coreboot-kgpe-d16/src/lib/spd_bin.c

265 lines
7.0 KiB
C

/*
* This file is part of the coreboot project.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <cbfs.h>
#include <console/console.h>
#include <spd_bin.h>
#include <string.h>
#include <device/dram/ddr3.h>
void dump_spd_info(struct spd_block *blk)
{
u8 i;
for (i = 0; i < CONFIG_DIMM_MAX; i++)
if (blk->spd_array[i] != NULL && blk->spd_array[i][0] != 0) {
printk(BIOS_DEBUG, "SPD @ 0x%02X\n", blk->addr_map[i]);
print_spd_info(blk->spd_array[i]);
}
}
static bool use_ddr4_params(int dram_type)
{
switch (dram_type) {
case SPD_DRAM_DDR3:
case SPD_DRAM_LPDDR3_INTEL:
return false;
/* Below DDR type share the same attributes */
case SPD_DRAM_LPDDR3_JEDEC:
case SPD_DRAM_DDR4:
case SPD_DRAM_LPDDR4:
case SPD_DRAM_LPDDR4X:
return true;
default:
printk(BIOS_ERR, "Defaulting to using DDR4 params. Please add dram_type check for %d to %s\n",
dram_type, __func__);
return true;
}
}
static const char *spd_get_module_type_string(int dram_type)
{
switch (dram_type) {
case SPD_DRAM_DDR3:
return "DDR3";
case SPD_DRAM_LPDDR3_INTEL:
case SPD_DRAM_LPDDR3_JEDEC:
return "LPDDR3";
case SPD_DRAM_DDR4:
return "DDR4";
case SPD_DRAM_LPDDR4:
return "LPDDR4";
case SPD_DRAM_LPDDR4X:
return "LPDDR4X";
case SPD_DRAM_DDR5:
return "DDR5";
case SPD_DRAM_LPDDR5:
return "LPDDR5";
}
return "UNKNOWN";
}
static int spd_get_banks(const uint8_t spd[], int dram_type)
{
static const int ddr3_banks[4] = { 8, 16, 32, 64 };
static const int ddr4_banks[10] = { 4, 8, -1, -1, 8, 16, -1, -1, 16, 32 };
int index = (spd[SPD_DENSITY_BANKS] >> 4) & 0xf;
if (use_ddr4_params(dram_type)) {
if (index >= ARRAY_SIZE(ddr4_banks))
return -1;
return ddr4_banks[index];
} else {
if (index >= ARRAY_SIZE(ddr3_banks))
return -1;
return ddr3_banks[index];
}
}
static int spd_get_capmb(const uint8_t spd[])
{
static const int spd_capmb[13] = { 1, 2, 4, 8, 16, 32, 64,
128, 48, 96, 12, 24, 72 };
int index = spd[SPD_DENSITY_BANKS] & 0xf;
if (index >= ARRAY_SIZE(spd_capmb))
return -1;
return spd_capmb[index] * 256;
}
static int spd_get_rows(const uint8_t spd[])
{
static const int spd_rows[7] = { 12, 13, 14, 15, 16, 17, 18 };
int index = (spd[SPD_ADDRESSING] >> 3) & 7;
if (index >= ARRAY_SIZE(spd_rows))
return -1;
return spd_rows[index];
}
static int spd_get_cols(const uint8_t spd[])
{
static const int spd_cols[4] = { 9, 10, 11, 12 };
int index = spd[SPD_ADDRESSING] & 7;
if (index >= ARRAY_SIZE(spd_cols))
return -1;
return spd_cols[index];
}
static int spd_get_ranks(const uint8_t spd[], int dram_type)
{
static const int spd_ranks[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
int organ_offset = use_ddr4_params(dram_type) ? DDR4_ORGANIZATION
: DDR3_ORGANIZATION;
int index = (spd[organ_offset] >> 3) & 7;
if (index >= ARRAY_SIZE(spd_ranks))
return -1;
return spd_ranks[index];
}
static int spd_get_devw(const uint8_t spd[], int dram_type)
{
static const int spd_devw[4] = { 4, 8, 16, 32 };
int organ_offset = use_ddr4_params(dram_type) ? DDR4_ORGANIZATION
: DDR3_ORGANIZATION;
int index = spd[organ_offset] & 7;
if (index >= ARRAY_SIZE(spd_devw))
return -1;
return spd_devw[index];
}
static int spd_get_busw(const uint8_t spd[], int dram_type)
{
static const int spd_busw[4] = { 8, 16, 32, 64 };
int busw_offset = use_ddr4_params(dram_type) ? DDR4_BUS_DEV_WIDTH
: DDR3_BUS_DEV_WIDTH;
int index = spd[busw_offset] & 7;
if (index >= ARRAY_SIZE(spd_busw))
return -1;
return spd_busw[index];
}
static void spd_get_name(const uint8_t spd[], char spd_name[], int dram_type)
{
switch (dram_type) {
case SPD_DRAM_DDR3:
memcpy(spd_name, &spd[DDR3_SPD_PART_OFF], DDR3_SPD_PART_LEN);
spd_name[DDR3_SPD_PART_LEN] = 0;
break;
case SPD_DRAM_LPDDR3_INTEL:
memcpy(spd_name, &spd[LPDDR3_SPD_PART_OFF],
LPDDR3_SPD_PART_LEN);
spd_name[LPDDR3_SPD_PART_LEN] = 0;
break;
/* LPDDR3, LPDDR4 and DDR4 have the same part number offset */
case SPD_DRAM_LPDDR3_JEDEC:
case SPD_DRAM_DDR4:
case SPD_DRAM_LPDDR4:
memcpy(spd_name, &spd[DDR4_SPD_PART_OFF], DDR4_SPD_PART_LEN);
spd_name[DDR4_SPD_PART_LEN] = 0;
break;
default:
break;
}
}
void print_spd_info(uint8_t spd[])
{
char spd_name[DDR4_SPD_PART_LEN + 1] = { 0 };
int type = spd[SPD_DRAM_TYPE];
int banks = spd_get_banks(spd, type);
int capmb = spd_get_capmb(spd);
int rows = spd_get_rows(spd);
int cols = spd_get_cols(spd);
int ranks = spd_get_ranks(spd, type);
int devw = spd_get_devw(spd, type);
int busw = spd_get_busw(spd, type);
/* Module type */
printk(BIOS_INFO, "SPD: module type is %s\n",
spd_get_module_type_string(type));
/* Module Part Number */
spd_get_name(spd, spd_name, type);
printk(BIOS_INFO, "SPD: module part number is %s\n", spd_name);
printk(BIOS_INFO,
"SPD: banks %d, ranks %d, rows %d, columns %d, density %d Mb\n",
banks, ranks, rows, cols, capmb);
printk(BIOS_INFO, "SPD: device width %d bits, bus width %d bits\n",
devw, busw);
if (capmb > 0 && busw > 0 && devw > 0 && ranks > 0) {
/* SIZE = DENSITY / 8 * BUS_WIDTH / SDRAM_WIDTH * RANKS */
printk(BIOS_INFO, "SPD: module size is %u MB (per channel)\n",
capmb / 8 * busw / devw * ranks);
}
}
int get_spd_cbfs_rdev(struct region_device *spd_rdev, u8 spd_index)
{
struct cbfsf fh;
uint32_t cbfs_type = CBFS_TYPE_SPD;
if (cbfs_boot_locate(&fh, "spd.bin", &cbfs_type) < 0)
return -1;
cbfs_file_data(spd_rdev, &fh);
return rdev_chain(spd_rdev, spd_rdev, spd_index * CONFIG_DIMM_SPD_SIZE,
CONFIG_DIMM_SPD_SIZE);
}
#if CONFIG_DIMM_SPD_SIZE == 128
int read_ddr3_spd_from_cbfs(u8 *buf, int idx)
{
const int SPD_CRC_HI = 127;
const int SPD_CRC_LO = 126;
const char *spd_file;
size_t spd_file_len = 0;
size_t min_len = (idx + 1) * CONFIG_DIMM_SPD_SIZE;
spd_file = cbfs_boot_map_with_leak("spd.bin", CBFS_TYPE_SPD,
&spd_file_len);
if (!spd_file)
printk(BIOS_EMERG, "file [spd.bin] not found in CBFS");
if (spd_file_len < min_len)
printk(BIOS_EMERG, "Missing SPD data.");
if (!spd_file || spd_file_len < min_len)
return -1;
memcpy(buf, spd_file + (idx * CONFIG_DIMM_SPD_SIZE),
CONFIG_DIMM_SPD_SIZE);
u16 crc = spd_ddr3_calc_crc(buf, CONFIG_DIMM_SPD_SIZE);
if (((buf[SPD_CRC_LO] == 0) && (buf[SPD_CRC_HI] == 0))
|| (buf[SPD_CRC_LO] != (crc & 0xff))
|| (buf[SPD_CRC_HI] != (crc >> 8))) {
printk(BIOS_WARNING,
"SPD CRC %02x%02x is invalid, should be %04x\n",
buf[SPD_CRC_HI], buf[SPD_CRC_LO], crc);
buf[SPD_CRC_LO] = crc & 0xff;
buf[SPD_CRC_HI] = crc >> 8;
u16 i;
printk(BIOS_WARNING, "\nDisplay the SPD");
for (i = 0; i < CONFIG_DIMM_SPD_SIZE; i++) {
if ((i % 16) == 0x00)
printk(BIOS_WARNING, "\n%02x: ", i);
printk(BIOS_WARNING, "%02x ", buf[i]);
}
printk(BIOS_WARNING, "\n");
}
return 0;
}
#endif