377 lines
8.5 KiB
C
377 lines
8.5 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2013 Google, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <arch/cpu.h>
|
|
#include <bootstate.h>
|
|
#include <console/console.h>
|
|
#include <thread.h>
|
|
|
|
static void idle_thread_init(void);
|
|
|
|
/* There needs to be at least one thread to run the ramstate state machine. */
|
|
#define TOTAL_NUM_THREADS (CONFIG_NUM_THREADS + 1)
|
|
extern char thread_stacks[CONFIG_NUM_THREADS*CONFIG_STACK_SIZE];
|
|
|
|
/* Storage space for the thread structs .*/
|
|
static struct thread all_threads[TOTAL_NUM_THREADS];
|
|
|
|
/* All runnable (but not running) and free threads are kept on their
|
|
* respective lists. */
|
|
static struct thread *runnable_threads;
|
|
static struct thread *free_threads;
|
|
|
|
static inline struct cpu_info *thread_cpu_info(const struct thread *t)
|
|
{
|
|
return (void *)(t->stack_orig);
|
|
}
|
|
|
|
static inline int thread_can_yield(const struct thread *t)
|
|
{
|
|
return (t != NULL && t->can_yield);
|
|
}
|
|
|
|
/* Assumes current cpu info can switch. */
|
|
static inline struct thread *cpu_info_to_thread(const struct cpu_info *ci)
|
|
{
|
|
return ci->thread;
|
|
}
|
|
|
|
static inline struct thread *current_thread(void)
|
|
{
|
|
return cpu_info_to_thread(cpu_info());
|
|
}
|
|
|
|
static inline int thread_list_empty(struct thread **list)
|
|
{
|
|
return *list == NULL;
|
|
}
|
|
|
|
static inline struct thread *pop_thread(struct thread **list)
|
|
{
|
|
struct thread *t;
|
|
|
|
t = *list;
|
|
*list = t->next;
|
|
t->next = NULL;
|
|
return t;
|
|
}
|
|
|
|
static inline void push_thread(struct thread **list, struct thread *t)
|
|
{
|
|
t->next = *list;
|
|
*list = t;
|
|
}
|
|
|
|
static inline void push_runnable(struct thread *t)
|
|
{
|
|
push_thread(&runnable_threads, t);
|
|
}
|
|
|
|
static inline struct thread *pop_runnable(void)
|
|
{
|
|
return pop_thread(&runnable_threads);
|
|
}
|
|
|
|
static inline struct thread *get_free_thread(void)
|
|
{
|
|
struct thread *t;
|
|
struct cpu_info *ci;
|
|
struct cpu_info *new_ci;
|
|
|
|
if (thread_list_empty(&free_threads))
|
|
return NULL;
|
|
|
|
t = pop_thread(&free_threads);
|
|
|
|
ci = cpu_info();
|
|
|
|
/* Initialize the cpu_info structure on the new stack. */
|
|
new_ci = thread_cpu_info(t);
|
|
*new_ci = *ci;
|
|
new_ci->thread = t;
|
|
|
|
/* Reset the current stack value to the original. */
|
|
t->stack_current = t->stack_orig;
|
|
|
|
return t;
|
|
}
|
|
|
|
static inline void free_thread(struct thread *t)
|
|
{
|
|
push_thread(&free_threads, t);
|
|
}
|
|
|
|
/* The idle thread is ran whenever there isn't anything else that is runnable.
|
|
* It's sole responsibility is to ensure progress is made by running the timer
|
|
* callbacks. */
|
|
static void idle_thread(void *unused)
|
|
{
|
|
/* This thread never voluntarily yields. */
|
|
thread_prevent_coop();
|
|
while (1) {
|
|
timers_run();
|
|
}
|
|
}
|
|
|
|
static void schedule(struct thread *t)
|
|
{
|
|
struct thread *current = current_thread();
|
|
|
|
/* If t is NULL need to find new runnable thread. */
|
|
if (t == NULL) {
|
|
if (thread_list_empty(&runnable_threads))
|
|
die("Runnable thread list is empty!\n");
|
|
t = pop_runnable();
|
|
} else {
|
|
/* current is still runnable. */
|
|
push_runnable(current);
|
|
}
|
|
switch_to_thread(t->stack_current, ¤t->stack_current);
|
|
}
|
|
|
|
static void terminate_thread(struct thread *t)
|
|
{
|
|
free_thread(t);
|
|
schedule(NULL);
|
|
}
|
|
|
|
static void asmlinkage call_wrapper(void *unused)
|
|
{
|
|
struct thread *current = current_thread();
|
|
|
|
current->entry(current->entry_arg);
|
|
terminate_thread(current);
|
|
}
|
|
|
|
/* Block the current state transitions until thread is complete. */
|
|
static void asmlinkage call_wrapper_block_current(void *unused)
|
|
{
|
|
struct thread *current = current_thread();
|
|
|
|
boot_state_current_block();
|
|
current->entry(current->entry_arg);
|
|
boot_state_current_unblock();
|
|
terminate_thread(current);
|
|
}
|
|
|
|
struct block_boot_state {
|
|
boot_state_t state;
|
|
boot_state_sequence_t seq;
|
|
};
|
|
|
|
/* Block the provided state until thread is complete. */
|
|
static void asmlinkage call_wrapper_block_state(void *arg)
|
|
{
|
|
struct block_boot_state *bbs = arg;
|
|
struct thread *current = current_thread();
|
|
|
|
boot_state_block(bbs->state, bbs->seq);
|
|
current->entry(current->entry_arg);
|
|
boot_state_unblock(bbs->state, bbs->seq);
|
|
terminate_thread(current);
|
|
}
|
|
|
|
/* Prepare a thread so that it starts by executing thread_entry(thread_arg).
|
|
* Within thread_entry() it will call func(arg). */
|
|
static void prepare_thread(struct thread *t, void *func, void *arg,
|
|
void asmlinkage (*thread_entry)(void *),
|
|
void *thread_arg)
|
|
{
|
|
/* Stash the function and argument to run. */
|
|
t->entry = func;
|
|
t->entry_arg = arg;
|
|
|
|
/* All new threads can yield by default. */
|
|
t->can_yield = 1;
|
|
|
|
arch_prepare_thread(t, thread_entry, thread_arg);
|
|
}
|
|
|
|
static void thread_resume_from_timeout(struct timeout_callback *tocb)
|
|
{
|
|
struct thread *to;
|
|
|
|
to = tocb->priv;
|
|
schedule(to);
|
|
}
|
|
|
|
static void idle_thread_init(void)
|
|
{
|
|
struct thread *t;
|
|
|
|
t = get_free_thread();
|
|
|
|
if (t == NULL) {
|
|
die("No threads available for idle thread!\n");
|
|
}
|
|
|
|
/* Queue idle thread to run once all other threads have yielded. */
|
|
prepare_thread(t, idle_thread, NULL, call_wrapper, NULL);
|
|
push_runnable(t);
|
|
/* Mark the currently executing thread to cooperate. */
|
|
thread_cooperate();
|
|
}
|
|
|
|
/* Don't inline this function so the timeout_callback won't have its storage
|
|
* space on the stack cleaned up before the call to schedule(). */
|
|
static int __attribute__((noinline))
|
|
thread_yield_timed_callback(struct timeout_callback *tocb, unsigned microsecs)
|
|
{
|
|
tocb->priv = current_thread();
|
|
tocb->callback = thread_resume_from_timeout;
|
|
|
|
if (timer_sched_callback(tocb, microsecs))
|
|
return -1;
|
|
|
|
/* The timer callback will wake up the current thread. */
|
|
schedule(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void *thread_alloc_space(struct thread *t, size_t bytes)
|
|
{
|
|
/* Allocate the amount of space on the stack keeping the stack
|
|
* aligned to the pointer size. */
|
|
t->stack_current -= ALIGN_UP(bytes, sizeof(uintptr_t));
|
|
|
|
return (void *)t->stack_current;
|
|
}
|
|
|
|
void threads_initialize(void)
|
|
{
|
|
int i;
|
|
struct thread *t;
|
|
char *stack_top;
|
|
struct cpu_info *ci;
|
|
|
|
/* Initialize the BSP thread first. The cpu_info structure is assumed
|
|
* to be just under the top of the stack. */
|
|
t = &all_threads[0];
|
|
ci = cpu_info();
|
|
ci->thread = t;
|
|
t->stack_orig = (uintptr_t)ci;
|
|
t->id = 0;
|
|
|
|
stack_top = &thread_stacks[CONFIG_STACK_SIZE] - sizeof(struct cpu_info);
|
|
for (i = 1; i < TOTAL_NUM_THREADS; i++) {
|
|
t = &all_threads[i];
|
|
t->stack_orig = (uintptr_t)stack_top;
|
|
t->id = i;
|
|
stack_top += CONFIG_STACK_SIZE;
|
|
free_thread(t);
|
|
}
|
|
|
|
idle_thread_init();
|
|
}
|
|
|
|
int thread_run(void (*func)(void *), void *arg)
|
|
{
|
|
struct thread *current;
|
|
struct thread *t;
|
|
|
|
current = current_thread();
|
|
|
|
if (!thread_can_yield(current)) {
|
|
printk(BIOS_ERR,
|
|
"thread_run() called from non-yielding context!\n");
|
|
return -1;
|
|
}
|
|
|
|
t = get_free_thread();
|
|
|
|
if (t == NULL) {
|
|
printk(BIOS_ERR, "thread_run() No more threads!\n");
|
|
return -1;
|
|
}
|
|
|
|
prepare_thread(t, func, arg, call_wrapper_block_current, NULL);
|
|
schedule(t);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int thread_run_until(void (*func)(void *), void *arg,
|
|
boot_state_t state, boot_state_sequence_t seq)
|
|
{
|
|
struct thread *current;
|
|
struct thread *t;
|
|
struct block_boot_state *bbs;
|
|
|
|
current = current_thread();
|
|
|
|
if (!thread_can_yield(current)) {
|
|
printk(BIOS_ERR,
|
|
"thread_run() called from non-yielding context!\n");
|
|
return -1;
|
|
}
|
|
|
|
t = get_free_thread();
|
|
|
|
if (t == NULL) {
|
|
printk(BIOS_ERR, "thread_run() No more threads!\n");
|
|
return -1;
|
|
}
|
|
|
|
bbs = thread_alloc_space(t, sizeof(*bbs));
|
|
bbs->state = state;
|
|
bbs->seq = seq;
|
|
prepare_thread(t, func, arg, call_wrapper_block_state, bbs);
|
|
schedule(t);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int thread_yield_microseconds(unsigned microsecs)
|
|
{
|
|
struct thread *current;
|
|
struct timeout_callback tocb;
|
|
|
|
current = current_thread();
|
|
|
|
if (!thread_can_yield(current))
|
|
return -1;
|
|
|
|
if (thread_yield_timed_callback(&tocb, microsecs))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void thread_cooperate(void)
|
|
{
|
|
struct thread *current;
|
|
|
|
current = current_thread();
|
|
|
|
if (current != NULL)
|
|
current->can_yield = 1;
|
|
}
|
|
|
|
void thread_prevent_coop(void)
|
|
{
|
|
struct thread *current;
|
|
|
|
current = current_thread();
|
|
|
|
if (current != NULL)
|
|
current->can_yield = 0;
|
|
}
|