coreboot-kgpe-d16/src/soc/rockchip/rk3288/sdram.c
Patrick Georgi a73b93157f tree: drop last paragraph of GPL copyright header
It encourages users from writing to the FSF without giving an address.
Linux also prefers to drop that and their checkpatch.pl (that we
imported) looks out for that.

This is the result of util/scripts/no-fsf-addresses.sh with no further
editing.

Change-Id: Ie96faea295fe001911d77dbc51e9a6789558fbd6
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: http://review.coreboot.org/11888
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2015-10-31 21:37:39 +01:00

1123 lines
29 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright 2014 Rockchip Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/io.h>
#include <console/console.h>
#include <delay.h>
#include <soc/addressmap.h>
#include <soc/clock.h>
#include <soc/sdram.h>
#include <soc/grf.h>
#include <soc/soc.h>
#include <soc/pmu.h>
#include <string.h>
#include <types.h>
struct rk3288_ddr_pctl_regs {
u32 scfg;
u32 sctl;
u32 stat;
u32 intrstat;
u32 reserved0[12];
u32 mcmd;
u32 powctl;
u32 powstat;
u32 cmdtstat;
u32 tstaten;
u32 reserved1[3];
u32 mrrcfg0;
u32 mrrstat0;
u32 mrrstat1;
u32 reserved2[4];
u32 mcfg1;
u32 mcfg;
u32 ppcfg;
u32 mstat;
u32 lpddr2zqcfg;
u32 reserved3;
u32 dtupdes;
u32 dtuna;
u32 dtune;
u32 dtuprd0;
u32 dtuprd1;
u32 dtuprd2;
u32 dtuprd3;
u32 dtuawdt;
u32 reserved4[3];
u32 togcnt1u;
u32 tinit;
u32 trsth;
u32 togcnt100n;
u32 trefi;
u32 tmrd;
u32 trfc;
u32 trp;
u32 trtw;
u32 tal;
u32 tcl;
u32 tcwl;
u32 tras;
u32 trc;
u32 trcd;
u32 trrd;
u32 trtp;
u32 twr;
u32 twtr;
u32 texsr;
u32 txp;
u32 txpdll;
u32 tzqcs;
u32 tzqcsi;
u32 tdqs;
u32 tcksre;
u32 tcksrx;
u32 tcke;
u32 tmod;
u32 trstl;
u32 tzqcl;
u32 tmrr;
u32 tckesr;
u32 tdpd;
u32 reserved5[14];
u32 ecccfg;
u32 ecctst;
u32 eccclr;
u32 ecclog;
u32 reserved6[28];
u32 dtuwactl;
u32 dturactl;
u32 dtucfg;
u32 dtuectl;
u32 dtuwd0;
u32 dtuwd1;
u32 dtuwd2;
u32 dtuwd3;
u32 dtuwdm;
u32 dturd0;
u32 dturd1;
u32 dturd2;
u32 dturd3;
u32 dtulfsrwd;
u32 dtulfsrrd;
u32 dtueaf;
u32 dfitctrldelay;
u32 dfiodtcfg;
u32 dfiodtcfg1;
u32 dfiodtrankmap;
u32 dfitphywrdata;
u32 dfitphywrlat;
u32 reserved7[2];
u32 dfitrddataen;
u32 dfitphyrdlat;
u32 reserved8[2];
u32 dfitphyupdtype0;
u32 dfitphyupdtype1;
u32 dfitphyupdtype2;
u32 dfitphyupdtype3;
u32 dfitctrlupdmin;
u32 dfitctrlupdmax;
u32 dfitctrlupddly;
u32 reserved9;
u32 dfiupdcfg;
u32 dfitrefmski;
u32 dfitctrlupdi;
u32 reserved10[4];
u32 dfitrcfg0;
u32 dfitrstat0;
u32 dfitrwrlvlen;
u32 dfitrrdlvlen;
u32 dfitrrdlvlgateen;
u32 dfiststat0;
u32 dfistcfg0;
u32 dfistcfg1;
u32 reserved11;
u32 dfitdramclken;
u32 dfitdramclkdis;
u32 dfistcfg2;
u32 dfistparclr;
u32 dfistparlog;
u32 reserved12[3];
u32 dfilpcfg0;
u32 reserved13[3];
u32 dfitrwrlvlresp0;
u32 dfitrwrlvlresp1;
u32 dfitrwrlvlresp2;
u32 dfitrrdlvlresp0;
u32 dfitrrdlvlresp1;
u32 dfitrrdlvlresp2;
u32 dfitrwrlvldelay0;
u32 dfitrwrlvldelay1;
u32 dfitrwrlvldelay2;
u32 dfitrrdlvldelay0;
u32 dfitrrdlvldelay1;
u32 dfitrrdlvldelay2;
u32 dfitrrdlvlgatedelay0;
u32 dfitrrdlvlgatedelay1;
u32 dfitrrdlvlgatedelay2;
u32 dfitrcmd;
u32 reserved14[46];
u32 ipvr;
u32 iptr;
};
check_member(rk3288_ddr_pctl_regs, iptr, 0x03fc);
struct rk3288_ddr_publ_datx {
u32 dxgcr;
u32 dxgsr[2];
u32 dxdllcr;
u32 dxdqtr;
u32 dxdqstr;
u32 reserved[10];
};
struct rk3288_ddr_publ_regs {
u32 ridr;
u32 pir;
u32 pgcr;
u32 pgsr;
u32 dllgcr;
u32 acdllcr;
u32 ptr[3];
u32 aciocr;
u32 dxccr;
u32 dsgcr;
u32 dcr;
u32 dtpr[3];
u32 mr[4];
u32 odtcr;
u32 dtar;
u32 dtdr[2];
u32 reserved1[24];
u32 dcuar;
u32 dcudr;
u32 dcurr;
u32 dculr;
u32 dcugcr;
u32 dcutpr;
u32 dcusr[2];
u32 reserved2[8];
u32 bist[17];
u32 reserved3[15];
u32 zq0cr[2];
u32 zq0sr[2];
u32 zq1cr[2];
u32 zq1sr[2];
u32 zq2cr[2];
u32 zq2sr[2];
u32 zq3cr[2];
u32 zq3sr[2];
struct rk3288_ddr_publ_datx datx8[4];
};
check_member(rk3288_ddr_publ_regs, datx8[3].dxdqstr, 0x0294);
struct rk3288_msch_regs {
u32 coreid;
u32 revisionid;
u32 ddrconf;
u32 ddrtiming;
u32 ddrmode;
u32 readlatency;
u32 reserved1[8];
u32 activate;
u32 devtodev;
};
check_member(rk3288_msch_regs, devtodev, 0x003c);
static struct rk3288_ddr_pctl_regs * const rk3288_ddr_pctl[2] = {
(void *)DDR_PCTL0_BASE, (void *)DDR_PCTL1_BASE};
static struct rk3288_ddr_publ_regs * const rk3288_ddr_publ[2] = {
(void *)DDR_PUBL0_BASE, (void *)DDR_PUBL1_BASE};
static struct rk3288_msch_regs * const rk3288_msch[2] = {
(void *)SERVICE_BUS_BASE, (void *)SERVICE_BUS_BASE + 0x80};
/* PCT_DFISTCFG0 */
#define DFI_INIT_START (1 << 0)
/* PCT_DFISTCFG1 */
#define DFI_DRAM_CLK_SR_EN (1 << 0)
#define DFI_DRAM_CLK_DPD_EN (1 << 1)
/* PCT_DFISTCFG2 */
#define DFI_PARITY_INTR_EN (1 << 0)
#define DFI_PARITY_EN (1 << 1)
/* PCT_DFILPCFG0 */
#define TLP_RESP_TIME(n) (n << 16)
#define LP_SR_EN (1 << 8)
#define LP_PD_EN (1 << 0)
/* PCT_DFITCTRLDELAY */
#define TCTRL_DELAY_TIME(n) (n << 0)
/* PCT_DFITPHYWRDATA */
#define TPHY_WRDATA_TIME(n) (n << 0)
/* PCT_DFITPHYRDLAT */
#define TPHY_RDLAT_TIME(n) (n << 0)
/* PCT_DFITDRAMCLKDIS */
#define TDRAM_CLK_DIS_TIME(n) (n << 0)
/* PCT_DFITDRAMCLKEN */
#define TDRAM_CLK_EN_TIME(n) (n << 0)
/* PCTL_DFIODTCFG */
#define RANK0_ODT_WRITE_SEL (1 << 3)
#define RANK1_ODT_WRITE_SEL (1 << 11)
/* PCTL_DFIODTCFG1 */
#define ODT_LEN_BL8_W(n) (n<<16)
/* PUBL_ACDLLCR */
#define ACDLLCR_DLLDIS (1 << 31)
#define ACDLLCR_DLLSRST (1 << 30)
/* PUBL_DXDLLCR */
#define DXDLLCR_DLLDIS (1 << 31)
#define DXDLLCR_DLLSRST (1 << 30)
/* PUBL_DLLGCR */
#define DLLGCR_SBIAS (1 << 30)
/* PUBL_DXGCR */
#define DQSRTT (1 << 9)
#define DQRTT (1 << 10)
/* PIR */
#define PIR_INIT (1 << 0)
#define PIR_DLLSRST (1 << 1)
#define PIR_DLLLOCK (1 << 2)
#define PIR_ZCAL (1 << 3)
#define PIR_ITMSRST (1 << 4)
#define PIR_DRAMRST (1 << 5)
#define PIR_DRAMINIT (1 << 6)
#define PIR_QSTRN (1 << 7)
#define PIR_RVTRN (1 << 8)
#define PIR_ICPC (1 << 16)
#define PIR_DLLBYP (1 << 17)
#define PIR_CTLDINIT (1 << 18)
#define PIR_CLRSR (1 << 28)
#define PIR_LOCKBYP (1 << 29)
#define PIR_ZCALBYP (1 << 30)
#define PIR_INITBYP (1u << 31)
/* PGCR */
#define PGCR_DFTLMT(n) ((n) << 3)
#define PGCR_DFTCMP(n) ((n) << 2)
#define PGCR_DQSCFG(n) ((n) << 1)
#define PGCR_ITMDMD(n) ((n) << 0)
/* PGSR */
#define PGSR_IDONE (1 << 0)
#define PGSR_DLDONE (1 << 1)
#define PGSR_ZCDONE (1 << 2)
#define PGSR_DIDONE (1 << 3)
#define PGSR_DTDONE (1 << 4)
#define PGSR_DTERR (1 << 5)
#define PGSR_DTIERR (1 << 6)
#define PGSR_DFTERR (1 << 7)
#define PGSR_RVERR (1 << 8)
#define PGSR_RVEIRR (1 << 9)
/* PTR0 */
#define PRT_ITMSRST(n) ((n) << 18)
#define PRT_DLLLOCK(n) ((n) << 6)
#define PRT_DLLSRST(n) ((n) << 0)
/* PTR1 */
#define PRT_DINIT0(n) ((n) << 0)
#define PRT_DINIT1(n) ((n) << 19)
/* PTR2 */
#define PRT_DINIT2(n) ((n) << 0)
#define PRT_DINIT3(n) ((n) << 17)
/* DCR */
#define DDRMD_LPDDR 0
#define DDRMD_DDR 1
#define DDRMD_DDR2 2
#define DDRMD_DDR3 3
#define DDRMD_LPDDR2_LPDDR3 4
#define DDRMD_MSK (7 << 0)
#define DDRMD_CFG(n) ((n) << 0)
#define PDQ_MSK (7 << 4)
#define PDQ_CFG(n) ((n) << 4)
/* DXCCR */
#define DQSNRES_MSK (0x0f << 8)
#define DQSNRES_CFG(n) ((n) << 8)
#define DQSRES_MSK (0x0f << 4)
#define DQSRES_CFG(n) ((n) << 4)
/* DTPR */
#define TDQSCKMAX_VAL(n) (((n) >> 27) & 7)
#define TDQSCK_VAL(n) (((n) >> 24) & 7)
/* DSGCR */
#define DQSGX_MSK (0x07 << 5)
#define DQSGX_CFG(n) ((n) << 5)
#define DQSGE_MSK (0x07 << 8)
#define DQSGE_CFG(n) ((n) << 8)
/* SCTL */
#define INIT_STATE (0)
#define CFG_STATE (1)
#define GO_STATE (2)
#define SLEEP_STATE (3)
#define WAKEUP_STATE (4)
/* STAT */
#define LP_TRIG_VAL(n) (((n) >> 4) & 7)
#define PCTL_STAT_MSK (7)
#define INIT_MEM (0)
#define CONFIG (1)
#define CONFIG_REQ (2)
#define ACCESS (3)
#define ACCESS_REQ (4)
#define LOW_POWER (5)
#define LOW_POWER_ENTRY_REQ (6)
#define LOW_POWER_EXIT_REQ (7)
/* ZQCR*/
#define PD_OUTPUT(n) ((n) << 0)
#define PU_OUTPUT(n) ((n) << 5)
#define PD_ONDIE(n) ((n) << 10)
#define PU_ONDIE(n) ((n) << 15)
#define ZDEN(n) ((n) << 28)
/* DDLGCR */
#define SBIAS_BYPASS (1 << 23)
/* MCFG */
#define MDDR_LPDDR2_CLK_STOP_IDLE(n) ((n) << 24)
#define PD_IDLE(n) ((n) << 8)
#define MDDR_EN (2 << 22)
#define LPDDR2_EN (3 << 22)
#define DDR2_EN (0 << 5)
#define DDR3_EN (1 << 5)
#define LPDDR2_S2 (0 << 6)
#define LPDDR2_S4 (1 << 6)
#define MDDR_LPDDR2_BL_2 (0 << 20)
#define MDDR_LPDDR2_BL_4 (1 << 20)
#define MDDR_LPDDR2_BL_8 (2 << 20)
#define MDDR_LPDDR2_BL_16 (3 << 20)
#define DDR2_DDR3_BL_4 (0)
#define DDR2_DDR3_BL_8 (1)
#define TFAW_CFG(n) (((n)-4) << 18)
#define PD_EXIT_SLOW (0 << 17)
#define PD_EXIT_FAST (1 << 17)
#define PD_TYPE(n) ((n) << 16)
#define BURSTLENGTH_CFG(n) (((n) >> 1) << 20)
/* POWCTL */
#define POWER_UP_START (1 << 0)
/* POWSTAT */
#define POWER_UP_DONE (1 << 0)
/* MCMD */
#define DESELECT_CMD (0)
#define PREA_CMD (1)
#define REF_CMD (2)
#define MRS_CMD (3)
#define ZQCS_CMD (4)
#define ZQCL_CMD (5)
#define RSTL_CMD (6)
#define MRR_CMD (8)
#define DPDE_CMD (9)
#define LPDDR2_MA(n) (((n) & 0xff) << 4)
#define LPDDR2_OP(n) (((n) & 0xff) << 12)
#define START_CMD (1u << 31)
/* DEVTODEV */
#define BUSWRTORD(n) ((n) << 4)
#define BUSRDTOWR(n) ((n) << 2)
#define BUSRDTORD(n) ((n) << 0)
/* GRF_SOC_CON0 */
#define MSCH_MAINDDR3(ch, n) (((n) << (3 + (ch))) \
| ((1 << (3 + (ch))) << 16))
/* GRF_SOC_CON2 */
#define PCTL_LPDDR3_ODT_EN(ch, n) RK_CLRSETBITS(1 << (10 + (3 * (ch))), \
(n) << (10 + (3 * (ch))))
#define PCTL_BST_DISABLE(ch, n) RK_CLRSETBITS(1 << (9 + (3 * (ch))), \
(n) << (9 + (3 * (ch))))
#define PUBL_LPDDR3_EN(ch, n) RK_CLRSETBITS(1 << (8 + (3 * (ch))), \
(n) << (8 + (3 * (ch))))
/* mr1 for ddr3 */
#define DDR3_DLL_ENABLE (0)
#define DDR3_DLL_DISABLE (1)
/*
* sys_reg bitfield struct
* [31] row_3_4_ch1
* [30] row_3_4_ch0
* [29:28] chinfo
* [27] rank_ch1
* [26:25] col_ch1
* [24] bk_ch1
* [23:22] cs0_row_ch1
* [21:20] cs1_row_ch1
* [19:18] bw_ch1
* [17:16] dbw_ch1;
* [15:13] ddrtype
* [12] channelnum
* [11] rank_ch0
* [10:9] col_ch0
* [8] bk_ch0
* [7:6] cs0_row_ch0
* [5:4] cs1_row_ch0
* [3:2] bw_ch0
* [1:0] dbw_ch0
*/
#define SYS_REG_ENC_ROW_3_4(n, ch) ((n) << (30 + (ch)))
#define SYS_REG_DEC_ROW_3_4(n, ch) ((n >> (30 + ch)) & 0x1)
#define SYS_REG_ENC_CHINFO(ch) (1 << (28 + (ch)))
#define SYS_REG_ENC_DDRTYPE(n) ((n) << 13)
#define SYS_REG_ENC_NUM_CH(n) (((n) - 1) << 12)
#define SYS_REG_DEC_NUM_CH(n) (1 + ((n >> 12) & 0x1))
#define SYS_REG_ENC_RANK(n, ch) (((n) - 1) << (11 + ((ch) * 16)))
#define SYS_REG_DEC_RANK(n, ch) (1 + ((n >> (11 + 16 * ch)) & 0x1))
#define SYS_REG_ENC_COL(n, ch) (((n) - 9) << (9 + ((ch) * 16)))
#define SYS_REG_DEC_COL(n, ch) (9 + ((n >> (9 + 16 * ch)) & 0x3))
#define SYS_REG_ENC_BK(n, ch) (((n) == 3 ? 0 : 1) \
<< (8 + ((ch) * 16)))
#define SYS_REG_DEC_BK(n, ch) (3 - ((n >> (8 + 16 * ch)) & 0x1))
#define SYS_REG_ENC_CS0_ROW(n, ch) (((n) - 13) << (6 + ((ch) * 16)))
#define SYS_REG_DEC_CS0_ROW(n, ch) (13 + ((n >> (6 + 16 * ch)) & 0x3))
#define SYS_REG_ENC_CS1_ROW(n, ch) (((n) - 13) << (4 + ((ch) * 16)))
#define SYS_REG_DEC_CS1_ROW(n, ch) (13 + ((n >> (4 + 16 * ch)) & 0x3))
#define SYS_REG_ENC_BW(n, ch) ((2 >> (n)) << (2 + ((ch) * 16)))
#define SYS_REG_DEC_BW(n, ch) (2 >> ((n >> (2 + 16 * ch)) & 0x3))
#define SYS_REG_ENC_DBW(n, ch) ((2 >> (n)) << (0 + ((ch) * 16)))
#define SYS_REG_DEC_DBW(n, ch) (2 >> ((n >> (0 + 16 * ch)) & 0x3))
static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
{
int i;
for (i = 0; i < n / sizeof(u32); i++) {
write32(dest, *src);
src++;
dest++;
}
}
static void phy_pctrl_reset(struct rk3288_ddr_publ_regs *ddr_publ_regs,
u32 channel)
{
int i;
rkclk_ddr_reset(channel, 1, 1);
udelay(1);
clrbits_le32(&ddr_publ_regs->acdllcr, ACDLLCR_DLLSRST);
for (i = 0; i < 4; i++)
clrbits_le32(&ddr_publ_regs->datx8[i].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
setbits_le32(&ddr_publ_regs->acdllcr, ACDLLCR_DLLSRST);
for (i = 0; i < 4; i++)
setbits_le32(&ddr_publ_regs->datx8[i].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
rkclk_ddr_reset(channel, 1, 0);
udelay(10);
rkclk_ddr_reset(channel, 0, 0);
udelay(10);
}
static void phy_dll_bypass_set(struct rk3288_ddr_publ_regs *ddr_publ_regs,
u32 freq)
{
int i;
if (freq <= 250*MHz) {
if (freq <= 150*MHz)
clrbits_le32(&ddr_publ_regs->dllgcr, SBIAS_BYPASS);
else
setbits_le32(&ddr_publ_regs->dllgcr, SBIAS_BYPASS);
setbits_le32(&ddr_publ_regs->acdllcr, ACDLLCR_DLLDIS);
for (i = 0; i < 4; i++)
setbits_le32(&ddr_publ_regs->datx8[i].dxdllcr,
DXDLLCR_DLLDIS);
setbits_le32(&ddr_publ_regs->pir, PIR_DLLBYP);
} else {
clrbits_le32(&ddr_publ_regs->dllgcr, SBIAS_BYPASS);
clrbits_le32(&ddr_publ_regs->acdllcr, ACDLLCR_DLLDIS);
for (i = 0; i < 4; i++)
clrbits_le32(&ddr_publ_regs->datx8[i].dxdllcr,
DXDLLCR_DLLDIS);
clrbits_le32(&ddr_publ_regs->pir, PIR_DLLBYP);
}
}
static void dfi_cfg(struct rk3288_ddr_pctl_regs *ddr_pctl_regs, u32 dramtype)
{
write32(&ddr_pctl_regs->dfistcfg0, DFI_INIT_START);
write32(&ddr_pctl_regs->dfistcfg1,
DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN);
write32(&ddr_pctl_regs->dfistcfg2, DFI_PARITY_INTR_EN | DFI_PARITY_EN);
write32(&ddr_pctl_regs->dfilpcfg0,
TLP_RESP_TIME(7) | LP_SR_EN | LP_PD_EN);
write32(&ddr_pctl_regs->dfitctrldelay, TCTRL_DELAY_TIME(2));
write32(&ddr_pctl_regs->dfitphywrdata, TPHY_WRDATA_TIME(1));
write32(&ddr_pctl_regs->dfitphyrdlat, TPHY_RDLAT_TIME(0xf));
write32(&ddr_pctl_regs->dfitdramclkdis, TDRAM_CLK_DIS_TIME(2));
write32(&ddr_pctl_regs->dfitdramclken, TDRAM_CLK_EN_TIME(2));
write32(&ddr_pctl_regs->dfitphyupdtype0, 0x1);
/* cs0 and cs1 write odt enable */
write32(&ddr_pctl_regs->dfiodtcfg,
(RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL));
/* odt write length */
write32(&ddr_pctl_regs->dfiodtcfg1, ODT_LEN_BL8_W(7));
/* phyupd and ctrlupd disabled */
write32(&ddr_pctl_regs->dfiupdcfg, 0);
}
static void pctl_cfg(u32 channel,
const struct rk3288_sdram_params *sdram_params)
{
unsigned int burstlen;
struct rk3288_ddr_pctl_regs *ddr_pctl_regs = rk3288_ddr_pctl[channel];
burstlen = (sdram_params->noc_timing >> 18) & 0x7;
copy_to_reg(&ddr_pctl_regs->togcnt1u,
&(sdram_params->pctl_timing.togcnt1u),
sizeof(sdram_params->pctl_timing));
switch (sdram_params->dramtype) {
case LPDDR3:
write32(&ddr_pctl_regs->dfitrddataen,
sdram_params->pctl_timing.tcl - 1);
write32(&ddr_pctl_regs->dfitphywrlat,
sdram_params->pctl_timing.tcwl);
write32(&ddr_pctl_regs->mcfg, LPDDR2_S4 |
MDDR_LPDDR2_CLK_STOP_IDLE(0) | LPDDR2_EN |
BURSTLENGTH_CFG(burstlen) | TFAW_CFG(6) |
PD_EXIT_FAST | PD_TYPE(1) | PD_IDLE(0));
write32(&rk3288_grf->soc_con0, MSCH_MAINDDR3(channel, 0));
write32(&rk3288_grf->soc_con2, PUBL_LPDDR3_EN(channel, 1) |
PCTL_BST_DISABLE(channel, 1) |
PCTL_LPDDR3_ODT_EN(channel, sdram_params->odt));
break;
case DDR3:
if (sdram_params->phy_timing.mr[1] & DDR3_DLL_DISABLE)
write32(&ddr_pctl_regs->dfitrddataen,
sdram_params->pctl_timing.tcl - 3);
else
write32(&ddr_pctl_regs->dfitrddataen,
sdram_params->pctl_timing.tcl - 2);
write32(&ddr_pctl_regs->dfitphywrlat,
sdram_params->pctl_timing.tcwl - 1);
write32(&ddr_pctl_regs->mcfg,
MDDR_LPDDR2_CLK_STOP_IDLE(0) | DDR3_EN |
DDR2_DDR3_BL_8 | TFAW_CFG(6) |
PD_EXIT_SLOW | PD_TYPE(1) | PD_IDLE(0));
write32(&rk3288_grf->soc_con0, MSCH_MAINDDR3(channel, 1));
write32(&rk3288_grf->soc_con2, PUBL_LPDDR3_EN(channel, 0) |
PCTL_BST_DISABLE(channel, 0) |
PCTL_LPDDR3_ODT_EN(channel, 0));
break;
}
setbits_le32(&ddr_pctl_regs->scfg, 1);
}
static void phy_cfg(u32 channel, const struct rk3288_sdram_params *sdram_params)
{
u32 i;
u32 dinit2 = div_round_up(sdram_params->ddr_freq/MHz * 200000, 1000);
struct rk3288_ddr_publ_regs *ddr_publ_regs = rk3288_ddr_publ[channel];
struct rk3288_msch_regs *msch_regs = rk3288_msch[channel];
/* DDR PHY Timing */
copy_to_reg(&ddr_publ_regs->dtpr[0],
&(sdram_params->phy_timing.dtpr0),
sizeof(sdram_params->phy_timing));
write32(&msch_regs->ddrtiming, sdram_params->noc_timing);
write32(&msch_regs->readlatency, 0x3f);
write32(&msch_regs->activate, sdram_params->noc_activate);
write32(&msch_regs->devtodev,
BUSWRTORD(2) | BUSRDTOWR(2) | BUSRDTORD(1));
write32(&ddr_publ_regs->ptr[0],
PRT_DLLLOCK(div_round_up(sdram_params->ddr_freq / MHz * 5120, 1000))
| PRT_DLLSRST(div_round_up(sdram_params->ddr_freq / MHz * 50, 1000))
| PRT_ITMSRST(8));
write32(&ddr_publ_regs->ptr[1],
PRT_DINIT0(div_round_up(sdram_params->ddr_freq / MHz * 500000, 1000))
| PRT_DINIT1(div_round_up(sdram_params->ddr_freq / MHz * 400, 1000)));
write32(&ddr_publ_regs->ptr[2], PRT_DINIT2(MIN(dinit2, 0x1ffff))
| PRT_DINIT3(div_round_up(sdram_params->ddr_freq / MHz * 1000, 1000)));
switch (sdram_params->dramtype) {
case LPDDR3:
clrsetbits_le32(&ddr_publ_regs->pgcr, 0x1F, PGCR_DFTLMT(0)
| PGCR_DFTCMP(0) | PGCR_DQSCFG(1) | PGCR_ITMDMD(0));
/* DDRMODE select LPDDR3 */
clrsetbits_le32(&ddr_publ_regs->dcr, DDRMD_MSK,
DDRMD_CFG(DDRMD_LPDDR2_LPDDR3));
clrsetbits_le32(&ddr_publ_regs->dxccr, DQSNRES_MSK | DQSRES_MSK,
DQSRES_CFG(4) | DQSNRES_CFG(0xc));
i = TDQSCKMAX_VAL(read32(&ddr_publ_regs->dtpr[1]))
- TDQSCK_VAL(read32(&ddr_publ_regs->dtpr[1]));
clrsetbits_le32(&ddr_publ_regs->dsgcr, DQSGE_MSK | DQSGX_MSK,
DQSGE_CFG(i) | DQSGX_CFG(i));
break;
case DDR3:
clrbits_le32(&ddr_publ_regs->pgcr, 0x1f);
clrsetbits_le32(&ddr_publ_regs->dcr, DDRMD_MSK,
DDRMD_CFG(DDRMD_DDR3));
break;
}
if (sdram_params->odt) {
/*dynamic RTT enable */
for (i = 0; i < 4; i++)
setbits_le32(&ddr_publ_regs->datx8[i].dxgcr,
DQSRTT | DQRTT);
} else {
/*dynamic RTT disable */
for (i = 0; i < 4; i++)
clrbits_le32(&ddr_publ_regs->datx8[i].dxgcr,
DQSRTT | DQRTT);
}
}
static void phy_init(struct rk3288_ddr_publ_regs *ddr_publ_regs)
{
setbits_le32(&ddr_publ_regs->pir, PIR_INIT | PIR_DLLSRST
| PIR_DLLLOCK | PIR_ZCAL | PIR_ITMSRST | PIR_CLRSR);
udelay(1);
while ((read32(&ddr_publ_regs->pgsr) &
(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) !=
(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE))
;
}
static void send_command(struct rk3288_ddr_pctl_regs *ddr_pctl_regs, u32 rank,
u32 cmd, u32 arg)
{
write32(&ddr_pctl_regs->mcmd, (START_CMD | (rank << 20) | arg | cmd));
udelay(1);
while (read32(&ddr_pctl_regs->mcmd) & START_CMD)
;
}
static void memory_init(struct rk3288_ddr_publ_regs *ddr_publ_regs,
u32 dramtype)
{
setbits_le32(&ddr_publ_regs->pir,
(PIR_INIT | PIR_DRAMINIT | PIR_LOCKBYP
| PIR_ZCALBYP | PIR_CLRSR | PIR_ICPC
| (dramtype == DDR3 ? PIR_DRAMRST : 0)));
udelay(1);
while ((read32(&ddr_publ_regs->pgsr) & (PGSR_IDONE | PGSR_DLDONE))
!= (PGSR_IDONE | PGSR_DLDONE))
;
}
static void move_to_config_state(struct rk3288_ddr_publ_regs *ddr_publ_regs,
struct rk3288_ddr_pctl_regs *ddr_pctl_regs)
{
unsigned int state;
while (1) {
state = read32(&ddr_pctl_regs->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
write32(&ddr_pctl_regs->sctl, WAKEUP_STATE);
while ((read32(&ddr_pctl_regs->stat) & PCTL_STAT_MSK)
!= ACCESS)
;
/* wait DLL lock */
while ((read32(&ddr_publ_regs->pgsr) & PGSR_DLDONE)
!= PGSR_DLDONE)
;
/* if at low power state,need wakeup first,
* and then enter the config
* so here no break.
*/
case ACCESS:
case INIT_MEM:
write32(&ddr_pctl_regs->sctl, CFG_STATE);
while ((read32(&ddr_pctl_regs->stat) & PCTL_STAT_MSK)
!= CONFIG)
;
break;
case CONFIG:
return;
default:
break;
}
}
}
static void set_bandwidth_ratio(u32 channel, u32 n)
{
struct rk3288_ddr_pctl_regs *ddr_pctl_regs = rk3288_ddr_pctl[channel];
struct rk3288_ddr_publ_regs *ddr_publ_regs = rk3288_ddr_publ[channel];
struct rk3288_msch_regs *msch_regs = rk3288_msch[channel];
if (n == 1) {
setbits_le32(&ddr_pctl_regs->ppcfg, 1);
write32(&rk3288_grf->soc_con0, RK_SETBITS(1 << (8 + channel)));
setbits_le32(&msch_regs->ddrtiming, 1 << 31);
/* Data Byte disable*/
clrbits_le32(&ddr_publ_regs->datx8[2].dxgcr, 1);
clrbits_le32(&ddr_publ_regs->datx8[3].dxgcr, 1);
/*disable DLL */
setbits_le32(&ddr_publ_regs->datx8[2].dxdllcr,
DXDLLCR_DLLDIS);
setbits_le32(&ddr_publ_regs->datx8[3].dxdllcr,
DXDLLCR_DLLDIS);
} else {
clrbits_le32(&ddr_pctl_regs->ppcfg, 1);
write32(&rk3288_grf->soc_con0, RK_CLRBITS(1 << (8 + channel)));
clrbits_le32(&msch_regs->ddrtiming, 1 << 31);
/* Data Byte enable*/
setbits_le32(&ddr_publ_regs->datx8[2].dxgcr, 1);
setbits_le32(&ddr_publ_regs->datx8[3].dxgcr, 1);
/*enable DLL */
clrbits_le32(&ddr_publ_regs->datx8[2].dxdllcr,
DXDLLCR_DLLDIS);
clrbits_le32(&ddr_publ_regs->datx8[3].dxdllcr,
DXDLLCR_DLLDIS);
/* reset DLL */
clrbits_le32(&ddr_publ_regs->datx8[2].dxdllcr,
DXDLLCR_DLLSRST);
clrbits_le32(&ddr_publ_regs->datx8[3].dxdllcr,
DXDLLCR_DLLSRST);
udelay(10);
setbits_le32(&ddr_publ_regs->datx8[2].dxdllcr,
DXDLLCR_DLLSRST);
setbits_le32(&ddr_publ_regs->datx8[3].dxdllcr,
DXDLLCR_DLLSRST);
}
setbits_le32(&ddr_pctl_regs->dfistcfg0, 1 << 2);
}
static int data_training(u32 channel,
const struct rk3288_sdram_params *sdram_params)
{
unsigned int j;
int ret = 0;
u32 rank;
int i;
u32 step[2] = { PIR_QSTRN, PIR_RVTRN };
struct rk3288_ddr_publ_regs *ddr_publ_regs = rk3288_ddr_publ[channel];
struct rk3288_ddr_pctl_regs *ddr_pctl_regs = rk3288_ddr_pctl[channel];
/* disable auto refresh */
write32(&ddr_pctl_regs->trefi, 0);
if (sdram_params->dramtype != LPDDR3)
setbits_le32(&ddr_publ_regs->pgcr, PGCR_DQSCFG(1));
rank = sdram_params->ch[channel].rank | 1;
for (j = 0; j < ARRAY_SIZE(step); j++) {
/*
* trigger QSTRN and RVTRN
* clear DTDONE status
*/
setbits_le32(&ddr_publ_regs->pir, PIR_CLRSR);
/* trigger DTT */
setbits_le32(&ddr_publ_regs->pir,
PIR_INIT | step[j] | PIR_LOCKBYP | PIR_ZCALBYP |
PIR_CLRSR);
udelay(1);
/* wait echo byte DTDONE */
while ((read32(&ddr_publ_regs->datx8[0].dxgsr[0]) & rank)
!= rank)
;
while ((read32(&ddr_publ_regs->datx8[1].dxgsr[0]) & rank)
!= rank)
;
if (!(read32(&ddr_pctl_regs->ppcfg) & 1)) {
while ((read32(&ddr_publ_regs->datx8[2].dxgsr[0])
& rank) != rank)
;
while ((read32(&ddr_publ_regs->datx8[3].dxgsr[0])
& rank) != rank)
;
}
if (read32(&ddr_publ_regs->pgsr) &
(PGSR_DTERR | PGSR_RVERR | PGSR_RVEIRR)) {
ret = -1;
break;
}
}
/* send some auto refresh to complement the lost while DTT */
for (i = 0; i < (rank > 1 ? 8 : 4); i++)
send_command(ddr_pctl_regs, rank, REF_CMD, 0);
if (sdram_params->dramtype != LPDDR3)
clrbits_le32(&ddr_publ_regs->pgcr, PGCR_DQSCFG(1));
/* resume auto refresh */
write32(&ddr_pctl_regs->trefi, sdram_params->pctl_timing.trefi);
return ret;
}
static void move_to_access_state(u32 chnum)
{
struct rk3288_ddr_publ_regs *ddr_publ_regs = rk3288_ddr_publ[chnum];
struct rk3288_ddr_pctl_regs *ddr_pctl_regs = rk3288_ddr_pctl[chnum];
unsigned int state;
while (1) {
state = read32(&ddr_pctl_regs->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
if (LP_TRIG_VAL(read32(&ddr_pctl_regs->stat)) == 1)
return;
write32(&ddr_pctl_regs->sctl, WAKEUP_STATE);
while ((read32(&ddr_pctl_regs->stat) & PCTL_STAT_MSK)
!= ACCESS)
;
/* wait DLL lock */
while ((read32(&ddr_publ_regs->pgsr) & PGSR_DLDONE)
!= PGSR_DLDONE)
;
break;
case INIT_MEM:
write32(&ddr_pctl_regs->sctl, CFG_STATE);
while ((read32(&ddr_pctl_regs->stat) & PCTL_STAT_MSK)
!= CONFIG)
;
case CONFIG:
write32(&ddr_pctl_regs->sctl, GO_STATE);
while ((read32(&ddr_pctl_regs->stat) & PCTL_STAT_MSK)
== CONFIG)
;
break;
case ACCESS:
return;
default:
break;
}
}
}
static void dram_cfg_rbc(u32 chnum,
const struct rk3288_sdram_params *sdram_params)
{
struct rk3288_ddr_publ_regs *ddr_publ_regs = rk3288_ddr_publ[chnum];
struct rk3288_msch_regs *msch_regs = rk3288_msch[chnum];
if (sdram_params->ch[chnum].bk == 3)
clrsetbits_le32(&ddr_publ_regs->dcr, PDQ_MSK, PDQ_CFG(1));
else
clrbits_le32(&ddr_publ_regs->dcr, PDQ_MSK);
write32(&msch_regs->ddrconf, sdram_params->ddrconfig);
}
static void dram_all_config(const struct rk3288_sdram_params *sdram_params)
{
u32 sys_reg = 0;
unsigned int channel;
sys_reg |= SYS_REG_ENC_DDRTYPE(sdram_params->dramtype);
sys_reg |= SYS_REG_ENC_NUM_CH(sdram_params->num_channels);
for (channel = 0; channel < sdram_params->num_channels; channel++) {
const struct rk3288_sdram_channel *info =
&(sdram_params->ch[channel]);
sys_reg |= SYS_REG_ENC_ROW_3_4(info->row_3_4, channel);
sys_reg |= SYS_REG_ENC_CHINFO(channel);
sys_reg |= SYS_REG_ENC_RANK(info->rank, channel);
sys_reg |= SYS_REG_ENC_COL(info->col, channel);
sys_reg |= SYS_REG_ENC_BK(info->bk, channel);
sys_reg |= SYS_REG_ENC_CS0_ROW(info->cs0_row, channel);
sys_reg |= SYS_REG_ENC_CS1_ROW(info->cs1_row, channel);
sys_reg |= SYS_REG_ENC_BW(info->bw, channel);
sys_reg |= SYS_REG_ENC_DBW(info->dbw, channel);
dram_cfg_rbc(channel, sdram_params);
}
write32(&rk3288_pmu->sys_reg[2], sys_reg);
write32(&rk3288_sgrf->soc_con2,
RK_CLRSETBITS(0x1F, sdram_params->stride));
}
void sdram_init(const struct rk3288_sdram_params *sdram_params)
{
int channel;
int zqcr;
printk(BIOS_INFO, "Starting SDRAM initialization...\n");
if ((sdram_params->dramtype == DDR3
&& sdram_params->ddr_freq > 800*MHz)
|| (sdram_params->dramtype == LPDDR3
&& sdram_params->ddr_freq > 533*MHz))
die("SDRAM frequency is to high!");
rkclk_configure_ddr(sdram_params->ddr_freq);
for (channel = 0; channel < 2; channel++) {
struct rk3288_ddr_pctl_regs *ddr_pctl_regs =
rk3288_ddr_pctl[channel];
struct rk3288_ddr_publ_regs *ddr_publ_regs =
rk3288_ddr_publ[channel];
phy_pctrl_reset(ddr_publ_regs, channel);
phy_dll_bypass_set(ddr_publ_regs, sdram_params->ddr_freq);
if (channel >= sdram_params->num_channels)
continue;
dfi_cfg(ddr_pctl_regs, sdram_params->dramtype);
pctl_cfg(channel, sdram_params);
phy_cfg(channel, sdram_params);
phy_init(ddr_publ_regs);
write32(&ddr_pctl_regs->powctl, POWER_UP_START);
while (!(read32(&ddr_pctl_regs->powstat) & POWER_UP_DONE))
;
memory_init(ddr_publ_regs, sdram_params->dramtype);
move_to_config_state(ddr_publ_regs, ddr_pctl_regs);
if (sdram_params->dramtype == LPDDR3) {
send_command(ddr_pctl_regs, 3, DESELECT_CMD, 0);
udelay(1);
send_command(ddr_pctl_regs, 3, PREA_CMD, 0);
udelay(1);
send_command(ddr_pctl_regs, 3, MRS_CMD, LPDDR2_MA(63) |
LPDDR2_OP(0xFC));
udelay(1);
send_command(ddr_pctl_regs, 3, MRS_CMD, LPDDR2_MA(1) |
LPDDR2_OP(sdram_params->phy_timing.mr[1]));
udelay(1);
send_command(ddr_pctl_regs, 3, MRS_CMD, LPDDR2_MA(2) |
LPDDR2_OP(sdram_params->phy_timing.mr[2]));
udelay(1);
send_command(ddr_pctl_regs, 3, MRS_CMD, LPDDR2_MA(3) |
LPDDR2_OP(sdram_params->phy_timing.mr[3]));
udelay(1);
}
set_bandwidth_ratio(channel, sdram_params->ch[channel].bw);
/*
* set cs
* CS0, n=1
* CS1, n=2
* CS0 & CS1, n = 3
*/
clrsetbits_le32(&ddr_publ_regs->pgcr, 0xF << 18,
(sdram_params->ch[channel].rank | 1) << 18);
/* DS=40ohm,ODT=155ohm */
zqcr = ZDEN(1) | PU_ONDIE(0x2) | PD_ONDIE(0x2)
| PU_OUTPUT(0x19) | PD_OUTPUT(0x19);
write32(&ddr_publ_regs->zq1cr[0], zqcr);
write32(&ddr_publ_regs->zq0cr[0], zqcr);
if (sdram_params->dramtype == LPDDR3) {
/* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */
udelay(10);
send_command(ddr_pctl_regs,
(sdram_params->ch[channel].rank | 1),
MRS_CMD, LPDDR2_MA(11) | (sdram_params->odt ?
LPDDR2_OP(0x3) : LPDDR2_OP(0x0)));
if (channel == 0) {
write32(&ddr_pctl_regs->mrrcfg0, 0);
send_command(ddr_pctl_regs, 1, MRR_CMD,
LPDDR2_MA(0x8));
/* S8 */
if ((read32(&ddr_pctl_regs->mrrstat0) & 0x3)
!= 3)
die("SDRAM initialization failed!");
}
}
if (-1 == data_training(channel, sdram_params)) {
if (sdram_params->dramtype == LPDDR3) {
rkclk_ddr_phy_ctl_reset(channel, 1);
udelay(10);
rkclk_ddr_phy_ctl_reset(channel, 0);
udelay(10);
}
die("SDRAM initialization failed!");
}
if (sdram_params->dramtype == LPDDR3) {
u32 i;
write32(&ddr_pctl_regs->mrrcfg0, 0);
for (i = 0; i < 17; i++)
send_command(ddr_pctl_regs, 1, MRR_CMD,
LPDDR2_MA(i));
}
move_to_access_state(channel);
}
dram_all_config(sdram_params);
printk(BIOS_INFO, "Finish SDRAM initialization...\n");
}
size_t sdram_size_mb(void)
{
u32 rank, col, bk, cs0_row, cs1_row, bw, row_3_4;
size_t chipsize_mb = 0;
static size_t size_mb = 0;
u32 ch;
if (!size_mb) {
u32 sys_reg = read32(&rk3288_pmu->sys_reg[2]);
u32 ch_num = SYS_REG_DEC_NUM_CH(sys_reg);
for (ch = 0; ch < ch_num; ch++) {
rank = SYS_REG_DEC_RANK(sys_reg, ch);
col = SYS_REG_DEC_COL(sys_reg, ch);
bk = SYS_REG_DEC_BK(sys_reg, ch);
cs0_row = SYS_REG_DEC_CS0_ROW(sys_reg, ch);
cs1_row = SYS_REG_DEC_CS1_ROW(sys_reg, ch);
bw = SYS_REG_DEC_BW(sys_reg, ch);
row_3_4 = SYS_REG_DEC_ROW_3_4(sys_reg, ch);
chipsize_mb = (1 << (cs0_row + col + bk + bw - 20));
if (rank > 1)
chipsize_mb += chipsize_mb >>
(cs0_row - cs1_row);
if (row_3_4)
chipsize_mb = chipsize_mb * 3 / 4;
size_mb += chipsize_mb;
}
/*
* we use the 0x00000000~0xfeffffff space
* since 0xff000000~0xffffffff is soc register space
* so we reserve it
*/
size_mb = MIN(size_mb, 0xff000000/MiB);
}
return size_mb;
}