coreboot-kgpe-d16/src/arch/x86/cpu.c
Jinke Fan 8de6cb975f arch/x86/cpu: Add define and strings for Hygon
Chengdu Haiguang IC Design Co., Ltd (Hygon) is a Joint Venture
between AMD and Haiguang Information Technology Co.,Ltd., aims
at providing high performance x86 processor for China server
market. Its first generation processor codename is Dhyana, which
originates from AMD technology and shares most of the architecture
with AMD's family 17h, but with different CPU Vendor ID ("HygonGenuine")
/Family series number (Family 18h).

More details can be found on:
http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn

Change-Id: I8af8b0f0675f978ac07522029696e43651a3153f
Signed-off-by: Jinke Fan <fanjinke@hygon.cn>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/32876
Reviewed-by: Angel Pons <th3fanbus@gmail.com>
Reviewed-by: Lance Zhao <lance.zhao@gmail.com>
Reviewed-by: Philipp Deppenwiese <zaolin.daisuki@gmail.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2019-06-21 09:11:14 +00:00

365 lines
9.3 KiB
C

/*
* This file is part of the coreboot project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <bootstate.h>
#include <boot/coreboot_tables.h>
#include <console/console.h>
#include <cpu/cpu.h>
#include <string.h>
#include <cpu/x86/mp.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/tsc.h>
#include <arch/cpu.h>
#include <device/path.h>
#include <device/device.h>
#include <smp/spinlock.h>
#ifndef __x86_64__
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(uint32_t flag)
{
uint32_t f1, f2;
asm(
"pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0,%1\n\t"
"xorl %2,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/*
* Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
* by the fact that they preserve the flags across the division of 5/2.
* PII and PPro exhibit this behavior too, but they have cpuid available.
*/
/*
* Perform the Cyrix 5/2 test. A Cyrix won't change
* the flags, while other 486 chips will.
*/
static inline int test_cyrix_52div(void)
{
unsigned int test;
__asm__ __volatile__(
"sahf\n\t" /* clear flags (%eax = 0x0005) */
"div %b2\n\t" /* divide 5 by 2 */
"lahf" /* store flags into %ah */
: "=a" (test)
: "0" (5), "q" (2)
: "cc");
/* AH is 0x02 on Cyrix after the divide.. */
return (unsigned char) (test >> 8) == 0x02;
}
/*
* Detect a NexGen CPU running without BIOS hypercode new enough
* to have CPUID. (Thanks to Herbert Oppmann)
*/
static int deep_magic_nexgen_probe(void)
{
int ret;
__asm__ __volatile__ (
" movw $0x5555, %%ax\n"
" xorw %%dx,%%dx\n"
" movw $2, %%cx\n"
" divw %%cx\n"
" movl $0, %%eax\n"
" jnz 1f\n"
" movl $1, %%eax\n"
"1:\n"
: "=a" (ret) : : "cx", "dx");
return ret;
}
#endif
/* List of CPU vendor strings along with their normalized
* id values.
*/
static struct {
int vendor;
const char *name;
} x86_vendors[] = {
{ X86_VENDOR_INTEL, "GenuineIntel", },
{ X86_VENDOR_CYRIX, "CyrixInstead", },
{ X86_VENDOR_AMD, "AuthenticAMD", },
{ X86_VENDOR_UMC, "UMC UMC UMC ", },
{ X86_VENDOR_NEXGEN, "NexGenDriven", },
{ X86_VENDOR_CENTAUR, "CentaurHauls", },
{ X86_VENDOR_RISE, "RiseRiseRise", },
{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
{ X86_VENDOR_NSC, "Geode by NSC", },
{ X86_VENDOR_SIS, "SiS SiS SiS ", },
{ X86_VENDOR_HYGON, "HygonGenuine", },
};
static const char *const x86_vendor_name[] = {
[X86_VENDOR_INTEL] = "Intel",
[X86_VENDOR_CYRIX] = "Cyrix",
[X86_VENDOR_AMD] = "AMD",
[X86_VENDOR_UMC] = "UMC",
[X86_VENDOR_NEXGEN] = "NexGen",
[X86_VENDOR_CENTAUR] = "Centaur",
[X86_VENDOR_RISE] = "Rise",
[X86_VENDOR_TRANSMETA] = "Transmeta",
[X86_VENDOR_NSC] = "NSC",
[X86_VENDOR_SIS] = "SiS",
[X86_VENDOR_HYGON] = "Hygon",
};
static const char *cpu_vendor_name(int vendor)
{
const char *name;
name = "<invalid CPU vendor>";
if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
(x86_vendor_name[vendor] != 0))
name = x86_vendor_name[vendor];
return name;
}
static void identify_cpu(struct device *cpu)
{
char vendor_name[16];
int i;
vendor_name[0] = '\0'; /* Unset */
#ifndef __x86_64__
/* Find the id and vendor_name */
if (!cpu_have_cpuid()) {
/* Its a 486 if we can modify the AC flag */
if (flag_is_changeable_p(X86_EFLAGS_AC))
cpu->device = 0x00000400; /* 486 */
else
cpu->device = 0x00000300; /* 386 */
if ((cpu->device == 0x00000400) && test_cyrix_52div())
memcpy(vendor_name, "CyrixInstead", 13);
/* If we ever care we can enable cpuid here */
/* Detect NexGen with old hypercode */
else if (deep_magic_nexgen_probe())
memcpy(vendor_name, "NexGenDriven", 13);
}
#endif
if (cpu_have_cpuid()) {
int cpuid_level;
struct cpuid_result result;
result = cpuid(0x00000000);
cpuid_level = result.eax;
vendor_name[0] = (result.ebx >> 0) & 0xff;
vendor_name[1] = (result.ebx >> 8) & 0xff;
vendor_name[2] = (result.ebx >> 16) & 0xff;
vendor_name[3] = (result.ebx >> 24) & 0xff;
vendor_name[4] = (result.edx >> 0) & 0xff;
vendor_name[5] = (result.edx >> 8) & 0xff;
vendor_name[6] = (result.edx >> 16) & 0xff;
vendor_name[7] = (result.edx >> 24) & 0xff;
vendor_name[8] = (result.ecx >> 0) & 0xff;
vendor_name[9] = (result.ecx >> 8) & 0xff;
vendor_name[10] = (result.ecx >> 16) & 0xff;
vendor_name[11] = (result.ecx >> 24) & 0xff;
vendor_name[12] = '\0';
/* Intel-defined flags: level 0x00000001 */
if (cpuid_level >= 0x00000001)
cpu->device = cpu_get_cpuid();
else
/* Have CPUID level 0 only unheard of */
cpu->device = 0x00000400;
}
cpu->vendor = X86_VENDOR_UNKNOWN;
for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
cpu->vendor = x86_vendors[i].vendor;
break;
}
}
}
struct cpu_driver *find_cpu_driver(struct device *cpu)
{
struct cpu_driver *driver;
for (driver = _cpu_drivers; driver < _ecpu_drivers; driver++) {
const struct cpu_device_id *id;
for (id = driver->id_table;
id->vendor != X86_VENDOR_INVALID; id++) {
if ((cpu->vendor == id->vendor) &&
(cpu->device == id->device))
return driver;
if (id->vendor == X86_VENDOR_ANY)
return driver;
}
}
return NULL;
}
static void set_cpu_ops(struct device *cpu)
{
struct cpu_driver *driver = find_cpu_driver(cpu);
cpu->ops = driver ? driver->ops : NULL;
}
/* Keep track of default apic ids for SMM. */
static int cpus_default_apic_id[CONFIG_MAX_CPUS];
/*
* When CPUID executes with EAX set to 1, additional processor identification
* information is returned to EBX register:
* Default APIC ID: EBX[31-24] - this number is the 8 bit ID that is assigned
* to the local APIC on the processor during power on.
*/
static int initial_lapicid(void)
{
return cpuid_ebx(1) >> 24;
}
/* Function to keep track of cpu default apic_id */
void cpu_add_map_entry(unsigned int index)
{
cpus_default_apic_id[index] = initial_lapicid();
}
/* Returns default APIC id based on logical_cpu number or < 0 on failure. */
int cpu_get_apic_id(int logical_cpu)
{
if (logical_cpu >= CONFIG_MAX_CPUS || logical_cpu < 0)
return -1;
return cpus_default_apic_id[logical_cpu];
}
void cpu_initialize(unsigned int index)
{
/* Because we busy wait at the printk spinlock.
* It is important to keep the number of printed messages
* from secondary cpus to a minimum, when debugging is
* disabled.
*/
struct device *cpu;
struct cpu_info *info;
struct cpuinfo_x86 c;
info = cpu_info();
printk(BIOS_INFO, "Initializing CPU #%d\n", index);
cpu = info->cpu;
if (!cpu)
die("CPU: missing CPU device structure");
if (cpu->initialized)
return;
post_log_path(cpu);
/* Find what type of CPU we are dealing with */
identify_cpu(cpu);
printk(BIOS_DEBUG, "CPU: vendor %s device %x\n",
cpu_vendor_name(cpu->vendor), cpu->device);
get_fms(&c, cpu->device);
printk(BIOS_DEBUG, "CPU: family %02x, model %02x, stepping %02x\n",
c.x86, c.x86_model, c.x86_mask);
/* Lookup the cpu's operations */
set_cpu_ops(cpu);
if (!cpu->ops) {
/* mask out the stepping and try again */
cpu->device -= c.x86_mask;
set_cpu_ops(cpu);
cpu->device += c.x86_mask;
if (!cpu->ops)
die("Unknown cpu");
printk(BIOS_DEBUG, "Using generic CPU ops (good)\n");
}
/* Initialize the CPU */
if (cpu->ops && cpu->ops->init) {
cpu->enabled = 1;
cpu->initialized = 1;
cpu->ops->init(cpu);
}
post_log_clear();
printk(BIOS_INFO, "CPU #%d initialized\n", index);
}
void lb_arch_add_records(struct lb_header *header)
{
uint32_t freq_khz;
struct lb_tsc_info *tsc_info;
/* Don't advertise a TSC rate unless it's constant. */
if (!CONFIG(TSC_CONSTANT_RATE))
return;
freq_khz = tsc_freq_mhz() * 1000;
/* No use exposing a TSC frequency that is zero. */
if (freq_khz == 0)
return;
tsc_info = (void *)lb_new_record(header);
tsc_info->tag = LB_TAG_TSC_INFO;
tsc_info->size = sizeof(*tsc_info);
tsc_info->freq_khz = freq_khz;
}
void arch_bootstate_coreboot_exit(void)
{
/* APs are already parked by existing infrastructure. */
if (!CONFIG(PARALLEL_MP_AP_WORK))
return;
/* APs are waiting for work. Last thing to do is park them. */
mp_park_aps();
}
/*
* Previously cpu_index() implementation assumes that cpu_index()
* function will always getting called from coreboot context
* (ESP stack pointer will always refer to coreboot).
*
* But with FSP_USES_MP_SERVICES_PPI implementation in coreboot this
* assumption might not be true, where FSP context (stack pointer refers
* to FSP) will request to get cpu_index().
*
* Hence new logic to use cpuid to fetch lapic id and matches with
* cpus_default_apic_id[] variable to return correct cpu_index().
*/
int cpu_index(void)
{
int i;
int lapic_id = initial_lapicid();
for (i = 0; i < CONFIG_MAX_CPUS; i++) {
if (cpu_get_apic_id(i) == lapic_id)
return i;
}
return -1;
}