coreboot-kgpe-d16/payloads/libpayload/drivers/storage/nvme.c
Thomas Heijligen fffc21d3dc libpayload/storage: Add NVMe driver
Tested with qemu virtual NVMe and Intel hardware. Works with FILO.

Change-Id: Ie75b1dc743dac3426c230c57ee23b771ba3a6e0c
Signed-off-by: Thomas Heijligen <thomas.heijligen@secunet.com>
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/33582
Reviewed-by:  Felix Singer <felixsinger@posteo.net>
Reviewed-by: Nico Huber <nico.h@gmx.de>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-by: Angel Pons <th3fanbus@gmail.com>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2021-04-07 10:58:04 +00:00

403 lines
10 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
/*
* Libpayload NVMe device driver
* Copyright (C) 2019 secunet Security Networks AG
*/
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <pci.h>
#include <pci/pci.h>
#include <libpayload.h>
#include <storage/storage.h>
#include <storage/nvme.h>
#define NVME_CC_EN (1 << 0)
#define NVME_CC_CSS (0 << 4)
#define NVME_CC_MPS (0 << 7)
#define NVME_CC_AMS (0 << 11)
#define NVME_CC_SHN (0 << 14)
#define NVME_CC_IOSQES (6 << 16)
#define NVME_CC_IOCQES (4 << 20)
#define NVME_QUEUE_SIZE 2
#define NVME_SQ_ENTRY_SIZE 64
#define NVME_CQ_ENTRY_SIZE 16
struct nvme_dev {
storage_dev_t storage_dev;
pcidev_t pci_dev;
void *config;
struct {
void *base;
uint32_t *bell;
uint16_t idx; // bool pos 0 or 1
uint16_t round; // bool round 0 or 1+0xd
} queue[4];
uint64_t *prp_list;
};
struct nvme_s_queue_entry {
uint32_t dw[16];
};
struct nvme_c_queue_entry {
uint32_t dw[4];
};
enum nvme_queue {
NVME_ADMIN_QUEUE = 0,
ads = 0,
adc = 1,
NVME_IO_QUEUE = 2,
ios = 2,
ioc = 3,
};
static storage_poll_t nvme_poll(struct storage_dev *dev)
{
return POLL_MEDIUM_PRESENT;
}
static int nvme_cmd(
struct nvme_dev *nvme, enum nvme_queue q, const struct nvme_s_queue_entry *cmd)
{
int sq = q, cq = q+1;
void *s_entry = nvme->queue[sq].base + (nvme->queue[sq].idx * NVME_SQ_ENTRY_SIZE);
memcpy(s_entry, cmd, NVME_SQ_ENTRY_SIZE);
nvme->queue[sq].idx = (nvme->queue[sq].idx + 1) & (NVME_QUEUE_SIZE - 1);
write32(nvme->queue[sq].bell, nvme->queue[sq].idx);
struct nvme_c_queue_entry *c_entry = nvme->queue[cq].base +
(nvme->queue[cq].idx * NVME_CQ_ENTRY_SIZE);
while (((read32(&c_entry->dw[3]) >> 16) & 0x1) == nvme->queue[cq].round)
;
nvme->queue[cq].idx = (nvme->queue[cq].idx + 1) & (NVME_QUEUE_SIZE - 1);
write32(nvme->queue[cq].bell, nvme->queue[cq].idx);
if (nvme->queue[cq].idx == 0)
nvme->queue[cq].round = (nvme->queue[cq].round + 1) & 1;
return c_entry->dw[3] >> 17;
}
static int delete_io_submission_queue(struct nvme_dev *nvme)
{
const struct nvme_s_queue_entry e = {
.dw[0] = 0,
.dw[10] = ios,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
free(nvme->queue[ios].base);
nvme->queue[ios].base = NULL;
nvme->queue[ios].bell = NULL;
nvme->queue[ios].idx = 0;
return res;
}
static int delete_io_completion_queue(struct nvme_dev *nvme)
{
const struct nvme_s_queue_entry e = {
.dw[0] = 1,
.dw[10] = ioc,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
free(nvme->queue[ioc].base);
nvme->queue[ioc].base = NULL;
nvme->queue[ioc].bell = NULL;
nvme->queue[ioc].idx = 0;
nvme->queue[ioc].round = 0;
return res;
}
static int delete_admin_queues(struct nvme_dev *nvme)
{
if (nvme->queue[ios].base || nvme->queue[ioc].base)
printf("NVMe ERROR: IO queues still active.\n");
free(nvme->queue[ads].base);
nvme->queue[ads].base = NULL;
nvme->queue[ads].bell = NULL;
nvme->queue[ads].idx = 0;
free(nvme->queue[adc].base);
nvme->queue[adc].base = NULL;
nvme->queue[adc].bell = NULL;
nvme->queue[adc].idx = 0;
nvme->queue[adc].round = 0;
return 0;
}
static void nvme_detach_device(struct storage_dev *dev)
{
struct nvme_dev *nvme = (struct nvme_dev *)dev;
if (delete_io_submission_queue(nvme))
printf("NVMe ERROR: Failed to delete io submission queue\n");
if (delete_io_completion_queue(nvme))
printf("NVME ERROR: Failed to delete io completion queue\n");
if (delete_admin_queues(nvme))
printf("NVME ERROR: Failed to delete admin queues\n");
write32(nvme->config + 0x1c, 0);
int status, timeout = (read64(nvme->config) >> 24 & 0xff) * 500;
do {
status = read32(nvme->config + 0x1c) & 0x3;
if (status == 0x2) {
printf("NVMe ERROR: Failed to disable controller. FATAL ERROR\n");
break;
}
if (timeout < 0) {
printf("NVMe ERROR: Failed to disable controller. Timeout.\n");
break;
}
timeout -= 10;
mdelay(10);
} while (status != 0x0);
uint16_t command = pci_read_config16(nvme->pci_dev, PCI_COMMAND);
pci_write_config16(nvme->pci_dev, PCI_COMMAND, command & ~PCI_COMMAND_MASTER);
free(nvme->prp_list);
}
static int nvme_read(struct nvme_dev *nvme, unsigned char *buffer, uint64_t base, uint16_t count)
{
if (count == 0 || count > 512)
return -1;
struct nvme_s_queue_entry e = {
.dw[0] = 0x02,
.dw[1] = 0x1,
.dw[6] = virt_to_phys(buffer),
.dw[10] = base,
.dw[11] = base >> 32,
.dw[12] = count - 1,
};
const unsigned int start_page = (uintptr_t)buffer >> 12;
const unsigned int end_page = ((uintptr_t)buffer + count * 512 - 1) >> 12;
if (end_page == start_page) {
/* No page crossing, PRP2 is reserved */
} else if (end_page == start_page + 1) {
/* Crossing exactly one page boundary, PRP2 is second page */
e.dw[8] = virt_to_phys(buffer + 0x1000) & ~0xfff;
} else {
/* Use a single page as PRP list, PRP2 points to the list */
unsigned int i;
for (i = 0; i < end_page - start_page; ++i) {
buffer += 0x1000;
nvme->prp_list[i] = virt_to_phys(buffer) & ~0xfff;
}
e.dw[8] = virt_to_phys(nvme->prp_list);
}
return nvme_cmd(nvme, ios, &e);
}
static ssize_t nvme_read_blocks512(
struct storage_dev *const dev,
const lba_t start, const size_t count, unsigned char *const buf)
{
unsigned int off = 0;
while (off < count) {
const unsigned int blocks = MIN(count - off, 512);
if (nvme_read((struct nvme_dev *)dev, buf + (off * 512), start + off, blocks))
return off;
off += blocks;
}
return count;
}
static int create_io_submission_queue(struct nvme_dev *nvme)
{
void *sq_buffer = memalign(0x1000, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!sq_buffer) {
printf("NVMe ERROR: Failed to allocate memory for io submission queue.\n");
return -1;
}
memset(sq_buffer, 0, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
struct nvme_s_queue_entry e = {
.dw[0] = 0x01,
.dw[6] = virt_to_phys(sq_buffer),
.dw[10] = ((NVME_QUEUE_SIZE - 1) << 16) | ios >> 1,
.dw[11] = (1 << 16) | 1,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
if (res) {
printf("NVMe ERROR: nvme_cmd returned with %i.\n", res);
free(sq_buffer);
return res;
}
uint8_t cap_dstrd = (read64(nvme->config) >> 32) & 0xf;
nvme->queue[ios].base = sq_buffer;
nvme->queue[ios].bell = nvme->config + 0x1000 + (ios * (4 << cap_dstrd));
nvme->queue[ios].idx = 0;
return 0;
}
static int create_io_completion_queue(struct nvme_dev *nvme)
{
void *const cq_buffer = memalign(0x1000, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!cq_buffer) {
printf("NVMe ERROR: Failed to allocate memory for io completion queue.\n");
return -1;
}
memset(cq_buffer, 0, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
const struct nvme_s_queue_entry e = {
.dw[0] = 0x05,
.dw[6] = virt_to_phys(cq_buffer),
.dw[10] = ((NVME_QUEUE_SIZE - 1) << 16) | ioc >> 1,
.dw[11] = 1,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
if (res) {
printf("NVMe ERROR: nvme_cmd returned with %i.\n", res);
free(cq_buffer);
return res;
}
uint8_t cap_dstrd = (read64(nvme->config) >> 32) & 0xf;
nvme->queue[ioc].base = cq_buffer;
nvme->queue[ioc].bell = nvme->config + 0x1000 + (ioc * (4 << cap_dstrd));
nvme->queue[ioc].idx = 0;
nvme->queue[ioc].round = 0;
return 0;
}
static int create_admin_queues(struct nvme_dev *nvme)
{
uint8_t cap_dstrd = (read64(nvme->config) >> 32) & 0xf;
write32(nvme->config + 0x24, (NVME_QUEUE_SIZE - 1) << 16 | (NVME_QUEUE_SIZE - 1));
void *sq_buffer = memalign(0x1000, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!sq_buffer) {
printf("NVMe ERROR: Failed to allocated memory for admin submission queue\n");
return -1;
}
memset(sq_buffer, 0, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
write64(nvme->config + 0x28, virt_to_phys(sq_buffer));
nvme->queue[ads].base = sq_buffer;
nvme->queue[ads].bell = nvme->config + 0x1000 + (ads * (4 << cap_dstrd));
nvme->queue[ads].idx = 0;
void *cq_buffer = memalign(0x1000, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!cq_buffer) {
printf("NVMe ERROR: Failed to allocate memory for admin completion queue\n");
free(cq_buffer);
return -1;
}
memset(cq_buffer, 0, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
write64(nvme->config + 0x30, virt_to_phys(cq_buffer));
nvme->queue[adc].base = cq_buffer;
nvme->queue[adc].bell = nvme->config + 0x1000 + (adc * (4 << cap_dstrd));
nvme->queue[adc].idx = 0;
nvme->queue[adc].round = 0;
return 0;
}
static void nvme_init(pcidev_t dev)
{
printf("NVMe init (Device %02x:%02x.%02x)\n",
PCI_BUS(dev), PCI_SLOT(dev), PCI_FUNC(dev));
void *pci_bar0 = phys_to_virt(pci_read_config32(dev, 0x10) & ~0x3ff);
if (!(((read64(pci_bar0) >> 37) & 0xff) == 0x01)) {
printf("NVMe ERROR: PCIe device does not support the NVMe command set\n");
return;
}
struct nvme_dev *nvme = malloc(sizeof(*nvme));
if (!nvme) {
printf("NVMe ERROR: Failed to allocate buffer for nvme driver struct\n");
return;
}
nvme->storage_dev.port_type = PORT_TYPE_NVME;
nvme->storage_dev.poll = nvme_poll;
nvme->storage_dev.read_blocks512 = nvme_read_blocks512;
nvme->storage_dev.write_blocks512 = NULL;
nvme->storage_dev.detach_device = nvme_detach_device;
nvme->pci_dev = dev;
nvme->config = pci_bar0;
nvme->prp_list = memalign(0x1000, 0x1000);
if (!nvme->prp_list) {
printf("NVMe ERROR: Failed to allocate buffer for PRP list\n");
goto abort;
}
const uint32_t cc = NVME_CC_EN | NVME_CC_CSS | NVME_CC_MPS | NVME_CC_AMS | NVME_CC_SHN
| NVME_CC_IOSQES | NVME_CC_IOCQES;
write32(nvme->config + 0x1c, 0);
int status, timeout = (read64(nvme->config) >> 24 & 0xff) * 500;
do {
status = read32(nvme->config + 0x1c) & 0x3;
if (status == 0x2) {
printf("NVMe ERROR: Failed to disable controller. FATAL ERROR\n");
goto abort;
}
if (timeout < 0) {
printf("NVMe ERROR: Failed to disable controller. Timeout.\n");
goto abort;
}
timeout -= 10;
mdelay(10);
} while (status != 0x0);
if (create_admin_queues(nvme))
goto abort;
write32(nvme->config + 0x14, cc);
timeout = (read64(nvme->config) >> 24 & 0xff) * 500;
do {
status = read32(nvme->config + 0x1c) & 0x3;
if (status == 0x2)
goto abort;
if (timeout < 0)
goto abort;
timeout -= 10;
mdelay(10);
} while (status != 0x1);
uint16_t command = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, command | PCI_COMMAND_MASTER);
if (create_io_completion_queue(nvme))
goto abort;
if (create_io_submission_queue(nvme))
goto abort;
storage_attach_device((storage_dev_t *)nvme);
printf("NVMe init done.\n");
return;
abort:
printf("NVMe init failed.\n");
delete_io_submission_queue(nvme);
delete_io_completion_queue(nvme);
delete_admin_queues(nvme);
free(nvme->prp_list);
free(nvme);
}
void nvme_initialize(struct pci_dev *dev)
{
nvme_init(PCI_DEV(dev->bus, dev->dev, dev->func));
}