coreboot-kgpe-d16/src/mainboard/amd/dinar/agesawrapper.c
Bruce Griffith e8dca508d3 AMD Dinar: Eliminate warnings (initializers/prototypes/unused var)
Fix a bunch of compiler-generated warning messages.  These fixes are 
mainly braces for grouping initializers.  These changes are not
intended to change any code functionality.  There are two changes where
function prototypes are added, and two cases where unused variables are 
eliminated. 

Change-Id: I93cef8899170b5575e7fb7c55181b381a7bcd9d8
Signed-off-by: Bruce Griffith <Bruce.Griffith@se-eng.com>
Reviewed-on: http://review.coreboot.org/3545
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Zheng Bao <zheng.bao@amd.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-06-28 01:49:00 +02:00

629 lines
20 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2012 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*----------------------------------------------------------------------------------------
* M O D U L E S U S E D
*----------------------------------------------------------------------------------------
*/
#include <stdint.h>
#include <string.h>
#include "agesawrapper.h"
#include "BiosCallOuts.h"
#include "cpuRegisters.h"
#include "cpuCacheInit.h"
#include "cpuApicUtilities.h"
#include "cpuEarlyInit.h"
#include "cpuLateInit.h"
#include "Dispatcher.h"
#include "cpuCacheInit.h"
#include "amdlib.h"
#include "heapManager.h"
#include "Filecode.h"
#include <arch/io.h>
#define FILECODE UNASSIGNED_FILE_FILECODE
/*----------------------------------------------------------------------------------------
* D E F I N I T I O N S A N D M A C R O S
*----------------------------------------------------------------------------------------
*/
/* ACPI table pointers returned by AmdInitLate */
VOID *DmiTable = NULL;
VOID *AcpiPstate = NULL;
VOID *AcpiSrat = NULL;
VOID *AcpiSlit = NULL;
VOID *AcpiWheaMce = NULL;
VOID *AcpiWheaCmc = NULL;
VOID *AcpiAlib = NULL;
/*----------------------------------------------------------------------------------------
* T Y P E D E F S A N D S T R U C T U R E S
*----------------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------------------
* P R O T O T Y P E S O F L O C A L F U N C T I O N S
*----------------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------------------
* E X P O R T E D F U N C T I O N S
*----------------------------------------------------------------------------------------
*/
/*---------------------------------------------------------------------------------------
* L O C A L F U N C T I O N S
*---------------------------------------------------------------------------------------
*/
extern VOID OemCustomizeInitEarly(IN OUT AMD_EARLY_PARAMS *InitEarly);
extern VOID OemCustomizeInitPost(IN AMD_POST_PARAMS *InitPost);
/*Get the Bus Number from CONFIG_MMCONF_BUS_NUMBER, Please reference AMD BIOS BKDG docuemt about it*/
/*
BusRange: bus range identifier. Read-write. Reset: X. This specifies the number of buses in the
MMIO configuration space range. The size of the MMIO configuration space range varies with this
field as follows: the size is 1 Mbyte times the number of buses. This field is encoded as follows:
Bits Buses Bits Buses
0h 1 5h 32
1h 2 6h 64
2h 4 7h 128
3h 8 8h 256
4h 16 Fh-9h Reserved
*/
STATIC
UINT8
GetEndBusNum (
VOID
)
{
UINT64 BusNum;
UINT8 Index;
for (Index = 1; Index <= 8; Index ++ ) {
BusNum = CONFIG_MMCONF_BUS_NUMBER >> Index;
if (BusNum == 1 ) {
break;
}
}
return Index;
}
static UINT32 amdinitcpuio(VOID)
{
AGESA_STATUS Status;
UINT64 MsrReg;
UINT32 PciData;
PCI_ADDR PciAddress;
AMD_CONFIG_PARAMS StdHeader;
UINT32 TopMem;
UINT32 NodeCnt;
UINT32 Node;
UINT32 SbLink;
UINT32 Index;
/* get the number of coherent nodes in the system */
PciAddress.AddressValue = MAKE_SBDFO(0, 0, 0x18, 0, 0x60);
LibAmdPciRead(AccessWidth32, PciAddress, &PciData, &StdHeader);
NodeCnt = ((PciData >> 4) & 7) + 1; //NodeCnt[6:4]
/* Find out the Link ID of Node0 that connects to the
* Southbridge (system IO hub). e.g. family10 MCM Processor,
* SbLink is Processor0 Link2, internal Node0 Link3
*/
PciAddress.AddressValue = MAKE_SBDFO(0, 0, 0x18, 0, 0x64);
LibAmdPciRead(AccessWidth32, PciAddress, &PciData, &StdHeader);
SbLink = (PciData >> 8) & 3; //assume ganged
/* Enable MMIO on AMD CPU Address Map Controller for all nodes */
for (Node = 0; Node < NodeCnt; Node ++) {
/* clear all MMIO Mapped Base/Limit Registers */
for (Index = 0; Index < 8; Index ++) {
PciData = 0x00000000;
PciAddress.AddressValue = MAKE_SBDFO(0, 0, 0x18 + Node, 1, 0x80 + Index * 8);
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO(0, 0, 0x18 + Node, 1, 0x84 + Index * 8);
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
}
/* clear all IO Space Base/Limit Registers */
for (Index = 0; Index < 4; Index ++) {
PciData = 0x00000000;
PciAddress.AddressValue = MAKE_SBDFO(0, 0, 0x18 + Node, 1, 0xC0 + Index * 8);
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO(0, 0, 0x18 + Node, 1, 0xC4 + Index * 8);
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
}
/* Enable MMIO on AMD CPU Address Map Controller */
/* Set VGA Ram MMIO 0000A0000-0000BFFFF to Node0 sbLink */
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x80);
PciData = (0xA0000 >> 8) |3;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x84);
PciData = 0xB0000 >> 8;
PciData &= (~0xFF);
PciData |= SbLink << 4;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
/* Set UMA MMIO. */
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x88);
LibAmdMsrRead (0xC001001A, &MsrReg, &StdHeader);
TopMem = (UINT32)MsrReg;
MsrReg = (MsrReg >> 8) | 3;
PciData = (UINT32)MsrReg;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x8c);
if (TopMem <= CONFIG_MMCONF_BASE_ADDRESS) {
PciData = (CONFIG_MMCONF_BASE_ADDRESS - 1) >> 8;
}
else {
PciData = (0x100000000ull - 1) >> 8;
}
PciData &= (~0xFF);
PciData |= SbLink << 4;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
/* Set PCIE MMIO. */
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x90);
PciData = (CONFIG_MMCONF_BASE_ADDRESS >> 8) |3;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x94);
PciData = (( CONFIG_MMCONF_BASE_ADDRESS + CONFIG_MMCONF_BUS_NUMBER * 4096 *256 - 1) >> 8) & (~0xFF);
PciData &= (~0xFF);
PciData |= MMIO_NP_BIT;
PciData |= SbLink << 4;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
/* Set XAPIC MMIO. 24K */
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x98);
PciData = (0xFEC00000 >> 8) |3;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0x9c);
PciData = ((0xFEC00000 + 6 * 4096 - 1) >> 8);
PciData &= (~0xFF);
PciData |= MMIO_NP_BIT;
PciData |= SbLink << 4;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
/* Set Local APIC MMIO. 4K*4= 16K, Llano CPU are 4 cores */
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0xA0);
PciData = (0xFEE00000 >> 8) |3;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0xA8);
PciData = (0xFEE00000 + 4 * 4096 - 1) >> 8;
PciData &= (~0xFF);
PciData |= MMIO_NP_BIT;
PciData |= SbLink << 4;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
/* Set PCIO: 0x0 - 0xFFF000 and enabled VGA IO*/
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0xC0);
PciData = 0x13;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18 + Node, 1, 0xC4);
PciData = 0x00FFF000;
PciData &= (~0x7F);
PciData |= SbLink << 4;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
}
Status = AGESA_SUCCESS;
return (UINT32)Status;
}
UINT32
agesawrapper_amdinitmmio (
VOID
)
{
AGESA_STATUS Status;
UINT64 MsrReg;
UINT32 PciData;
PCI_ADDR PciAddress;
AMD_CONFIG_PARAMS StdHeader;
/*
Set the MMIO Configuration Base Address and Bus Range onto MMIO configuration base
Address MSR register.
*/
MsrReg = CONFIG_MMCONF_BASE_ADDRESS | (GetEndBusNum () << 2) | 1;
LibAmdMsrWrite (0xC0010058, &MsrReg, &StdHeader);
/*
Set the NB_CFG MSR register. Enable CF8 extended configuration cycles.
*/
LibAmdMsrRead (0xC001001F, &MsrReg, &StdHeader);
MsrReg = MsrReg | BIT46;
LibAmdMsrWrite (0xC001001F, &MsrReg, &StdHeader);
/* Set PCIE MMIO. */
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18, 1, 0x90);
PciData = (CONFIG_MMCONF_BASE_ADDRESS >> 8) |3;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0x18, 1, 0x94);
PciData = (( CONFIG_MMCONF_BASE_ADDRESS + CONFIG_MMCONF_BUS_NUMBER * 4096 *256 - 1) >> 8) | MMIO_NP_BIT;
LibAmdPciWrite(AccessWidth32, PciAddress, &PciData, &StdHeader);
/* Enable memory access */
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0, 0, 0x04);
LibAmdPciRead(AccessWidth8, PciAddress, &PciData, &StdHeader);
PciData |= BIT1;
PciAddress.AddressValue = MAKE_SBDFO (0, 0, 0, 0, 0x04);
LibAmdPciWrite(AccessWidth8, PciAddress, &PciData, &StdHeader);
/* Set ROM cache onto WP to decrease post time */
MsrReg = (0x0100000000 - CONFIG_ROM_SIZE) | 5;
LibAmdMsrWrite (0x20E, &MsrReg, &StdHeader);
MsrReg = ((1ULL << CONFIG_CPU_ADDR_BITS) - CONFIG_ROM_SIZE) | 0x800ull;
LibAmdMsrWrite (0x20F, &MsrReg, &StdHeader);
Status = AGESA_SUCCESS;
return (UINT32)Status;
}
UINT32
agesawrapper_amdinitreset (
VOID
)
{
AGESA_STATUS status;
#if (defined AGESA_ENTRY_INIT_RESET) && (AGESA_ENTRY_INIT_RESET == TRUE)
AMD_INTERFACE_PARAMS AmdParamStruct;
AMD_RESET_PARAMS AmdResetParams;
#endif
#if (defined AGESA_ENTRY_INIT_RESET) && (AGESA_ENTRY_INIT_RESET == TRUE)
LibAmdMemFill (&AmdParamStruct,
0,
sizeof (AMD_INTERFACE_PARAMS),
&(AmdParamStruct.StdHeader));
LibAmdMemFill (&AmdResetParams,
0,
sizeof (AMD_RESET_PARAMS),
&(AmdResetParams.StdHeader));
AmdParamStruct.AgesaFunctionName = AMD_INIT_RESET;
AmdParamStruct.AllocationMethod = ByHost;
AmdParamStruct.NewStructSize = sizeof(AMD_RESET_PARAMS);
AmdParamStruct.NewStructPtr = &AmdResetParams;
AmdParamStruct.StdHeader.AltImageBasePtr = 0;
AmdParamStruct.StdHeader.CalloutPtr = NULL;
AmdParamStruct.StdHeader.Func = 0;
AmdParamStruct.StdHeader.ImageBasePtr = 0;
AmdCreateStruct (&AmdParamStruct);
AmdResetParams.HtConfig.Depth = 0;
status = AmdInitReset ((AMD_RESET_PARAMS *)AmdParamStruct.NewStructPtr);
if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog();
AmdReleaseStruct (&AmdParamStruct);
#else
status = AGESA_SUCCESS;
#endif
return (UINT32)status;
}
UINT32
agesawrapper_amdinitearly (
VOID
)
{
AGESA_STATUS status;
AMD_INTERFACE_PARAMS AmdParamStruct;
AMD_EARLY_PARAMS *AmdEarlyParamsPtr;
LibAmdMemFill (&AmdParamStruct,
0,
sizeof (AMD_INTERFACE_PARAMS),
&(AmdParamStruct.StdHeader));
AmdParamStruct.AgesaFunctionName = AMD_INIT_EARLY;
AmdParamStruct.AllocationMethod = PreMemHeap;
AmdParamStruct.StdHeader.AltImageBasePtr = 0;
AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout;
AmdParamStruct.StdHeader.Func = 0;
AmdParamStruct.StdHeader.ImageBasePtr = 0;
AmdCreateStruct (&AmdParamStruct);
AmdEarlyParamsPtr = (AMD_EARLY_PARAMS *)AmdParamStruct.NewStructPtr;
OemCustomizeInitEarly (AmdEarlyParamsPtr);
status = AmdInitEarly ((AMD_EARLY_PARAMS *)AmdParamStruct.NewStructPtr);
if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog();
AmdReleaseStruct (&AmdParamStruct);
return (UINT32)status;
}
/*---------------------------------------------------------------------------------------*/
/**
* OemCustomizeInitEarly
*
* Description:
* This stub function will call the host environment through the binary block
* interface (call-out port) to provide a user hook opportunity
*
* Parameters:
* @param[in] **PeiServices
* @param[in] *InitEarly
*
* @retval VOID
*
**/
/*---------------------------------------------------------------------------------------*/
VOID OemCustomizeInitEarly(IN OUT AMD_EARLY_PARAMS *InitEarly)
{
//InitEarly->PlatformConfig.CoreLevelingMode = CORE_LEVEL_TWO;
}
VOID
OemCustomizeInitPost (
IN AMD_POST_PARAMS *InitPost
)
{
InitPost->MemConfig.UmaMode = UMA_AUTO;
InitPost->MemConfig.BottomIo = 0xE0;
InitPost->MemConfig.UmaSize = 0xE0-0xC0;
}
UINT32
agesawrapper_amdinitpost (
VOID
)
{
AGESA_STATUS status;
UINT16 i;
UINT32 *HeadPtr;
AMD_INTERFACE_PARAMS AmdParamStruct;
BIOS_HEAP_MANAGER *BiosManagerPtr;
LibAmdMemFill (&AmdParamStruct,
0,
sizeof (AMD_INTERFACE_PARAMS),
&(AmdParamStruct.StdHeader));
AmdParamStruct.AgesaFunctionName = AMD_INIT_POST;
AmdParamStruct.AllocationMethod = PreMemHeap;
AmdParamStruct.StdHeader.AltImageBasePtr = 0;
AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout;
AmdParamStruct.StdHeader.Func = 0;
AmdParamStruct.StdHeader.ImageBasePtr = 0;
AmdCreateStruct (&AmdParamStruct);
/* OEM Should Customize the defaults through this hook */
OemCustomizeInitPost ((AMD_POST_PARAMS *)AmdParamStruct.NewStructPtr);
status = AmdInitPost ((AMD_POST_PARAMS *)AmdParamStruct.NewStructPtr);
if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog();
AmdReleaseStruct (&AmdParamStruct);
/* Initialize heap space */
BiosManagerPtr = (BIOS_HEAP_MANAGER *)BIOS_HEAP_START_ADDRESS;
HeadPtr = (UINT32 *) ((UINT8 *) BiosManagerPtr + sizeof (BIOS_HEAP_MANAGER));
for (i = 0; i < ((BIOS_HEAP_SIZE/4) - (sizeof (BIOS_HEAP_MANAGER)/4)); i++)
{
*HeadPtr = 0x00000000;
HeadPtr++;
}
BiosManagerPtr->StartOfAllocatedNodes = 0;
BiosManagerPtr->StartOfFreedNodes = 0;
return (UINT32)status;
}
UINT32
agesawrapper_amdinitenv (
VOID
)
{
AGESA_STATUS status;
AMD_INTERFACE_PARAMS AmdParamStruct;
LibAmdMemFill (&AmdParamStruct,
0,
sizeof (AMD_INTERFACE_PARAMS),
&(AmdParamStruct.StdHeader));
AmdParamStruct.AgesaFunctionName = AMD_INIT_ENV;
AmdParamStruct.AllocationMethod = PostMemDram;
AmdParamStruct.StdHeader.AltImageBasePtr = 0;
AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout;
AmdParamStruct.StdHeader.Func = 0;
AmdParamStruct.StdHeader.ImageBasePtr = 0;
AmdCreateStruct (&AmdParamStruct);
status = AmdInitEnv ((AMD_ENV_PARAMS *)AmdParamStruct.NewStructPtr);
if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog();
AmdReleaseStruct (&AmdParamStruct);
return (UINT32)status;
}
VOID *
agesawrapper_getlateinitptr (
int pick
)
{
switch (pick) {
case PICK_DMI:
return DmiTable;
case PICK_PSTATE:
return AcpiPstate;
case PICK_SRAT:
return AcpiSrat;
case PICK_SLIT:
return AcpiSlit;
case PICK_WHEA_MCE:
return AcpiWheaMce;
case PICK_WHEA_CMC:
return AcpiWheaCmc;
case PICK_ALIB:
return AcpiAlib;
default:
return NULL;
}
}
UINT32
agesawrapper_amdinitmid (
VOID
)
{
AGESA_STATUS status;
AMD_INTERFACE_PARAMS AmdParamStruct;
printk(BIOS_DEBUG, "file '%s',line %d, %s()\n", __FILE__, __LINE__, __func__);
/* Enable MMIO on AMD CPU Address Map Controller */
amdinitcpuio ();
LibAmdMemFill (&AmdParamStruct,
0,
sizeof (AMD_INTERFACE_PARAMS),
&(AmdParamStruct.StdHeader));
AmdParamStruct.AgesaFunctionName = AMD_INIT_MID;
AmdParamStruct.AllocationMethod = PostMemDram;
AmdParamStruct.StdHeader.AltImageBasePtr = 0;
AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout;
AmdParamStruct.StdHeader.Func = 0;
AmdParamStruct.StdHeader.ImageBasePtr = 0;
AmdCreateStruct (&AmdParamStruct);
status = AmdInitMid ((AMD_MID_PARAMS *)AmdParamStruct.NewStructPtr);
if (status != AGESA_SUCCESS) agesawrapper_amdreadeventlog();
AmdReleaseStruct (&AmdParamStruct);
return (UINT32)status;
}
UINT32
agesawrapper_amdinitlate(VOID)
{
AGESA_STATUS Status;
AMD_INTERFACE_PARAMS AmdParamStruct;
AMD_LATE_PARAMS *AmdLateParamsPtr;
LibAmdMemFill(&AmdParamStruct,
0,
sizeof (AMD_INTERFACE_PARAMS),
&(AmdParamStruct.StdHeader));
AmdParamStruct.AgesaFunctionName = AMD_INIT_LATE;
AmdParamStruct.AllocationMethod = PostMemDram;
AmdParamStruct.StdHeader.AltImageBasePtr = 0;
AmdParamStruct.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout;
AmdParamStruct.StdHeader.Func = 0;
AmdParamStruct.StdHeader.ImageBasePtr = 0;
AmdParamStruct.StdHeader.HeapStatus = HEAP_SYSTEM_MEM;
AmdCreateStruct (&AmdParamStruct);
AmdLateParamsPtr = (AMD_LATE_PARAMS *) AmdParamStruct.NewStructPtr;
printk(BIOS_DEBUG, "agesawrapper_amdinitlate: AmdLateParamsPtr = %X\n", (u32)AmdLateParamsPtr);
Status = AmdInitLate(AmdLateParamsPtr);
if (Status != AGESA_SUCCESS) {
//agesawrapper_amdreadeventlog(AmdLateParamsPtr->StdHeader.HeapStatus);
agesawrapper_amdreadeventlog();
ASSERT(Status == AGESA_SUCCESS);
}
DmiTable = AmdLateParamsPtr->DmiTable;
AcpiPstate = AmdLateParamsPtr->AcpiPState;
AcpiSrat = AmdLateParamsPtr->AcpiSrat;
AcpiSlit = AmdLateParamsPtr->AcpiSlit;
AcpiWheaMce = AmdLateParamsPtr->AcpiWheaMce;
AcpiWheaCmc = AmdLateParamsPtr->AcpiWheaCmc;
AcpiAlib = AmdLateParamsPtr->AcpiAlib;
printk(BIOS_DEBUG, "In %s, AGESA generated ACPI tables:\n"
" DmiTable:%p\n AcpiPstate: %p\n AcpiSrat:%p\n AcpiSlit:%p\n"
" Mce:%p\n Cmc:%p\n Alib:%p\n",
__func__, DmiTable, AcpiPstate, AcpiSrat, AcpiSlit,
AcpiWheaMce, AcpiWheaCmc, AcpiAlib);
/* Don't release the structure until coreboot has copied the ACPI tables.
* AmdReleaseStruct (&AmdLateParams);
*/
return (UINT32)Status;
}
UINT32
agesawrapper_amdlaterunaptask (
UINT32 Data,
VOID *ConfigPtr
)
{
AGESA_STATUS Status;
AP_EXE_PARAMS AmdLateParams;
LibAmdMemFill (&AmdLateParams,
0,
sizeof (AP_EXE_PARAMS),
&(AmdLateParams.StdHeader));
AmdLateParams.StdHeader.AltImageBasePtr = 0;
AmdLateParams.StdHeader.CalloutPtr = (CALLOUT_ENTRY) &GetBiosCallout;
AmdLateParams.StdHeader.Func = 0;
AmdLateParams.StdHeader.ImageBasePtr = 0;
Status = AmdLateRunApTask (&AmdLateParams);
if (Status != AGESA_SUCCESS) {
agesawrapper_amdreadeventlog();
ASSERT(Status == AGESA_SUCCESS);
}
return (UINT32)Status;
}
UINT32
agesawrapper_amdreadeventlog (
VOID
)
{
AGESA_STATUS Status;
EVENT_PARAMS AmdEventParams;
LibAmdMemFill (&AmdEventParams,
0,
sizeof (EVENT_PARAMS),
&(AmdEventParams.StdHeader));
AmdEventParams.StdHeader.AltImageBasePtr = 0;
AmdEventParams.StdHeader.CalloutPtr = NULL;
AmdEventParams.StdHeader.Func = 0;
AmdEventParams.StdHeader.ImageBasePtr = 0;
Status = AmdReadEventLog (&AmdEventParams);
while (AmdEventParams.EventClass != 0) {
printk(BIOS_DEBUG,"\nEventLog: EventClass = %x, EventInfo = %x.\n",AmdEventParams.EventClass,AmdEventParams.EventInfo);
printk(BIOS_DEBUG," Param1 = %x, Param2 = %x.\n",AmdEventParams.DataParam1,AmdEventParams.DataParam2);
printk(BIOS_DEBUG," Param3 = %x, Param4 = %x.\n",AmdEventParams.DataParam3,AmdEventParams.DataParam4);
Status = AmdReadEventLog (&AmdEventParams);
}
return (UINT32)Status;
}