coreboot-kgpe-d16/src/southbridge/amd/rs780/rs780_gfx.c
Stefan Reinauer e46c1c85c9 remove more warnings. move ROOT_COMPLEX selection to fam10
Signed-off-by: Stefan Reinauer <stepan@coresystems.de>
Acked-by: Stefan Reinauer <stepan@coresystems.de>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5447 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2010-04-15 23:01:59 +00:00

1216 lines
38 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* for rs780 internal graphics device
* device id of internal grphics:
* RS780: 0x9610
* RS780C: 0x9611
* RS780M: 0x9612
* RS780MC:0x9613
* RS780E: 0x9615
* RS785G: 0x9710 - just works, not much tested
*/
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <delay.h>
#include <cpu/x86/msr.h>
#include "rs780.h"
void set_pcie_reset(void);
void set_pcie_dereset(void);
/* Trust the original resource allocation. Don't do it again. */
#undef DONT_TRUST_RESOURCE_ALLOCATION
//#define DONT_TRUST_RESOURCE_ALLOCATION
#define CLK_CNTL_INDEX 0x8
#define CLK_CNTL_DATA 0xC
/* The Integrated Info Table. */
ATOM_INTEGRATED_SYSTEM_INFO_V2 vgainfo;
#ifdef UNUSED_CODE
static u32 clkind_read(device_t dev, u32 index)
{
u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF;
*(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index & 0x7F;
return *(u32*)(gfx_bar2+CLK_CNTL_DATA);
}
#endif
static void clkind_write(device_t dev, u32 index, u32 data)
{
u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF;
/* printk(BIOS_DEBUG, "gfx bar 2 %02x\n", gfx_bar2); */
*(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index | 1<<7;
*(u32*)(gfx_bar2+CLK_CNTL_DATA) = data;
}
/*
* pci_dev_read_resources thinks it is a IO type.
* We have to force it to mem type.
*/
static void rs780_gfx_read_resources(device_t dev)
{
printk(BIOS_DEBUG, "rs780_gfx_read_resources.\n");
/* The initial value of 0x24 is 0xFFFFFFFF, which is confusing.
Even if we write 0xFFFFFFFF into it, it will be 0xFFF00000,
which tells us it is a memory address base.
*/
pci_write_config32(dev, 0x24, 0x00000000);
/* Get the normal pci resources of this device */
pci_dev_read_resources(dev);
compact_resources(dev);
}
typedef struct _MMIORANGE
{
u32 Base;
u32 Limit;
u8 Attribute;
} MMIORANGE;
MMIORANGE MMIO[8], CreativeMMIO[8];
static MMIORANGE* AllocMMIO(MMIORANGE* pMMIO)
{
int i;
for (i=0; i<8; i++)
{
if (pMMIO[i].Limit == 0)
return &pMMIO[i];
}
return 0;
}
static void FreeMMIO(MMIORANGE* pMMIO)
{
pMMIO->Base = 0;
pMMIO->Limit = 0;
}
#define CIM_STATUS u32
#define CIM_SUCCESS 0x00000000
#define CIM_ERROR 0x80000000
#define CIM_UNSUPPORTED 0x80000001
#define CIM_DISABLEPORT 0x80000002
#define MMIO_ATTRIB_NP_ONLY 1
#define MMIO_ATTRIB_BOTTOM_TO_TOP 1<<1
#define MMIO_ATTRIB_SKIP_ZERO 1<<2
static u32 SetMMIO(u32 Base, u32 Limit, u8 Attribute, MMIORANGE *pMMIO)
{
int i;
MMIORANGE * TempRange;
for(i=0; i<8; i++)
{
if(pMMIO[i].Attribute != Attribute && Base >= pMMIO[i].Base && Limit <= pMMIO[i].Limit)
{
TempRange = AllocMMIO(pMMIO);
if(TempRange == 0) return 0x80000000;
TempRange->Base = Limit;
TempRange->Limit = pMMIO[i].Limit;
TempRange->Attribute = pMMIO[i].Attribute;
pMMIO[i].Limit = Base;
}
}
TempRange = AllocMMIO(pMMIO);
if(TempRange == 0) return 0x80000000;
TempRange->Base = Base;
TempRange->Limit = Limit;
TempRange->Attribute = Attribute;
return 0;
}
static u8 FinalizeMMIO(MMIORANGE *pMMIO)
{
int i, j, n = 0;
for(i=0; i<8; i++)
{
if (pMMIO[i].Base == pMMIO[i].Limit)
{
FreeMMIO(&pMMIO[i]);
continue;
}
for(j=0; j<i; j++)
{
if (i!=j && pMMIO[i].Attribute == pMMIO[j].Attribute)
{
if (pMMIO[i].Base == pMMIO[j].Limit)
{
pMMIO[j].Limit = pMMIO[i].Limit;
FreeMMIO(&pMMIO[i]);
}
if (pMMIO[i].Limit == pMMIO[j].Base)
{
pMMIO[j].Base = pMMIO[i].Base;
FreeMMIO(&pMMIO[i]);
}
}
}
}
for (i=0; i<8; i++)
{
if (pMMIO[i].Limit != 0) n++;
}
return n;
}
#ifdef DONT_TRUST_RESOURCE_ALLOCATION
static CIM_STATUS GetCreativeMMIO(MMIORANGE *pMMIO)
{
CIM_STATUS Status = CIM_UNSUPPORTED;
u8 Bus, Dev, Reg, BusStart, BusEnd;
u32 Value;
device_t dev0x14 = dev_find_slot(0, PCI_DEVFN(0x14, 4));
device_t tempdev;
Value = pci_read_config32(dev0x14, 0x18);
BusStart = (Value >> 8) & 0xFF;
BusEnd = (Value >> 16) & 0xFF;
for(Bus = BusStart; Bus <= BusEnd; Bus++)
{
for(Dev = 0; Dev <= 0x1f; Dev++)
{
tempdev = dev_find_slot(Bus, Dev << 3);
Value = pci_read_config32(tempdev, 0);
printk(BIOS_DEBUG, "Dev ID %x \n", Value);
if((Value & 0xffff) == 0x1102)
{//Creative
//Found Creative SB
u32 MMIOStart = 0xffffffff;
u32 MMIOLimit = 0;
for(Reg = 0x10; Reg < 0x20; Reg+=4)
{
u32 BaseA, LimitA;
BaseA = pci_read_config32(tempdev, Reg);
Value = BaseA;
if(!(Value & 0x01))
{
Value = Value & 0xffffff00;
if(Value != 0)
{
if(MMIOStart > Value)
MMIOStart = Value;
LimitA = 0xffffffff;
//WritePCI(PciAddress,AccWidthUint32,&LimitA);
pci_write_config32(tempdev, Reg, LimitA);
//ReadPCI(PciAddress,AccWidthUint32,&LimitA);
LimitA = pci_read_config32(tempdev, Reg);
LimitA = Value + (~LimitA + 1);
//WritePCI(PciAddress,AccWidthUint32,&BaseA);
pci_write_config32(tempdev, Reg, BaseA);
if (LimitA > MMIOLimit)
MMIOLimit = LimitA;
}
}
}
printk(BIOS_DEBUG, " MMIOStart %x MMIOLimit %x \n", MMIOStart, MMIOLimit);
if (MMIOStart < MMIOLimit)
{
Status = SetMMIO(MMIOStart>>8, MMIOLimit>>8, 0x80, pMMIO);
if(Status == CIM_ERROR) return Status;
}
}
}
}
if(Status == CIM_SUCCESS)
{
//Lets optimize MMIO
if(FinalizeMMIO(pMMIO) > 4)
{
Status = CIM_ERROR;
}
}
return Status;
}
static void ProgramMMIO(MMIORANGE *pMMIO, u8 LinkID, u8 Attribute)
{
int i, j, n = 7;
device_t k8_f1;
k8_f1 = dev_find_slot(0, PCI_DEVFN(0x18, 1));
for(i = 0; i < 8; i++)
{
int k = 0, MmioReg;
u32 Base = 0;
u32 Limit = 0;
for(j = 0; j < 8; j++)
{
if (Base < pMMIO[j].Base)
{
Base = pMMIO[j].Base;
k = j;
}
}
if(pMMIO[k].Limit != 0)
{
if(Attribute & MMIO_ATTRIB_NP_ONLY && pMMIO[k].Attribute == 0 )
{
Base = 0;
}
else
{
Base = pMMIO[k].Base | 0x3;
Limit= ((pMMIO[k].Limit - 1) & 0xffffff00) | pMMIO[k].Attribute | (LinkID << 4);
}
FreeMMIO(&pMMIO[k]);
}
if (Attribute & MMIO_ATTRIB_SKIP_ZERO && Base == 0 && Limit == 0) continue;
MmioReg = (Attribute & MMIO_ATTRIB_BOTTOM_TO_TOP)?n:(7-n);
n--;
//RWPCI(PCI_ADDRESS(0,CPU_DEV,CPU_F1,0x80+MmioReg*8),AccWidthUint32 |S3_SAVE,0x0,0x0);
pci_write_config32(k8_f1, 0x80+MmioReg*8, 0);
//WritePCI(PCI_ADDRESS(0,CPU_DEV,CPU_F1,0x84+MmioReg*8),AccWidthUint32 |S3_SAVE,&Limit);
pci_write_config32(k8_f1, 0x84+MmioReg*8, Limit);
//WritePCI(PCI_ADDRESS(0,CPU_DEV,CPU_F1,0x80+MmioReg*8),AccWidthUint32 |S3_SAVE,&Base);
pci_write_config32(k8_f1, 0x80+MmioReg*8, Base);
}
}
#endif
static void internal_gfx_pci_dev_init(struct device *dev)
{
unsigned char * bpointer;
volatile u32 * GpuF0MMReg;
volatile u32 * pointer;
int i;
u16 command;
u32 value;
u16 deviceid, vendorid;
device_t nb_dev = dev_find_slot(0, 0);
device_t k8_f2 = dev_find_slot(0, PCI_DEVFN(0x18, 2));
device_t k8_f0 = dev_find_slot(0, PCI_DEVFN(0x18, 0));
/* We definetely will use this in future. Just leave it here. */
/*struct southbridge_amd_rs780_config *cfg =
(struct southbridge_amd_rs780_config *)dev->chip_info;*/
deviceid = pci_read_config16(dev, PCI_DEVICE_ID);
vendorid = pci_read_config16(dev, PCI_VENDOR_ID);
printk(BIOS_DEBUG, "internal_gfx_pci_dev_init device=%x, vendor=%x.\n",
deviceid, vendorid);
command = pci_read_config16(dev, 0x04);
command |= 0x7;
pci_write_config16(dev, 0x04, command);
/* Clear vgainfo. */
bpointer = (unsigned char *) &vgainfo;
for(i=0; i<sizeof(ATOM_INTEGRATED_SYSTEM_INFO_V2); i++)
{
*bpointer = 0;
bpointer++;
}
GpuF0MMReg = (u32 *)pci_read_config32(dev, 0x18);
/* GFX_InitFBAccess. */
value = nbmc_read_index(nb_dev, 0x10);
*(GpuF0MMReg + 0x2000/4) = 0x11;
*(GpuF0MMReg + 0x2180/4) = ((value&0xff00)>>8)|((value&0xff000000)>>8);
*(GpuF0MMReg + 0x2c04/4) = ((value&0xff0)<<8);
*(GpuF0MMReg + 0x5428/4) = ((value&0xffff0000)+0x10000)-((value&0xffff)<<16);
*(GpuF0MMReg + 0x2000/4) = 0x00000011;
*(GpuF0MMReg + 0x200c/4) = 0x00000020;
*(GpuF0MMReg + 0x2010/4) = 0x10204810;
*(GpuF0MMReg + 0x2010/4) = 0x00204810;
*(GpuF0MMReg + 0x2014/4) = 0x10408810;
*(GpuF0MMReg + 0x2014/4) = 0x00408810;
*(GpuF0MMReg + 0x2414/4) = 0x00000080;
*(GpuF0MMReg + 0x2418/4) = 0x84422415;
*(GpuF0MMReg + 0x2418/4) = 0x04422415;
*(GpuF0MMReg + 0x5490/4) = 0x00000001;
*(GpuF0MMReg + 0x7de4/4) |= (1<<3) | (1<<4);
/* Force allow LDT_STOP Cool'n'Quiet workaround. */
*(GpuF0MMReg + 0x655c/4) |= 1<<4;
/* GFX_InitFBAccess finished. */
/* GFX_StartMC. */
#if (CONFIG_GFXUMA == 1) /* for UMA mode. */
/* MC_INIT_COMPLETE. */
set_nbmc_enable_bits(nb_dev, 0x2, 0, 1<<31);
/* MC_STARTUP, MC_POWERED_UP and MC_VMODE.*/
set_nbmc_enable_bits(nb_dev, 0x1, 1<<18, 1|1<<2);
set_nbmc_enable_bits(nb_dev, 0xb1, 0, 1<<6);
set_nbmc_enable_bits(nb_dev, 0xc3, 0, 1);
nbmc_write_index(nb_dev, 0x07, 0x18);
nbmc_write_index(nb_dev, 0x06, 0x00000102);
nbmc_write_index(nb_dev, 0x09, 0x40000008);
set_nbmc_enable_bits(nb_dev, 0x6, 0, 1<<31);
/* GFX_StartMC finished. */
#else
/* for SP mode. */
set_nbmc_enable_bits(nb_dev, 0xaa, 0xf0, 0x30);
set_nbmc_enable_bits(nb_dev, 0xce, 0xf0, 0x30);
set_nbmc_enable_bits(nb_dev, 0xca, 0xff000000, 0x47000000);
set_nbmc_enable_bits(nb_dev, 0xcb, 0x3f000000, 0x01000000);
set_nbmc_enable_bits(nb_dev, 0x01, 0, 1<<0);
set_nbmc_enable_bits(nb_dev, 0x04, 0, 1<<31);
set_nbmc_enable_bits(nb_dev, 0xb4, 0x3f, 0x3f);
set_nbmc_enable_bits(nb_dev, 0xb4, 0, 1<<6);
set_nbmc_enable_bits(nb_dev, 0xc3, 1<<11, 0);
set_nbmc_enable_bits(nb_dev, 0xa0, 1<<29, 0);
nbmc_write_index(nb_dev, 0xa4, 0x3484576f);
nbmc_write_index(nb_dev, 0xa5, 0x222222df);
nbmc_write_index(nb_dev, 0xa6, 0x00000000);
nbmc_write_index(nb_dev, 0xa7, 0x00000000);
set_nbmc_enable_bits(nb_dev, 0xc3, 1<<8, 0);
udelay(10);
set_nbmc_enable_bits(nb_dev, 0xc3, 1<<9, 0);
udelay(10);
set_nbmc_enable_bits(nb_dev, 0x01, 0, 1<<2);
udelay(200);
set_nbmc_enable_bits(nb_dev, 0x01, 0, 1<<3);
set_nbmc_enable_bits(nb_dev, 0xa0, 0, 1<<31);
udelay(500);
set_nbmc_enable_bits(nb_dev, 0x02, 0, 1<<31);
set_nbmc_enable_bits(nb_dev, 0xa0, 0, 1<<30);
set_nbmc_enable_bits(nb_dev, 0xa0, 1<<31, 0);
set_nbmc_enable_bits(nb_dev, 0xa0, 0, 1<<29);
nbmc_write_index(nb_dev, 0xa4, 0x23484576);
nbmc_write_index(nb_dev, 0xa5, 0x00000000);
nbmc_write_index(nb_dev, 0xa6, 0x00000000);
nbmc_write_index(nb_dev, 0xa7, 0x00000000);
/* GFX_StartMC finished. */
/* GFX_SPPowerManagment, don't care for new. */
/* Post MC Init table programming. */
set_nbmc_enable_bits(nb_dev, 0xac, ~(0xfffffff0), 0x0b);
/* Do we need Write and Read Calibration? */
/* GFX_Init finished. */
#endif
/* GFX_InitIntegratedInfo. */
/* fill the Integrated Info Table. */
vgainfo.sHeader.usStructureSize = sizeof(ATOM_INTEGRATED_SYSTEM_INFO_V2);
vgainfo.sHeader.ucTableFormatRevision = 1;
vgainfo.sHeader.ucTableContentRevision = 2;
#if (CONFIG_GFXUMA == 0) /* SP mode. */
vgainfo.ulBootUpSidePortClock = 667*100;
vgainfo.ucMemoryType = 3;
vgainfo.ulMinSidePortClock = 333*100;
#endif
vgainfo.ulBootUpEngineClock = 500 * 100; /* set boot up GFX engine clock. */
vgainfo.ulReserved1[0] = 0; vgainfo.ulReserved1[1] = 0;
value = pci_read_config32(k8_f2, 0x94);
printk(BIOS_DEBUG, "MEMCLK = %x\n", value&0x7);
vgainfo.ulBootUpUMAClock = 333 * 100; /* set boot up UMA memory clock. */
vgainfo.ulBootUpSidePortClock = 0; /* disable SP. */
vgainfo.ulMinSidePortClock = 0; /* disable SP. */
for(i=0; i<6; i++)
vgainfo.ulReserved2[i] = 0;
vgainfo.ulSystemConfig = 0;
//vgainfo.ulSystemConfig |= 1<<1 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7 | 1;
vgainfo.ulBootUpReqDisplayVector = 0; //?
vgainfo.ulOtherDisplayMisc = 0; //?
vgainfo.ulDDISlot1Config = 0x000c0011; //0; //VGA
//vgainfo.ulDDISlot1Config = 0x000c00FF; //0; //HDMI
vgainfo.ulDDISlot2Config = 0x00130022; //0; //?
vgainfo.ucMemoryType = 2;
/* UMA Channel Number: 1 or 2. */
vgainfo.ucUMAChannelNumber = 2;
vgainfo.ucDockingPinBit = 0; //?
vgainfo.ucDockingPinPolarity = 0; //?
vgainfo.ulDockingPinCFGInfo = 0; //?
vgainfo.ulCPUCapInfo = 3; /* K8. */
/* page 5-19 on BDG. */
vgainfo.usNumberOfCyclesInPeriod = 0x8019;
vgainfo.usMaxNBVoltage = 0x1a;
vgainfo.usMinNBVoltage = 0;
vgainfo.usBootUpNBVoltage = 0x1a;
value = pci_read_config32(nb_dev, 0xd0);
printk(BIOS_DEBUG, "NB HT speed = %x.\n", value);
value = pci_read_config32(k8_f0, 0x88);
printk(BIOS_DEBUG, "CPU HT speed = %x.\n", value);
vgainfo.ulHTLinkFreq = 100 * 100; /* set HT speed. */
/* HT width. */
value = pci_read_config32(nb_dev, 0xc8);
printk(BIOS_DEBUG, "HT width = %x.\n", value);
vgainfo.usMinHTLinkWidth = 16;
vgainfo.usMaxHTLinkWidth = 16;
vgainfo.usUMASyncStartDelay = 322;
vgainfo.usUMADataReturnTime = 86;
vgainfo.usLinkStatusZeroTime = 0x00c8; //0; //?
vgainfo.usReserved = 0;
vgainfo.ulHighVoltageHTLinkFreq = 100 * 100;
vgainfo.ulLowVoltageHTLinkFreq = 100 * 100;
vgainfo.usMaxUpStreamHTLinkWidth = 16;
vgainfo.usMaxDownStreamHTLinkWidth = 16;
vgainfo.usMinUpStreamHTLinkWidth = 16;
vgainfo.usMinDownStreamHTLinkWidth = 16;
for(i=0; i<97; i++)
vgainfo.ulReserved3[i] = 0;
/* Transfer the Table to VBIOS. */
pointer = (u32 *)&vgainfo;
for(i=0; i<sizeof(ATOM_INTEGRATED_SYSTEM_INFO_V2); i+=4)
{
#if (CONFIG_GFXUMA == 1)
*GpuF0MMReg = 0x80000000 + 0x10000000 - 512 + i;
#else
*GpuF0MMReg = 0x80000000 + 0x8000000 - 512 + i;
#endif
*(GpuF0MMReg+1) = *pointer++;
}
/* GFX_InitLate. */
{
u8 temp8;
temp8 = pci_read_config8(dev, 0x4);
//temp8 &= ~1; /* CIM clears this bit. Strangely, I can'd. */
temp8 |= 1<<1|1<<2;
pci_write_config8(dev, 0x4, temp8);
}
#ifdef DONT_TRUST_RESOURCE_ALLOCATION
/* NB_SetupMGMMIO. */
/* clear MMIO and CreativeMMIO. */
bpointer = (unsigned char *)MMIO;
for(i=0; i<sizeof(MMIO); i++)
{
*bpointer = 0;
bpointer++;
}
bpointer = (unsigned char *)CreativeMMIO;
for(i=0; i<sizeof(CreativeMMIO); i++)
{
*bpointer = 0;
bpointer++;
}
/* Set MMIO ranges in K8. */
/* Set MMIO TOM - 4G. */
SetMMIO(0x400<<12, 0x1000000, 0x80, &MMIO[0]);
/* Set MMIO for VGA Legacy FB. */
SetMMIO(0xa00, 0xc00, 0x80, &MMIO[0]);
/* Set MMIO for non prefetchable P2P. */
temp = pci_read_config32(dev0x14, 0x20);
Base32 = (temp & 0x0fff0) << 8;
Limit32 = ((temp & 0x0fff00000) + 0x100000) >> 8;
if(Base32 < Limit32)
{
Status = GetCreativeMMIO(&CreativeMMIO[0]);
if(Status != CIM_ERROR)
SetMMIO(Base32, Limit32, 0x0, &MMIO[0]);
}
/* Set MMIO for prefetchable P2P. */
if(Status != CIM_ERROR)
{
temp = pci_read_config32(dev0x14, 0x24);
Base32 = (temp & 0x0fff0) <<8;
Limit32 = ((temp & 0x0fff00000) + 0x100000) >> 8;
if(Base32 < Limit32)
SetMMIO(Base32, Limit32, 0x0, &MMIO[0]);
}
FinalizeMMIO(&MMIO[0]);
ProgramMMIO(&CreativeMMIO[0], 0, MMIO_ATTRIB_NP_ONLY);
ProgramMMIO(&MMIO[0], 0, MMIO_ATTRIB_NP_ONLY | MMIO_ATTRIB_BOTTOM_TO_TOP | MMIO_ATTRIB_SKIP_ZERO);
#endif
pci_dev_init(dev);
/* clk ind */
clkind_write(dev, 0x08, 0x01);
clkind_write(dev, 0x0C, 0x22);
clkind_write(dev, 0x0F, 0x0);
clkind_write(dev, 0x11, 0x0);
clkind_write(dev, 0x12, 0x0);
clkind_write(dev, 0x14, 0x0);
clkind_write(dev, 0x15, 0x0);
clkind_write(dev, 0x16, 0x0);
clkind_write(dev, 0x17, 0x0);
clkind_write(dev, 0x18, 0x0);
clkind_write(dev, 0x19, 0x0);
clkind_write(dev, 0x1A, 0x0);
clkind_write(dev, 0x1B, 0x0);
clkind_write(dev, 0x1C, 0x0);
clkind_write(dev, 0x1D, 0x0);
clkind_write(dev, 0x1E, 0x0);
clkind_write(dev, 0x26, 0x0);
clkind_write(dev, 0x27, 0x0);
clkind_write(dev, 0x28, 0x0);
clkind_write(dev, 0x5C, 0x0);
}
/*
* Set registers in RS780 and CPU to enable the internal GFX.
* Please refer to CIM source code and BKDG.
*/
extern uint64_t uma_memory_base, uma_memory_size;
static void rs780_internal_gfx_enable(device_t dev)
{
u32 l_dword;
int i;
device_t k8_f0 = 0, k8_f2 = 0;
device_t nb_dev = dev_find_slot(0, 0);
msr_t sysmem;
#if (CONFIG_GFXUMA == 0)
u32 FB_Start, FB_End;
#endif
printk(BIOS_DEBUG, "rs780_internal_gfx_enable dev = 0x%p, nb_dev = 0x%p.\n", dev, nb_dev);
sysmem = rdmsr(0xc001001a);
printk(BIOS_DEBUG, "sysmem = %x_%x\n", sysmem.hi, sysmem.lo);
/* The system top memory in 780. */
pci_write_config32(nb_dev, 0x90, sysmem.lo);
htiu_write_index(nb_dev, 0x30, 0);
htiu_write_index(nb_dev, 0x31, 0);
/* Disable external GFX and enable internal GFX. */
l_dword = pci_read_config32(nb_dev, 0x8c);
l_dword &= ~(1<<0);
l_dword |= 1<<1;
pci_write_config32(nb_dev, 0x8c, l_dword);
/* NB_SetDefaultIndexes */
pci_write_config32(nb_dev, 0x94, 0x7f);
pci_write_config32(nb_dev, 0x60, 0x7f);
pci_write_config32(nb_dev, 0xe0, 0);
/* NB_InitEarlyNB finished. */
/* LPC DMA Deadlock workaround? */
/* GFX_InitCommon*/
k8_f0 = dev_find_slot(0, PCI_DEVFN(0x18, 0));
l_dword = pci_read_config32(k8_f0, 0x68);
l_dword &= ~(3 << 21);
l_dword |= (1 << 21);
pci_write_config32(k8_f0, 0x68, l_dword);
/* GFX_InitCommon. */
nbmc_write_index(nb_dev, 0x23, 0x00c00010);
set_nbmc_enable_bits(nb_dev, 0x16, 1<<15, 1<<15);
set_nbmc_enable_bits(nb_dev, 0x25, 0xffffffff, 0x111f111f);
set_htiu_enable_bits(nb_dev, 0x37, 1<<24, 1<<24);
#if (CONFIG_GFXUMA == 1)
/* GFX_InitUMA. */
/* Copy CPU DDR Controller to NB MC. */
k8_f2 = dev_find_slot(0, PCI_DEVFN(0x18, 2));
for (i = 0; i < 12; i++)
{
l_dword = pci_read_config32(k8_f2, 0x40 + i * 4);
nbmc_write_index(nb_dev, 0x30 + i, l_dword);
}
l_dword = pci_read_config32(k8_f2, 0x80);
nbmc_write_index(nb_dev, 0x3c, l_dword);
l_dword = pci_read_config32(k8_f2, 0x94);
if(l_dword & (1<<22))
set_nbmc_enable_bits(nb_dev, 0x3c, 0, 1<<16);
else
set_nbmc_enable_bits(nb_dev, 0x3c, 1<<16, 0);
if(l_dword & (1<<8))
set_nbmc_enable_bits(nb_dev, 0x3c, 0, 1<<17);
else
set_nbmc_enable_bits(nb_dev, 0x3c, 1<<17, 0);
l_dword = pci_read_config32(k8_f2, 0x90);
if(l_dword & (1<<10))
set_nbmc_enable_bits(nb_dev, 0x3c, 0, 1<<18);
else
set_nbmc_enable_bits(nb_dev, 0x3c, 1<<18, 0);
/* Set UMA in the 780 side. */
/* UMA start address, size. */
/* The same value in spite of system memory size. */
nbmc_write_index(nb_dev, 0x10, 0xcfffc000);
nbmc_write_index(nb_dev, 0x11, uma_memory_base);
nbmc_write_index(nb_dev, 0x12, 0);
nbmc_write_index(nb_dev, 0xf0, 256);
/* GFX_InitUMA finished. */
#else
/* GFX_InitSP. */
/* SP memory:Hynix HY5TQ1G631ZNFP. 128MB = 64M * 16. 667MHz. DDR3. */
/* Enable Async mode. */
set_nbmc_enable_bits(nb_dev, 0x06, 7<<8, 1<<8);
set_nbmc_enable_bits(nb_dev, 0x08, 1<<10, 0);
/* The last item in AsynchMclkTaskFileIndex. Why? */
/* MC_MPLL_CONTROL2. */
nbmc_write_index(nb_dev, 0x07, 0x40100028);
/* MC_MPLL_DIV_CONTROL. */
nbmc_write_index(nb_dev, 0x0b, 0x00000028);
/* MC_MPLL_FREQ_CONTROL. */
set_nbmc_enable_bits(nb_dev, 0x09, 3<<12|15<<16|15<<8, 1<<12|4<<16|0<<8);
/* MC_MPLL_CONTROL3. For PM. */
set_nbmc_enable_bits(nb_dev, 0x08, 0xff<<13, 1<<13|1<<18);
/* MPLL_CAL_TRIGGER. */
set_nbmc_enable_bits(nb_dev, 0x06, 0, 1<<0);
udelay(200); /* time is long enough? */
set_nbmc_enable_bits(nb_dev, 0x06, 0, 1<<1);
set_nbmc_enable_bits(nb_dev, 0x06, 1<<0, 0);
/* MCLK_SRC_USE_MPLL. */
set_nbmc_enable_bits(nb_dev, 0x02, 0, 1<<20);
/* Pre Init MC. */
nbmc_write_index(nb_dev, 0x01, 0x88108280);
set_nbmc_enable_bits(nb_dev, 0x02, ~(1<<20), 0x00030200);
nbmc_write_index(nb_dev, 0x04, 0x08881018);
nbmc_write_index(nb_dev, 0x05, 0x000000bb);
nbmc_write_index(nb_dev, 0x0c, 0x0f00001f);
nbmc_write_index(nb_dev, 0xa1, 0x01f10000);
/* MCA_INIT_DLL_PM. */
set_nbmc_enable_bits(nb_dev, 0xc9, 1<<24, 1<<24);
nbmc_write_index(nb_dev, 0xa2, 0x74f20000);
nbmc_write_index(nb_dev, 0xa3, 0x8af30000);
nbmc_write_index(nb_dev, 0xaf, 0x47d0a41c);
nbmc_write_index(nb_dev, 0xb0, 0x88800130);
nbmc_write_index(nb_dev, 0xb1, 0x00000040);
nbmc_write_index(nb_dev, 0xb4, 0x41247000);
nbmc_write_index(nb_dev, 0xb5, 0x00066664);
nbmc_write_index(nb_dev, 0xb6, 0x00000022);
nbmc_write_index(nb_dev, 0xb7, 0x00000044);
nbmc_write_index(nb_dev, 0xb8, 0xbbbbbbbb);
nbmc_write_index(nb_dev, 0xb9, 0xbbbbbbbb);
nbmc_write_index(nb_dev, 0xba, 0x55555555);
nbmc_write_index(nb_dev, 0xc1, 0x00000000);
nbmc_write_index(nb_dev, 0xc2, 0x00000000);
nbmc_write_index(nb_dev, 0xc3, 0x80006b00);
nbmc_write_index(nb_dev, 0xc4, 0x00066664);
nbmc_write_index(nb_dev, 0xc5, 0x00000000);
nbmc_write_index(nb_dev, 0xd2, 0x00000022);
nbmc_write_index(nb_dev, 0xd3, 0x00000044);
nbmc_write_index(nb_dev, 0xd6, 0x00050005);
nbmc_write_index(nb_dev, 0xd7, 0x00000000);
nbmc_write_index(nb_dev, 0xd8, 0x00700070);
nbmc_write_index(nb_dev, 0xd9, 0x00700070);
nbmc_write_index(nb_dev, 0xe0, 0x00200020);
nbmc_write_index(nb_dev, 0xe1, 0x00200020);
nbmc_write_index(nb_dev, 0xe8, 0x00200020);
nbmc_write_index(nb_dev, 0xe9, 0x00200020);
nbmc_write_index(nb_dev, 0xe0, 0x00180018);
nbmc_write_index(nb_dev, 0xe1, 0x00180018);
nbmc_write_index(nb_dev, 0xe8, 0x00180018);
nbmc_write_index(nb_dev, 0xe9, 0x00180018);
/* Misc options. */
/* Memory Termination. */
set_nbmc_enable_bits(nb_dev, 0xa1, 0x0ff, 0x044);
set_nbmc_enable_bits(nb_dev, 0xb4, 0xf00, 0xb00);
#if 0
/* Controller Termation. */
set_nbmc_enable_bits(nb_dev, 0xb1, 0x77770000, 0x77770000);
#endif
/* OEM Init MC. 667MHz. */
nbmc_write_index(nb_dev, 0xa8, 0x7a5aaa78);
nbmc_write_index(nb_dev, 0xa9, 0x514a2319);
nbmc_write_index(nb_dev, 0xaa, 0x54400520);
nbmc_write_index(nb_dev, 0xab, 0x441460ff);
nbmc_write_index(nb_dev, 0xa0, 0x20f00a48);
set_nbmc_enable_bits(nb_dev, 0xa2, ~(0xffffffc7), 0x10);
nbmc_write_index(nb_dev, 0xb2, 0x00000303);
set_nbmc_enable_bits(nb_dev, 0xb1, ~(0xffffff70), 0x45);
/* Do it later. */
/* set_nbmc_enable_bits(nb_dev, 0xac, ~(0xfffffff0), 0x0b); */
/* Init PM timing. */
for(i=0; i<4; i++)
{
l_dword = nbmc_read_index(nb_dev, 0xa0+i);
nbmc_write_index(nb_dev, 0xc8+i, l_dword);
}
for(i=0; i<4; i++)
{
l_dword = nbmc_read_index(nb_dev, 0xa8+i);
nbmc_write_index(nb_dev, 0xcc+i, l_dword);
}
l_dword = nbmc_read_index(nb_dev, 0xb1);
set_nbmc_enable_bits(nb_dev, 0xc8, 0xff<<24, ((l_dword&0x0f)<<24)|((l_dword&0xf00)<<20));
/* Init MC FB. */
/* FB_Start = ; FB_End = ; iSpSize = 0x0080, 128MB. */
nbmc_write_index(nb_dev, 0x11, 0x40000000);
FB_Start = 0xc00 + 0x080;
FB_End = 0xc00 + 0x080;
nbmc_write_index(nb_dev, 0x10, (((FB_End&0xfff)<<20)-0x10000)|(((FB_Start&0xfff)-0x080)<<4));
set_nbmc_enable_bits(nb_dev, 0x0d, ~0x000ffff0, (FB_Start&0xfff)<<20);
nbmc_write_index(nb_dev, 0x0f, 0);
nbmc_write_index(nb_dev, 0x0e, (FB_Start&0xfff)|(0xaaaa<<12));
#endif
/* GFX_InitSP finished. */
}
static struct pci_operations lops_pci = {
.set_subsystem = pci_dev_set_subsystem,
};
static struct device_operations pcie_ops = {
.read_resources = rs780_gfx_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = internal_gfx_pci_dev_init, /* The option ROM initializes the device. rs780_gfx_init, */
.scan_bus = 0,
.enable = rs780_internal_gfx_enable,
.ops_pci = &lops_pci,
};
/*
* We should list all of them here.
* */
static const struct pci_driver pcie_driver_780 __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS780_INT_GFX,
};
static const struct pci_driver pcie_driver_780c __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS780C_INT_GFX,
};
static const struct pci_driver pcie_driver_780m __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS780M_INT_GFX,
};
static const struct pci_driver pcie_driver_780mc __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS780MC_INT_GFX,
};
static const struct pci_driver pcie_driver_780e __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS780E_INT_GFX,
};
static const struct pci_driver pcie_driver_785g __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS785G_INT_GFX,
};
/* step 12 ~ step 14 from rpr */
static void single_port_configuration(device_t nb_dev, device_t dev)
{
u8 result, width;
u32 reg32;
struct southbridge_amd_rs780_config *cfg =
(struct southbridge_amd_rs780_config *)nb_dev->chip_info;
printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration.\n");
/* step 12 training, releases hold training for GFX port 0 (device 2) */
PcieReleasePortTraining(nb_dev, dev, 2);
result = PcieTrainPort(nb_dev, dev, 2);
printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration step12.\n");
/* step 13 Power Down Control */
/* step 13.1 Enables powering down transmitter and receiver pads along with PLL macros. */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0);
/* step 13.a Link Training was NOT successful */
if (!result) {
set_nbmisc_enable_bits(nb_dev, 0x8, 0, 0x3 << 4); /* prevent from training. */
set_nbmisc_enable_bits(nb_dev, 0xc, 0, 0x3 << 2); /* hide the GFX bridge. */
if (cfg->gfx_tmds)
nbpcie_ind_write_index(nb_dev, 0x65, 0xccf0f0);
else {
nbpcie_ind_write_index(nb_dev, 0x65, 0xffffffff);
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 3, 1 << 3);
}
} else { /* step 13.b Link Training was successful */
set_pcie_enable_bits(dev, 0xA2, 0xFF, 0x1);
reg32 = nbpcie_p_read_index(dev, 0x29);
width = reg32 & 0xFF;
printk(BIOS_DEBUG, "GFX Inactive Lanes = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x7f7f : 0xccfefe);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x3f3f : 0xccfcfc);
break;
case 8:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0f0f : 0xccf0f0);
break;
}
}
printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration step13.\n");
/* step 14 Reset Enumeration Timer, disables the shortening of the enumeration timer */
set_pcie_enable_bits(dev, 0x70, 1 << 19, 1 << 19);
printk(BIOS_DEBUG, "rs780_gfx_init single_port_configuration step14.\n");
}
static void dual_port_configuration(device_t nb_dev, device_t dev)
{
u8 result, width;
u32 reg32, dev_ind = dev->path.pci.devfn >> 3;
struct southbridge_amd_rs780_config *cfg =
(struct southbridge_amd_rs780_config *)nb_dev->chip_info;
/* 5.4.1.2 Dual Port Configuration */
set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 1 << 31);
set_nbmisc_enable_bits(nb_dev, 0x08, 0xF << 8, 0x5 << 8);
set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 31, 0 << 31);
/* 5.7. Training for Device 2 */
/* 5.7.1. Releases hold training for GFX port 0 (device 2) */
PcieReleasePortTraining(nb_dev, dev, dev_ind);
/* 5.7.2- 5.7.9. PCIE Link Training Sequence */
result = PcieTrainPort(nb_dev, dev, dev_ind);
/* Power Down Control for Device 2 */
/* Link Training was NOT successful */
if (!result) {
/* Powers down all lanes for port A */
/* nbpcie_ind_write_index(nb_dev, 0x65, 0x0f0f); */
/* Note: I have to disable the slot where there isnt a device,
* otherwise the system will hang. I dont know why. */
set_nbmisc_enable_bits(nb_dev, 0x0c, 1 << dev_ind, 1 << dev_ind);
} else { /* step 16.b Link Training was successful */
reg32 = nbpcie_p_read_index(dev, 0xa2);
width = (reg32 >> 4) & 0x7;
printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0707 : 0x0e0e);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0303 : 0x0c0c);
break;
}
}
}
/* For single port GFX configuration Only
* width:
* 000 = x16
* 001 = x1
* 010 = x2
* 011 = x4
* 100 = x8
* 101 = x12 (not supported)
* 110 = x16
*/
static void dynamic_link_width_control(device_t nb_dev, device_t dev, u8 width)
{
u32 reg32;
device_t sb_dev;
struct southbridge_amd_rs780_config *cfg =
(struct southbridge_amd_rs780_config *)nb_dev->chip_info;
/* step 5.9.1.1 */
reg32 = nbpcie_p_read_index(dev, 0xa2);
/* step 5.9.1.2 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0);
/* step 5.9.1.3 */
set_pcie_enable_bits(dev, 0xa2, 3 << 0, width << 0);
/* step 5.9.1.4 */
set_pcie_enable_bits(dev, 0xa2, 1 << 8, 1 << 8);
/* step 5.9.2.4 */
if (0 == cfg->gfx_reconfiguration)
set_pcie_enable_bits(dev, 0xa2, 1 << 11, 1 << 11);
/* step 5.9.1.5 */
do {
reg32 = nbpcie_p_read_index(dev, 0xa2);
}
while (reg32 & 0x100);
/* step 5.9.1.6 */
sb_dev = dev_find_slot(0, PCI_DEVFN(8, 0));
do {
reg32 = pci_ext_read_config32(nb_dev, sb_dev,
PCIE_VC0_RESOURCE_STATUS);
} while (reg32 & VC_NEGOTIATION_PENDING);
/* step 5.9.1.7 */
reg32 = nbpcie_p_read_index(dev, 0xa2);
if (((reg32 & 0x70) >> 4) != 0x6) {
/* the unused lanes should be powered off. */
}
/* step 5.9.1.8 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 0 << 0);
}
/*
* GFX Core initialization, dev2, dev3
*/
void rs780_gfx_init(device_t nb_dev, device_t dev, u32 port)
{
u32 reg32;
struct southbridge_amd_rs780_config *cfg =
(struct southbridge_amd_rs780_config *)nb_dev->chip_info;
printk(BIOS_DEBUG, "rs780_gfx_init, nb_dev=0x%p, dev=0x%p, port=0x%x.\n",
nb_dev, dev, port);
/* GFX Core Initialization */
//if (port == 2) return;
/* step 2, TMDS, (only need if CMOS option is enabled) */
if (cfg->gfx_tmds) {
}
#if 1 /* external clock mode */
/* table 5-22, 5.9.1. REFCLK */
/* 5.9.1.1. Disables the GFX REFCLK transmitter so that the GFX
* REFCLK PAD can be driven by an external source. */
/* 5.9.1.2. Enables GFX REFCLK receiver to receive the REFCLK from an external source. */
set_nbmisc_enable_bits(nb_dev, 0x38, 1 << 29 | 1 << 28, 0 << 29 | 1 << 28);
/* 5.9.1.3 Selects the GFX REFCLK to be the source for PLL A. */
/* 5.9.1.4 Selects the GFX REFCLK to be the source for PLL B. */
/* 5.9.1.5 Selects the GFX REFCLK to be the source for PLL C. */
set_nbmisc_enable_bits(nb_dev, 0x28, 3 << 6 | 3 << 8 | 3 << 10,
1 << 6 | 1 << 8 | 1 << 10);
reg32 = nbmisc_read_index(nb_dev, 0x28);
printk(BIOS_DEBUG, "misc 28 = %x\n", reg32);
/* 5.9.1.6.Selects the single ended GFX REFCLK to be the source for core logic. */
set_nbmisc_enable_bits(nb_dev, 0x6C, 1 << 31, 1 << 31);
#else /* internal clock mode */
/* table 5-23, 5.9.1. REFCLK */
/* 5.9.1.1. Enables the GFX REFCLK transmitter so that the GFX
* REFCLK PAD can be driven by the SB REFCLK. */
/* 5.9.1.2. Disables GFX REFCLK receiver from receiving the
* REFCLK from an external source.*/
set_nbmisc_enable_bits(nb_dev, 0x38, 1 << 29 | 1 << 28, 1 << 29 | 0 << 28);
/* 5.9.1.3 Selects the GFX REFCLK to be the source for PLL A. */
/* 5.9.1.4 Selects the GFX REFCLK to be the source for PLL B. */
/* 5.9.1.5 Selects the GFX REFCLK to be the source for PLL C. */
set_nbmisc_enable_bits(nb_dev, 0x28, 3 << 6 | 3 << 8 | 3 << 10,
0);
reg32 = nbmisc_read_index(nb_dev, 0x28);
printk(BIOS_DEBUG, "misc 28 = %x\n", reg32);
/* 5.9.1.6.Selects the single ended GFX REFCLK to be the source for core logic. */
set_nbmisc_enable_bits(nb_dev, 0x6C, 1 << 31, 0 << 31);
#endif
/* step 5.9.3, GFX overclocking, (only need if CMOS option is enabled) */
/* 5.9.3.1. Increases PLL BW for 6G operation.*/
/* set_nbmisc_enable_bits(nb_dev, 0x36, 0x3FF << 4, 0xB5 << 4); */
/* skip */
/* step 5.9.4, reset the GFX link */
/* step 5.9.4.1 asserts both calibration reset and global reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 0x3 << 14, 0x3 << 14);
/* step 5.9.4.2 de-asserts calibration reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 14, 0 << 14);
/* step 5.9.4.3 wait for at least 200us */
udelay(300);
/* step 5.9.4.4 de-asserts global reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 15, 0 << 15);
/* 5.9.5 Reset PCIE_GFX Slot */
/* It is done in mainboard.c */
set_pcie_reset();
mdelay(1);
set_pcie_dereset();
/* step 5.9.8 program PCIE memory mapped configuration space */
/* done by enable_pci_bar3() before */
/* step 7 compliance state, (only need if CMOS option is enabled) */
/* the compliance stete is just for test. refer to 4.2.5.2 of PCIe specification */
if (cfg->gfx_compliance) {
/* force compliance */
set_nbmisc_enable_bits(nb_dev, 0x32, 1 << 6, 1 << 6);
/* release hold training for device 2. GFX initialization is done. */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0 << 4);
dynamic_link_width_control(nb_dev, dev, cfg->gfx_link_width);
printk(BIOS_DEBUG, "rs780_gfx_init step7.\n");
return;
}
/* 5.9.12 Core Initialization. */
/* 5.9.12.1 sets RCB timeout to be 25ms */
/* 5.9.12.2. RCB Cpl timeout on link down. */
set_pcie_enable_bits(dev, 0x70, 7 << 16 | 1 << 19, 4 << 16 | 1 << 19);
printk(BIOS_DEBUG, "rs780_gfx_init step5.9.12.1.\n");
/* step 5.9.12.3 disables slave ordering logic */
set_pcie_enable_bits(nb_dev, 0x20, 1 << 8, 1 << 8);
printk(BIOS_DEBUG, "rs780_gfx_init step5.9.12.3.\n");
/* step 5.9.12.4 sets DMA payload size to 64 bytes */
set_pcie_enable_bits(nb_dev, 0x10, 7 << 10, 4 << 10);
/* 5.9.12.5. Blocks DMA traffic during C3 state. */
set_pcie_enable_bits(dev, 0x10, 1 << 0, 0 << 0);
/* 5.9.12.6. Disables RC ordering logic */
set_pcie_enable_bits(nb_dev, 0x20, 1 << 9, 1 << 9);
/* Enabels TLP flushing. */
/* Note: It is got from RS690. The system will hang without this action. */
set_pcie_enable_bits(dev, 0x20, 1 << 19, 0 << 19);
/* 5.9.12.7. Ignores DLLPs during L1 so that txclk can be turned off */
set_pcie_enable_bits(nb_dev, 0x2, 1 << 0, 1 << 0);
/* 5.9.12.8 Prevents LC to go from L0 to Rcv_L0s if L1 is armed. */
set_pcie_enable_bits(dev, 0xA1, 1 << 11, 1 << 11);
/* 5.9.12.9 CMGOOD_OVERRIDE for end point initiated lane degradation. */
set_nbmisc_enable_bits(nb_dev, 0x6a, 1 << 17, 1 << 17);
printk(BIOS_DEBUG, "rs780_gfx_init step5.9.12.9.\n");
/* 5.9.12.10 Sets the timer in Config state from 20us to */
/* 5.9.12.11 De-asserts RX_EN in L0s. */
/* 5.9.12.12 Enables de-assertion of PG2RX_CR_EN to lock clock
* recovery parameter when lane is in electrical idle in L0s.*/
set_pcie_enable_bits(dev, 0xB1, 1 << 23 | 1 << 19 | 1 << 28, 1 << 23 | 1 << 19 | 1 << 28);
/* 5.9.12.13. Turns off offset calibration. */
/* 5.9.12.14. Enables Rx Clock gating in CDR */
set_nbmisc_enable_bits(nb_dev, 0x34, 1 << 10/* | 1 << 22 */, 1 << 10/* | 1 << 22 */);
/* 5.9.12.15. Sets number of TX Clocks to drain TX Pipe to 3. */
set_pcie_enable_bits(dev, 0xA0, 0xF << 4, 3 << 4);
/* 5.9.12.16. Lets PI use Electrical Idle from PHY when
* turning off PLL in L1 at Gen2 speed instead Inferred Electrical Idle. */
set_pcie_enable_bits(nb_dev, 0x40, 3 << 14, 2 << 14);
/* 5.9.12.17. Prevents the Electrical Idle from causing a transition from Rcv_L0 to Rcv_L0s. */
set_pcie_enable_bits(dev, 0xB1, 1 << 20, 1 << 20);
/* 5.9.12.18. Prevents the LTSSM from going to Rcv_L0s if it has already
* acknowledged a request to go to L1. */
set_pcie_enable_bits(dev, 0xA1, 1 << 11, 1 << 11);
/* 5.9.12.19. LDSK only taking deskew on deskewing error detect */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 28, 0 << 28);
/* 5.9.12.20. Bypasses lane de-skew logic if in x1 */
set_pcie_enable_bits(nb_dev, 0xC2, 1 << 14, 1 << 14);
/* 5.9.12.21. Sets Electrical Idle Threshold. */
set_nbmisc_enable_bits(nb_dev, 0x35, 3 << 21, 2 << 21);
/* 5.9.12.22. Advertises -6 dB de-emphasis value in TS1 Data Rate Identifier
* Only if CMOS Option in section. skip */
/* 5.9.12.23. Disables GEN2 capability of the device. */
set_pcie_enable_bits(dev, 0xA4, 1 << 0, 0 << 0);
/* 5.9.12.24.Disables advertising Upconfigure Support. */
set_pcie_enable_bits(dev, 0xA2, 1 << 13, 1 << 13);
/* 5.9.12.25. No comment in RPR. */
set_nbmisc_enable_bits(nb_dev, 0x39, 1 << 10, 0 << 10);
/* 5.9.12.26. This capacity is required since links wider than x1 and/or multiple link
* speed are supported */
set_pcie_enable_bits(nb_dev, 0xC1, 1 << 0, 1 << 0);
/* 5.9.12.27. Enables NVG86 ECO. A13 above only. */
if (get_nb_rev(nb_dev) == REV_RS780_A12) /* A12 */
set_pcie_enable_bits(dev, 0x02, 1 << 11, 1 << 11);
/* 5.9.12.28 Hides and disables the completion timeout method. */
set_pcie_enable_bits(nb_dev, 0xC1, 1 << 2, 0 << 2);
/* 5.9.12.29. Use the bif_core de-emphasis strength by default. */
/* set_nbmisc_enable_bits(nb_dev, 0x36, 1 << 28, 1 << 28); */
/* 5.9.12.30. Set TX arbitration algorithm to round robin */
set_pcie_enable_bits(nb_dev, 0x1C,
1 << 0 | 0x1F << 1 | 0x1F << 6,
1 << 0 | 0x04 << 1 | 0x04 << 6);
/* Single-port/Dual-port configureation. */
switch (cfg->gfx_dual_slot) {
case 0:
/* step 1, lane reversal (only need if CMOS option is enabled) */
if (cfg->gfx_lane_reversal) {
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2);
}
printk(BIOS_DEBUG, "rs780_gfx_init step1.\n");
printk(BIOS_DEBUG, "device = %x\n", dev->path.pci.devfn >> 3);
if((dev->path.pci.devfn >> 3) == 2) {
single_port_configuration(nb_dev, dev);
} else {
set_nbmisc_enable_bits(nb_dev, 0xc, 0, 0x2 << 2); /* hide the GFX bridge. */
printk(BIOS_INFO, "Single port. Do nothing.\n"); // If dev3
}
break;
case 1:
/* step 1, lane reversal (only need if CMOS option is enabled) */
if (cfg->gfx_lane_reversal) {
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2);
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 3, 1 << 3);
}
printk(BIOS_DEBUG, "rs780_gfx_init step1.\n");
/* step 1.1, dual-slot gfx configuration (only need if CMOS option is enabled) */
/* AMD calls the configuration CrossFire */
set_nbmisc_enable_bits(nb_dev, 0x0, 0xf << 8, 5 << 8);
printk(BIOS_DEBUG, "rs780_gfx_init step2.\n");
printk(BIOS_DEBUG, "device = %x\n", dev->path.pci.devfn >> 3);
dual_port_configuration(nb_dev, dev);
break;
default:
printk(BIOS_INFO, "Incorrect configuration of external GFX slot.\n");
break;
}
}