdr.e_shentsize;
|
|
metadata_size += (Elf64_Xword)ew->ehdr.e_phnum * ew->ehdr.e_phentsize;
|
|
shstroffset = metadata_size;
|
|
/* Align up section header string size and metadata size to 4KiB */
|
|
metadata_size = ALIGN(metadata_size + shstrlen, 4096);
|
|
|
|
if (buffer_create(out, metadata_size + program_size, "elfout")) {
|
|
ERROR("Could not create output buffer for ELF.\n");
|
|
return -1;
|
|
}
|
|
|
|
INFO("Created %zu output buffer for ELF file.\n", buffer_size(out));
|
|
|
|
/*
|
|
* Write out ELF header. Section headers come right after ELF header
|
|
* followed by the program headers. Buffers need to be created first
|
|
* to do the writing.
|
|
*/
|
|
ew->ehdr.e_shoff = ew->ehdr.e_ehsize;
|
|
ew->ehdr.e_phoff = ew->ehdr.e_shoff +
|
|
(Elf64_Off)ew->ehdr.e_shnum * ew->ehdr.e_shentsize;
|
|
|
|
buffer_splice(&metadata, out, 0, metadata_size);
|
|
buffer_splice(&phdrs, out, ew->ehdr.e_phoff,
|
|
(uint32_t)ew->ehdr.e_phnum * ew->ehdr.e_phentsize);
|
|
buffer_splice(&data, out, metadata_size, program_size);
|
|
/* Set up the section header string table contents. */
|
|
strtab = &ew->shstrtab_sec->content;
|
|
buffer_splice(strtab, out, shstroffset, shstrlen);
|
|
ew->shstrtab_sec->shdr.sh_size = shstrlen;
|
|
|
|
/* Reset current locations. */
|
|
buffer_set_size(&metadata, 0);
|
|
buffer_set_size(&data, 0);
|
|
buffer_set_size(&phdrs, 0);
|
|
buffer_set_size(strtab, 0);
|
|
|
|
/* ELF Header */
|
|
ehdr_write(ew, &metadata);
|
|
|
|
/* Write out section headers, section strings, section content, and
|
|
* program headers. */
|
|
ew->xdr->put8(strtab, 0);
|
|
for (i = 0; i < ew->num_secs; i++) {
|
|
struct elf_writer_section *sec = &ew->sections[i];
|
|
|
|
/* Update section offsets. Be sure to not update SHN_UNDEF. */
|
|
if (sec == ew->shstrtab_sec)
|
|
sec->shdr.sh_offset = shstroffset;
|
|
else if (i != SHN_UNDEF)
|
|
sec->shdr.sh_offset = buffer_size(&data) +
|
|
metadata_size;
|
|
|
|
shdr_write(ew, i, &metadata);
|
|
|
|
/* Add section name to string table. */
|
|
if (sec->name != NULL)
|
|
bputs(strtab, sec->name, strlen(sec->name) + 1);
|
|
|
|
/* Output section data for all sections but SHN_UNDEF and
|
|
* section header string table. */
|
|
if (i != SHN_UNDEF && sec != ew->shstrtab_sec)
|
|
bputs(&data, buffer_get(&sec->content),
|
|
buffer_size(&sec->content));
|
|
}
|
|
|
|
write_phdrs(ew, &phdrs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add a string to the string table returning index on success, < 0 on error. */
|
|
static int elf_writer_add_string(struct elf_writer *ew, const char *new)
|
|
{
|
|
size_t current_offset;
|
|
size_t new_len;
|
|
|
|
for (current_offset = 0; current_offset < ew->strtab.next_offset; ) {
|
|
const char *str = ew->strtab.buffer + current_offset;
|
|
size_t len = strlen(str) + 1;
|
|
|
|
if (!strcmp(str, new))
|
|
return current_offset;
|
|
current_offset += len;
|
|
}
|
|
|
|
new_len = strlen(new) + 1;
|
|
|
|
if (current_offset + new_len > ew->strtab.max_size) {
|
|
ERROR("No space for string in .strtab.\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(ew->strtab.buffer + current_offset, new, new_len);
|
|
ew->strtab.next_offset = current_offset + new_len;
|
|
|
|
return current_offset;
|
|
}
|
|
|
|
static int elf_writer_section_index(struct elf_writer *ew, const char *name)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < ew->num_secs; i++) {
|
|
if (ew->sections[i].name == NULL)
|
|
continue;
|
|
if (!strcmp(ew->sections[i].name, name))
|
|
return i;
|
|
}
|
|
|
|
ERROR("ELF Section not found: %s\n", name);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int elf_writer_add_symbol(struct elf_writer *ew, const char *name,
|
|
const char *section_name,
|
|
Elf64_Addr value, Elf64_Word size,
|
|
int binding, int type)
|
|
{
|
|
int i;
|
|
Elf64_Sym sym = {
|
|
.st_value = value,
|
|
.st_size = size,
|
|
.st_info = ELF64_ST_INFO(binding, type),
|
|
};
|
|
|
|
if (ew->symtab.max_entries == ew->symtab.num_entries) {
|
|
ERROR("No more symbol entries left.\n");
|
|
return -1;
|
|
}
|
|
|
|
i = elf_writer_add_string(ew, name);
|
|
if (i < 0)
|
|
return -1;
|
|
sym.st_name = i;
|
|
|
|
i = elf_writer_section_index(ew, section_name);
|
|
if (i < 0)
|
|
return -1;
|
|
sym.st_shndx = i;
|
|
|
|
ew->symtab.syms[ew->symtab.num_entries++] = sym;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int elf_sym_index(struct elf_writer *ew, const char *sym)
|
|
{
|
|
int j;
|
|
size_t i;
|
|
Elf64_Word st_name;
|
|
|
|
/* Determine index of symbol in the string table. */
|
|
j = elf_writer_add_string(ew, sym);
|
|
if (j < 0)
|
|
return -1;
|
|
|
|
st_name = j;
|
|
|
|
for (i = 0; i < ew->symtab.num_entries; i++)
|
|
if (ew->symtab.syms[i].st_name == st_name)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static struct elf_writer_rel *rel_section(struct elf_writer *ew,
|
|
const Elf64_Rel *r)
|
|
{
|
|
Elf64_Sym *sym;
|
|
struct elf_writer_rel *rel;
|
|
Elf64_Shdr shdr;
|
|
struct buffer b;
|
|
|
|
sym = &ew->symtab.syms[ELF64_R_SYM(r->r_info)];
|
|
|
|
/* Determine if section has been initialized yet. */
|
|
rel = &ew->rel_sections[sym->st_shndx];
|
|
if (rel->sec != NULL)
|
|
return rel;
|
|
|
|
memset(&shdr, 0, sizeof(shdr));
|
|
shdr.sh_type = SHT_REL;
|
|
shdr.sh_link = section_index(ew, ew->symtab_sec);
|
|
shdr.sh_info = sym->st_shndx;
|
|
|
|
if (ew->bit64) {
|
|
shdr.sh_addralign = sizeof(Elf64_Addr);
|
|
shdr.sh_entsize = sizeof(Elf64_Rel);
|
|
} else {
|
|
shdr.sh_addralign = sizeof(Elf32_Addr);
|
|
shdr.sh_entsize = sizeof(Elf32_Rel);
|
|
}
|
|
|
|
if ((strlen(".rel") + strlen(ew->sections[sym->st_shndx].name) + 1) >
|
|
MAX_REL_NAME) {
|
|
ERROR("Rel Section name won't fit\n");
|
|
return NULL;
|
|
}
|
|
|
|
strcat(rel->name, ".rel");
|
|
strcat(rel->name, ew->sections[sym->st_shndx].name);
|
|
buffer_init(&b, rel->name, NULL, 0);
|
|
|
|
elf_writer_add_section(ew, &shdr, &b, rel->name);
|
|
rel->sec = last_section(ew);
|
|
|
|
return rel;
|
|
}
|
|
|
|
static int add_rel(struct elf_writer_rel *rel_sec, const Elf64_Rel *rel)
|
|
{
|
|
if (rel_sec->num_entries == rel_sec->max_entries) {
|
|
size_t num = rel_sec->max_entries * 2;
|
|
Elf64_Rel *old_rels;
|
|
|
|
if (num == 0)
|
|
num = 128;
|
|
|
|
old_rels = rel_sec->rels;
|
|
rel_sec->rels = calloc(num, sizeof(Elf64_Rel));
|
|
|
|
memcpy(rel_sec->rels, old_rels,
|
|
rel_sec->num_entries * sizeof(Elf64_Rel));
|
|
free(old_rels);
|
|
|
|
rel_sec->max_entries = num;
|
|
}
|
|
|
|
rel_sec->rels[rel_sec->num_entries] = *rel;
|
|
rel_sec->num_entries++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int elf_writer_add_rel(struct elf_writer *ew, const char *sym, Elf64_Addr addr)
|
|
{
|
|
Elf64_Rel rel;
|
|
Elf64_Xword sym_info;
|
|
int sym_index;
|
|
struct elf_writer_rel *rel_sec;
|
|
|
|
sym_index = elf_sym_index(ew, sym);
|
|
|
|
if (sym_index < 0) {
|
|
ERROR("Unable to locate symbol: %s\n", sym);
|
|
return -1;
|
|
}
|
|
|
|
sym_info = sym_index;
|
|
|
|
/* The relocation type will get fixed prior to serialization. */
|
|
rel.r_offset = addr;
|
|
rel.r_info = ELF64_R_INFO(sym_info, 0);
|
|
|
|
rel_sec = rel_section(ew, &rel);
|
|
|
|
if (rel_sec == NULL)
|
|
return -1;
|
|
|
|
return add_rel(rel_sec, &rel);
|
|
}
|
|
|
|
int elf_program_file_size(const struct buffer *input, size_t *file_size)
|
|
{
|
|
Elf64_Ehdr ehdr;
|
|
Elf64_Phdr *phdr;
|
|
int i;
|
|
size_t loadable_file_size = 0;
|
|
|
|
if (elf_headers(input, &ehdr, &phdr, NULL))
|
|
return -1;
|
|
|
|
for (i = 0; i < ehdr.e_phnum; i++) {
|
|
if (phdr[i].p_type != PT_LOAD)
|
|
continue;
|
|
loadable_file_size += phdr[i].p_filesz;
|
|
}
|
|
|
|
*file_size = loadable_file_size;
|
|
|
|
free(phdr);
|
|
|
|
return 0;
|
|
}
|