coreboot-kgpe-d16/src/lib/fmap.c
Julius Werner 8245bd25a3 fmap: Make FMAP_CACHE mandatory if it is configured in
Now that we have a CONFIG_NO_FMAP_CACHE to completely configure out the
pre-RAM FMAP cache code, there's no point in allowing the region to be
optional anymore. This patch makes the section required by the linker.
If a board doesn't want to provide it, it has to select NO_FMAP_CACHE.

Adding FMAP_CACHE regions to a couple more targets that I think can use
them but I don't know anything about... please yell if one of these is
a bad idea and I should mark them NO_FMAP_CACHE instead.

Change-Id: Ic7d47772ab3abfa7e3a66815c3739d0af071abc2
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/37497
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-by: Furquan Shaikh <furquan@google.com>
2019-12-11 11:42:26 +00:00

309 lines
7.3 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright 2012-2015 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <boot_device.h>
#include <cbmem.h>
#include <console/console.h>
#include <fmap.h>
#include <commonlib/fmap_serialized.h>
#include <stddef.h>
#include <string.h>
#include <symbols.h>
#include "fmap_config.h"
/*
* See http://code.google.com/p/flashmap/ for more information on FMAP.
*/
static int fmap_print_once;
static struct mem_region_device fmap_cache;
#define print_once(...) do { \
if (!fmap_print_once) \
printk(__VA_ARGS__); \
} while (0)
uint64_t get_fmap_flash_offset(void)
{
return FMAP_OFFSET;
}
static int check_signature(const struct fmap *fmap)
{
return memcmp(fmap->signature, FMAP_SIGNATURE, sizeof(fmap->signature));
}
static void report(const struct fmap *fmap)
{
print_once(BIOS_DEBUG, "FMAP: Found \"%s\" version %d.%d at %#x.\n",
fmap->name, fmap->ver_major, fmap->ver_minor, FMAP_OFFSET);
print_once(BIOS_DEBUG, "FMAP: base = %#llx size = %#x #areas = %d\n",
(long long)fmap->base, fmap->size, fmap->nareas);
fmap_print_once = 1;
}
static void setup_preram_cache(struct mem_region_device *cache_mrdev)
{
if (CONFIG(NO_FMAP_CACHE))
return;
if (!ENV_ROMSTAGE_OR_BEFORE) {
/* We get here if ramstage makes an FMAP access before calling
cbmem_initialize(). We should avoid letting it come to that,
so print a warning. */
print_once(BIOS_WARNING,
"WARNING: Post-RAM FMAP access too early for cache!\n");
return;
}
struct fmap *fmap = (struct fmap *)_fmap_cache;
if (!ENV_BOOTBLOCK) {
/* NOTE: This assumes that for all platforms running this code,
the bootblock is the first stage and the bootblock will make
at least one FMAP access (usually from finding CBFS). */
if (!check_signature(fmap))
goto register_cache;
printk(BIOS_ERR, "ERROR: FMAP cache corrupted?!\n");
}
/* In case we fail below, make sure the cache is invalid. */
memset(fmap->signature, 0, sizeof(fmap->signature));
boot_device_init();
const struct region_device *boot_rdev = boot_device_ro();
if (!boot_rdev)
return;
/* memlayout statically guarantees that the FMAP_CACHE is big enough. */
if (rdev_readat(boot_rdev, fmap, FMAP_OFFSET, FMAP_SIZE) != FMAP_SIZE)
return;
if (check_signature(fmap))
return;
report(fmap);
register_cache:
mem_region_device_ro_init(cache_mrdev, fmap, FMAP_SIZE);
}
static int find_fmap_directory(struct region_device *fmrd)
{
const struct region_device *boot;
struct fmap *fmap;
size_t offset = FMAP_OFFSET;
/* Try FMAP cache first */
if (!region_device_sz(&fmap_cache.rdev))
setup_preram_cache(&fmap_cache);
if (region_device_sz(&fmap_cache.rdev))
return rdev_chain_full(fmrd, &fmap_cache.rdev);
boot_device_init();
boot = boot_device_ro();
if (boot == NULL)
return -1;
fmap = rdev_mmap(boot, offset, sizeof(struct fmap));
if (fmap == NULL)
return -1;
if (check_signature(fmap)) {
printk(BIOS_DEBUG, "No FMAP found at %zx offset.\n", offset);
rdev_munmap(boot, fmap);
return -1;
}
report(fmap);
rdev_munmap(boot, fmap);
return rdev_chain(fmrd, boot, offset, FMAP_SIZE);
}
int fmap_locate_area_as_rdev(const char *name, struct region_device *area)
{
struct region ar;
if (fmap_locate_area(name, &ar))
return -1;
return boot_device_ro_subregion(&ar, area);
}
int fmap_locate_area_as_rdev_rw(const char *name, struct region_device *area)
{
struct region ar;
if (fmap_locate_area(name, &ar))
return -1;
return boot_device_rw_subregion(&ar, area);
}
int fmap_locate_area(const char *name, struct region *ar)
{
struct region_device fmrd;
size_t offset;
if (find_fmap_directory(&fmrd))
return -1;
/* Start reading the areas just after fmap header. */
offset = sizeof(struct fmap);
while (1) {
struct fmap_area *area;
area = rdev_mmap(&fmrd, offset, sizeof(*area));
if (area == NULL)
return -1;
if (strcmp((const char *)area->name, name)) {
rdev_munmap(&fmrd, area);
offset += sizeof(struct fmap_area);
continue;
}
printk(BIOS_DEBUG, "FMAP: area %s found @ %x (%d bytes)\n",
name, area->offset, area->size);
ar->offset = area->offset;
ar->size = area->size;
rdev_munmap(&fmrd, area);
return 0;
}
printk(BIOS_DEBUG, "FMAP: area %s not found\n", name);
return -1;
}
int fmap_find_region_name(const struct region * const ar,
char name[FMAP_STRLEN])
{
struct region_device fmrd;
size_t offset;
if (find_fmap_directory(&fmrd))
return -1;
/* Start reading the areas just after fmap header. */
offset = sizeof(struct fmap);
while (1) {
struct fmap_area *area;
area = rdev_mmap(&fmrd, offset, sizeof(*area));
if (area == NULL)
return -1;
if ((ar->offset != area->offset) ||
(ar->size != area->size)) {
rdev_munmap(&fmrd, area);
offset += sizeof(struct fmap_area);
continue;
}
printk(BIOS_DEBUG, "FMAP: area (%zx, %zx) found, named %s\n",
ar->offset, ar->size, area->name);
memcpy(name, area->name, FMAP_STRLEN);
rdev_munmap(&fmrd, area);
return 0;
}
printk(BIOS_DEBUG, "FMAP: area (%zx, %zx) not found\n",
ar->offset, ar->size);
return -1;
}
ssize_t fmap_read_area(const char *name, void *buffer, size_t size)
{
struct region_device rdev;
if (fmap_locate_area_as_rdev(name, &rdev))
return -1;
return rdev_readat(&rdev, buffer, 0,
MIN(size, region_device_sz(&rdev)));
}
ssize_t fmap_overwrite_area(const char *name, const void *buffer, size_t size)
{
struct region_device rdev;
if (fmap_locate_area_as_rdev_rw(name, &rdev))
return -1;
if (size > region_device_sz(&rdev))
return -1;
if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0)
return -1;
return rdev_writeat(&rdev, buffer, 0, size);
}
static void fmap_register_cbmem_cache(int unused)
{
const struct cbmem_entry *e;
/* Find the FMAP cache installed by previous stage */
e = cbmem_entry_find(CBMEM_ID_FMAP);
/* Don't set fmap_cache so that find_fmap_directory will use regular path */
if (!e)
return;
mem_region_device_ro_init(&fmap_cache, cbmem_entry_start(e), cbmem_entry_size(e));
}
/*
* The main reason to copy the FMAP into CBMEM is to make it available to the
* OS on every architecture. As side effect use the CBMEM copy as cache.
*/
static void fmap_setup_cbmem_cache(int unused)
{
struct region_device fmrd;
if (find_fmap_directory(&fmrd))
return;
/* Reloads the FMAP even on ACPI S3 resume */
const size_t s = region_device_sz(&fmrd);
struct fmap *fmap = cbmem_add(CBMEM_ID_FMAP, s);
if (!fmap) {
printk(BIOS_ERR, "ERROR: Failed to allocate CBMEM\n");
return;
}
const ssize_t ret = rdev_readat(&fmrd, fmap, 0, s);
if (ret != s) {
printk(BIOS_ERR, "ERROR: Failed to read FMAP into CBMEM\n");
cbmem_entry_remove(cbmem_entry_find(CBMEM_ID_FMAP));
return;
}
/* Finally advertise the cache for the current stage */
fmap_register_cbmem_cache(unused);
}
ROMSTAGE_CBMEM_INIT_HOOK(fmap_setup_cbmem_cache)
RAMSTAGE_CBMEM_INIT_HOOK(fmap_register_cbmem_cache)
POSTCAR_CBMEM_INIT_HOOK(fmap_register_cbmem_cache)