coreboot-kgpe-d16/src/devices/pci_device.c
Eric Biederman e9a271e32c - Major update of the dynamic device tree so it can handle
* subtractive resources
  * merging with the static device tree
  * more device types than just pci
- The piece to watch out for is the new enable_resources method that was needed in all of the drivers


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1096 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2003-09-02 03:36:25 +00:00

945 lines
28 KiB
C

/*
* PCI Bus Services, see include/linux/pci.h for further explanation.
*
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
* David Mosberger-Tang
*
* Copyright 1997 -- 1999 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
*
* Copyright 2003 -- Eric Biederman <ebiederman@lnxi.com>
*/
#include <console/console.h>
#include <stdlib.h>
#include <stdint.h>
#include <bitops.h>
#include <string.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <part/hard_reset.h>
#include <part/fallback_boot.h>
/** Given a device and register, read the size of the BAR for that register.
* @param dev Pointer to the device structure
* @param resource Pointer to the resource structure
* @param index Address of the pci configuration register
*/
static void pci_get_resource(struct device *dev, struct resource *resource, unsigned long index)
{
uint32_t addr, size, base;
unsigned long type;
/* Initialize the resources to nothing */
resource->base = 0;
resource->size = 0;
resource->align = 0;
resource->gran = 0;
resource->limit = 0;
resource->flags = 0;
resource->index = index;
addr = pci_read_config32(dev, index);
/* FIXME: more consideration for 64-bit PCI devices,
* we currently detect their size but otherwise
* treat them as 32-bit resources
*/
/* get the size */
pci_write_config32(dev, index, ~0);
size = pci_read_config32(dev, index);
/* get the minimum value the bar can be set to */
pci_write_config32(dev, index, 0);
base = pci_read_config32(dev, index);
/* restore addr */
pci_write_config32(dev, index, addr);
/*
* some broken hardware has read-only registers that do not
* really size correctly. You can tell this if addr == size
* Example: the acer m7229 has BARs 1-4 normally read-only.
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
* by writing 0xffffffff to it, it will read back as 0x1f1 -- a
* violation of the spec.
* We catch this case and ignore it by settting size and type to 0.
* This incidentally catches the common case where registers
* read back as 0 for both address and size.
*/
if ((addr == size) && (addr == base)) {
if (size != 0) {
printk_debug(
"%s register %02x(%08x), read-only ignoring it\n",
dev_path(dev),
index, addr);
}
resource->flags = 0;
}
/* Now compute the actual size, See PCI Spec 6.2.5.1 ... */
else if (size & PCI_BASE_ADDRESS_SPACE_IO) {
type = size & (~PCI_BASE_ADDRESS_IO_MASK);
/* BUG! Top 16 bits can be zero (or not)
* So set them to 0xffff so they go away ...
*/
resource->size = (~((size | 0xffff0000) & PCI_BASE_ADDRESS_IO_MASK)) +1;
resource->align = log2(resource->size);
resource->gran = resource->align;
resource->flags = IORESOURCE_IO;
resource->limit = 0xffff;
}
else {
/* A Memory mapped base address */
type = size & (~PCI_BASE_ADDRESS_MEM_MASK);
resource->size = (~(size &PCI_BASE_ADDRESS_MEM_MASK)) +1;
resource->align = log2(resource->size);
resource->gran = resource->align;
resource->flags = IORESOURCE_MEM;
if (type & PCI_BASE_ADDRESS_MEM_PREFETCH) {
resource->flags |= IORESOURCE_PREFETCH;
}
type &= PCI_BASE_ADDRESS_MEM_TYPE_MASK;
if (type == PCI_BASE_ADDRESS_MEM_TYPE_32) {
/* 32bit limit */
resource->limit = 0xffffffffUL;
}
else if (type == PCI_BASE_ADDRESS_MEM_TYPE_1M) {
/* 1MB limit */
resource->limit = 0x000fffffUL;
}
else if (type == PCI_BASE_ADDRESS_MEM_TYPE_64) {
unsigned long index_hi;
/* 64bit limit
* For now just treat this as a 32bit limit
*/
index_hi = index + 4;
resource->limit = 0xffffffffUL;
resource->flags |= IORESOURCE_PCI64;
addr = pci_read_config32( dev, index_hi);
/* get the extended size */
pci_write_config32(dev, index_hi, 0xffffffffUL);
size = pci_read_config32( dev, index_hi);
/* get the minimum value the bar can be set to */
pci_write_config32(dev, index_hi, 0);
base = pci_read_config32(dev, index_hi);
/* restore addr */
pci_write_config32(dev, index_hi, addr);
if ((size == 0xffffffff) && (base == 0)) {
/* Clear the top half of the bar */
pci_write_config32(dev, index_hi, 0);
}
else {
printk_err("%s Unable to handle 64-bit address\n",
dev_path(dev));
resource->flags = IORESOURCE_PCI64;
}
}
else {
/* Invalid value */
resource->flags = 0;
}
}
/* dev->size holds the flags... */
return;
}
/** Read the base address registers for a given device.
* @param dev Pointer to the dev structure
* @param howmany How many registers to read (6 for device, 2 for bridge)
*/
static void pci_read_bases(struct device *dev, unsigned int howmany)
{
unsigned int reg;
unsigned long index;
reg = dev->resources;
for(index = PCI_BASE_ADDRESS_0;
(reg < MAX_RESOURCES) && (index < PCI_BASE_ADDRESS_0 + (howmany << 2)); ) {
struct resource *resource;
resource = &dev->resource[reg];
pci_get_resource(dev, resource, index);
reg += (resource->flags & (IORESOURCE_IO | IORESOURCE_MEM))? 1:0;
index += (resource->flags & IORESOURCE_PCI64)?8:4;
}
dev->resources = reg;
}
static void pci_bridge_read_bases(struct device *dev)
{
unsigned int reg = dev->resources;
/* FIXME handle bridges without some of the optional resources */
/* Initialize the io space constraints on the current bus */
dev->resource[reg].base = 0;
dev->resource[reg].size = 0;
dev->resource[reg].align = log2(PCI_IO_BRIDGE_ALIGN);
dev->resource[reg].gran = log2(PCI_IO_BRIDGE_ALIGN);
dev->resource[reg].limit = 0xffffUL;
dev->resource[reg].flags = IORESOURCE_IO | IORESOURCE_PCI_BRIDGE;
dev->resource[reg].index = PCI_IO_BASE;
compute_allocate_resource(&dev->link[0], &dev->resource[reg],
IORESOURCE_IO, IORESOURCE_IO);
reg++;
/* Initiliaze the prefetchable memory constraints on the current bus */
dev->resource[reg].base = 0;
dev->resource[reg].size = 0;
dev->resource[reg].align = log2(PCI_MEM_BRIDGE_ALIGN);
dev->resource[reg].gran = log2(PCI_MEM_BRIDGE_ALIGN);
dev->resource[reg].limit = 0xffffffffUL;
dev->resource[reg].flags = IORESOURCE_MEM | IORESOURCE_PREFETCH | IORESOURCE_PCI_BRIDGE;
dev->resource[reg].index = PCI_PREF_MEMORY_BASE;
compute_allocate_resource(&dev->link[0], &dev->resource[reg],
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
reg++;
/* Initialize the memory resources on the current bus */
dev->resource[reg].base = 0;
dev->resource[reg].size = 0;
dev->resource[reg].align = log2(PCI_MEM_BRIDGE_ALIGN);
dev->resource[reg].gran = log2(PCI_MEM_BRIDGE_ALIGN);
dev->resource[reg].limit = 0xffffffffUL;
dev->resource[reg].flags = IORESOURCE_MEM | IORESOURCE_PCI_BRIDGE;
dev->resource[reg].index = PCI_MEMORY_BASE;
compute_allocate_resource(&dev->link[0], &dev->resource[reg],
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM);
reg++;
dev->resources = reg;
}
void pci_dev_read_resources(struct device *dev)
{
uint32_t addr;
dev->resources = 0;
memset(&dev->resource[0], 0, sizeof(dev->resource));
pci_read_bases(dev, 6);
addr = pci_read_config32(dev, PCI_ROM_ADDRESS);
dev->rom_address = (addr == 0xffffffff)? 0 : addr;
}
void pci_bus_read_resources(struct device *dev)
{
uint32_t addr;
dev->resources = 0;
memset(&dev->resource, 0, sizeof(dev->resource));
pci_bridge_read_bases(dev);
pci_read_bases(dev, 2);
addr = pci_read_config32(dev, PCI_ROM_ADDRESS1);
dev->rom_address = (addr == 0xffffffff)? 0 : addr;
}
static void pci_set_resource(struct device *dev, struct resource *resource)
{
unsigned long base, limit;
unsigned char buf[10];
unsigned long align;
/* Make certain the resource has actually been set */
if (!(resource->flags & IORESOURCE_SET)) {
#if 1
printk_err("ERROR: %s %02x not allocated\n",
dev_path(dev), resource->index);
#endif
return;
}
/* Only handle PCI memory and IO resources for now */
if (!(resource->flags & (IORESOURCE_MEM |IORESOURCE_IO)))
return;
if (resource->flags & IORESOURCE_MEM) {
dev->command |= PCI_COMMAND_MEMORY;
}
if (resource->flags & IORESOURCE_IO) {
dev->command |= PCI_COMMAND_IO;
}
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
dev->command |= PCI_COMMAND_MASTER;
}
/* Get the base address */
base = resource->base;
/* Get the resource alignment */
align = 1UL << resource->align;
/* Get the limit (rounded up) */
limit = base + ((resource->size + align - 1UL) & ~(align - 1UL)) -1UL;
if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
/*
* some chipsets allow us to set/clear the IO bit.
* (e.g. VIA 82c686a.) So set it to be safe)
*/
limit = base + resource->size -1;
if (resource->flags & IORESOURCE_IO) {
base |= PCI_BASE_ADDRESS_SPACE_IO;
}
pci_write_config32(dev, resource->index, base & 0xffffffff);
if (resource->flags & IORESOURCE_PCI64) {
/* FIXME handle real 64bit base addresses */
pci_write_config32(dev, resource->index + 4, 0);
}
}
else if (resource->index == PCI_IO_BASE) {
/* set the IO ranges
* WARNING: we don't really do 32-bit addressing for IO yet!
*/
compute_allocate_resource(&dev->link[0], resource,
IORESOURCE_IO, IORESOURCE_IO);
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
pci_write_config8(dev, PCI_IO_LIMIT, limit >> 8);
pci_write_config16(dev, PCI_IO_BASE_UPPER16, 0);
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, 0);
}
else if (resource->index == PCI_MEMORY_BASE) {
/* set the memory range
*/
compute_allocate_resource(&dev->link[0], resource,
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM);
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
pci_write_config16(dev, PCI_MEMORY_LIMIT, limit >> 16);
}
else if (resource->index == PCI_PREF_MEMORY_BASE) {
/* set the prefetchable memory range
* WARNING: we don't really do 64-bit addressing for prefetchable memory yet!
*/
compute_allocate_resource(&dev->link[0], resource,
IORESOURCE_MEM | IORESOURCE_PREFETCH,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, limit >> 16);
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, 0);
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, 0);
}
else {
printk_err("ERROR: invalid resource->index %x\n",
resource->index);
}
buf[0] = '\0';
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
sprintf(buf, "bus %d ", dev->link[0].secondary);
}
printk_debug(
"%s %02x <- [0x%08lx - 0x%08lx] %s%s\n",
dev_path(dev),
resource->index,
resource->base, limit,
buf,
(resource->flags & IORESOURCE_IO)? "io":
(resource->flags & IORESOURCE_PREFETCH)? "prefmem": "mem");
return;
}
void pci_dev_set_resources(struct device *dev)
{
struct resource *resource, *last;
unsigned link;
uint8_t line;
last = &dev->resource[dev->resources];
for(resource = &dev->resource[0]; resource < last; resource++) {
pci_set_resource(dev, resource);
}
for(link = 0; link < dev->links; link++) {
struct bus *bus;
bus = &dev->link[link];
if (bus->children) {
assign_resources(bus);
}
}
/* set a default latency timer */
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
/* set a default secondary latency timer */
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE) {
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
}
/* zero the irq settings */
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (line) {
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
}
/* set the cache line size, so far 64 bytes is good for everyone */
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
}
void pci_dev_enable_resources(struct device *dev)
{
uint16_t command;
command = pci_read_config16(dev, PCI_COMMAND);
command |= dev->command;
printk_debug("%s cmd <- %02x\n", dev_path(dev), command);
pci_write_config16(dev, PCI_COMMAND, command);
enable_childrens_resources(dev);
}
void pci_bus_enable_resources(struct device *dev)
{
uint16_t ctrl;
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
ctrl |= dev->link[0].bridge_ctrl;
printk_debug("%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
pci_dev_enable_resources(dev);
}
struct device_operations default_pci_ops_dev = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = 0,
.scan_bus = 0,
};
struct device_operations default_pci_ops_bus = {
.read_resources = pci_bus_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_bus_enable_resources,
.init = 0,
.scan_bus = pci_scan_bridge,
};
static void set_pci_ops(struct device *dev)
{
struct pci_driver *driver;
if (dev->ops) {
return;
}
/* Look through the list of setup drivers and find one for
* this pci device
*/
for(driver = &pci_drivers[0]; driver != &epci_drivers[0]; driver++) {
if ((driver->vendor == dev->vendor) &&
(driver->device == dev->device)) {
dev->ops = driver->ops;
#if 1
printk_debug("%s [%04x/%04x] %sops\n",
dev_path(dev),
driver->vendor, driver->device,
(driver->ops->scan_bus?"bus ":"")
);
#endif
return;
}
}
/* If I don't have a specific driver use the default operations */
switch(dev->hdr_type & 0x7f) { /* header type */
case PCI_HEADER_TYPE_NORMAL: /* standard header */
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = &default_pci_ops_dev;
break;
case PCI_HEADER_TYPE_BRIDGE:
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
goto bad;
dev->ops = &default_pci_ops_bus;
break;
default:
bad:
printk_err("%s [%04x/%04x/%06x] has unknown header "
"type %02x, ignoring.\n",
dev_path(dev),
dev->vendor, dev->device,
dev->class >> 8, dev->hdr_type);
}
return;
}
/**
* Given a bus and a devfn number, find the device structure
* @param bus The bus structure
* @param devfn a device/function number
* @return pointer to the device structure
*/
static struct device *pci_scan_get_dev(struct device **list, unsigned int devfn)
{
struct device *dev = 0;
for(; *list; list = &(*list)->sibling) {
if ((*list)->path.u.pci.devfn == devfn) {
/* Unlink from the list */
dev = *list;
*list = (*list)->sibling;
dev->sibling = 0;
break;
}
}
if (dev) {
device_t child;
/* Find the last child of our parent */
for(child = dev->bus->children; child && child->sibling; ) {
child = child->sibling;
}
/* Place the device on the list of children of it's parent. */
if (child) {
child->sibling = dev;
} else {
dev->bus->children = dev;
}
}
return dev;
}
void assign_id_set_links(device_t dev, uint8_t *pos,
uint8_t *previous_pos, unsigned previous_unitid,
unsigned last_unitid, int *reset_needed,
struct device *bus, unsigned *next_unitid)
{
static const uint8_t link_width_to_pow2[]= { 3, 4, 0, 5, 1, 2, 0, 0 };
static const uint8_t pow2_to_link_width[] = { 0x7, 4, 5, 0, 1, 3 };
uint16_t flags;
struct bus prev_bus;
struct device last, previous;
unsigned count;
uint8_t present_width_cap;
uint16_t present_freq_cap;
uint8_t upstream_width_cap;
uint16_t upstream_freq_cap;
uint8_t ln_upstream_width_in, ln_present_width_in;
uint8_t ln_upstream_width_out, ln_present_width_out;
uint16_t mask;
uint8_t freq;
uint8_t old_freq;
uint8_t upstream_width, present_width;
uint8_t old_width;
flags = pci_read_config16(dev, (*pos) + PCI_CAP_FLAGS);
printk_debug("flags: 0x%04x\n", (unsigned)flags);
if ((flags >> 13) != 0)
return; /* Entry is a Host */
/* Entry is a Slave secondary */
flags &= ~0x1f; /* mask out base unit ID */
flags |= *next_unitid & 0x1f; /* assign ID */
count = (flags >> 5) & 0x1f; /* get unit count */
printk_debug("unitid: 0x%02x, count: 0x%02x\n",
*next_unitid, count);
pci_write_config16(dev, (*pos) + PCI_CAP_FLAGS, flags);
*next_unitid += count;
if (previous_unitid == 0) { /* the link is back to the host */
prev_bus.secondary = 0;
/* calculate the previous pos for the host */
*previous_pos = 0x80;
previous.bus = &prev_bus;
previous.path.type = DEVICE_PATH_PCI;
previous.path.u.pci.devfn = 0x18 << 3;
#warning "FIXME we should not hard code this!"
} else {
previous.bus = bus;
previous.path.type = DEVICE_PATH_PCI;
previous.path.u.pci.devfn = previous_unitid << 3;
}
last.bus = bus;
last.path.type = DEVICE_PATH_PCI;
last.path.u.pci.devfn = last_unitid << 3;
/* Set link width and frequency */
present_freq_cap = pci_read_config16(&last,
(*pos) + PCI_HT_CAP_SLAVE_FREQ_CAP0);
present_width_cap = pci_read_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_WIDTH0);
if(previous_unitid == 0) { /* the link is back to the host */
upstream_freq_cap = pci_read_config16(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_FREQ_CAP);
upstream_width_cap = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_WIDTH);
}
else { /* The link is back up the chain */
upstream_freq_cap = pci_read_config16(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_FREQ_CAP1);
upstream_width_cap = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_WIDTH1);
}
/* Calculate the highest possible frequency */
/* Errata for 8131 - freq 5 has hardware problems don't support it */
freq = log2(present_freq_cap & upstream_freq_cap & 0x1f);
/* Calculate the highest width */
ln_upstream_width_in = link_width_to_pow2[upstream_width_cap & 7];
ln_present_width_out = link_width_to_pow2[(present_width_cap >> 4) & 7];
if (ln_upstream_width_in > ln_present_width_out) {
ln_upstream_width_in = ln_present_width_out;
}
upstream_width = pow2_to_link_width[ln_upstream_width_in];
present_width = pow2_to_link_width[ln_upstream_width_in] << 4;
ln_upstream_width_out = link_width_to_pow2[(upstream_width_cap >> 4) & 7];
ln_present_width_in = link_width_to_pow2[present_width_cap & 7];
if (ln_upstream_width_out > ln_present_width_in) {
ln_upstream_width_out = ln_present_width_in;
}
upstream_width |= pow2_to_link_width[ln_upstream_width_out] << 4;
present_width |= pow2_to_link_width[ln_upstream_width_out];
/* set the present device */
old_freq = pci_read_config8(&last, (*pos) + PCI_HT_CAP_SLAVE_FREQ0);
if(old_freq != freq) {
pci_write_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_FREQ0, freq);
*reset_needed = 1;
printk_debug("HyperT FreqP old %x new %x\n",old_freq,freq);
}
old_width = pci_read_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_WIDTH0 + 1);
if(present_width != old_width) {
pci_write_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_WIDTH0 + 1, present_width);
*reset_needed = 1;
printk_debug("HyperT widthP old %x new %x\n",
old_width, present_width);
}
/* set the upstream device */
if(previous_unitid == 0) { /* the link is back to the host */
old_freq = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_FREQ);
old_freq &= 0x0f;
if(freq != old_freq) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_FREQ, freq);
*reset_needed = 1;
printk_debug("HyperT freqUH old %x new %x\n",
old_freq, freq);
}
old_width = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_WIDTH + 1);
if(upstream_width != old_width) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_WIDTH + 1,
upstream_width);
*reset_needed = 1;
printk_debug("HyperT widthUH old %x new %x\n",
old_width, upstream_width);
}
}
else { /* The link is back up the chain */
old_freq = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_FREQ1);
old_freq &= 0x0f;
if(freq != old_freq) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_FREQ1,
freq);
*reset_needed = 1;
printk_debug("HyperT freqUL old %x new %x\n",
old_freq, freq);
}
old_width = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_WIDTH1 + 1);
if(upstream_width != old_width) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_WIDTH1,
upstream_width);
*reset_needed = 1;
printk_debug("HyperT widthUL old %x new %x\n",
old_width, upstream_width);
}
}
*previous_pos = *pos;
*pos=0;
}
#define HYPERTRANSPORT_SUPPORT 1
/** Scan the pci bus devices and bridges.
* @param bus pointer to the bus structure
* @param min_devfn minimum devfn to look at in the scan usually 0x00
* @param max_devfn maximum devfn to look at in the scan usually 0xff
* @param max current bus number
* @return The maximum bus number found, after scanning all subordinate busses
*/
unsigned int pci_scan_bus(struct bus *bus,
unsigned min_devfn, unsigned max_devfn,
unsigned int max)
{
unsigned int devfn;
device_t dev;
device_t old_devices;
device_t child;
#if HYPERTRANSPORT_SUPPORT
unsigned next_unitid, last_unitid, previous_unitid;
int reset_needed = 0;
uint8_t previous_pos;
#endif
printk_debug("PCI: pci_scan_bus for bus %d\n", bus->secondary);
old_devices = bus->children;
bus->children = 0;
post_code(0x24);
#if HYPERTRANSPORT_SUPPORT
/* Spin through the devices and collapse any early
* hypertransport enumeration.
*/
for(devfn = min_devfn; devfn <= max_devfn; devfn += 8) {
struct device dummy;
uint32_t id;
uint8_t hdr_type, pos;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
if ( (id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000)) {
continue;
}
hdr_type = pci_read_config8(&dummy, PCI_HEADER_TYPE);
pos = 0;
switch(hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
}
if (pos > PCI_CAP_LIST_NEXT) {
pos = pci_read_config8(&dummy, pos);
}
while(pos != 0) {
uint8_t cap;
cap = pci_read_config8(&dummy, pos + PCI_CAP_LIST_ID);
printk_debug("Capability: 0x%02x @ 0x%02x\n", cap, pos);
if (cap == PCI_CAP_ID_HT) {
uint16_t flags;
flags = pci_read_config16(&dummy,
pos + PCI_CAP_FLAGS);
printk_debug("flags: 0x%04x\n",
(unsigned)flags);
if ((flags >> 13) == 0) {
/* Clear the unitid */
flags &= ~0x1f;
pci_write_config16(&dummy,
pos + PCI_CAP_FLAGS, flags);
break;
}
}
pos = pci_read_config8(&dummy, pos + PCI_CAP_LIST_NEXT);
}
}
/* If present assign unitid to a hypertransport chain */
last_unitid = 0;
next_unitid = 1;
previous_pos = 0;
do {
struct device dummy;
uint32_t id;
uint8_t hdr_type, pos;
previous_unitid = last_unitid;
last_unitid = next_unitid;
/* Read the next unassigned device off the stack */
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = 0;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* If the chain is enumerated quit */
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000) {
break;
}
hdr_type = pci_read_config8(&dummy, PCI_HEADER_TYPE);
pos = 0;
switch(hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
}
if (pos > PCI_CAP_LIST_NEXT) {
pos = pci_read_config8(&dummy, pos);
}
while(pos != 0) { /* loop through the linked list */
uint8_t cap;
cap = pci_read_config8(&dummy, pos + PCI_CAP_LIST_ID);
printk_debug("Capability: 0x%02x @ 0x%02x\n", cap, pos);
if (cap == PCI_CAP_ID_HT) {
assign_id_set_links(&dummy,&pos,&previous_pos,
previous_unitid, last_unitid,
&reset_needed, bus,
&next_unitid);
}
if(pos)
pos = pci_read_config8(&dummy,
pos + PCI_CAP_LIST_NEXT);
}
} while((last_unitid != next_unitid) && (next_unitid <= 0x1f));
#if HAVE_HARD_RESET == 1
if(reset_needed) {
printk_debug("HyperT reset needed\n");
boot_successful();
hard_reset();
}
printk_debug("HyperT reset not needed\n");
#endif /* HAVE_HARD_RESET */
#endif /* HYPERTRANSPORT_SUPPORT */
/* probe all devices on this bus with some optimization for non-existance and
single funcion devices */
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
uint32_t id, class;
uint8_t hdr_type;
/* First thing setup the device structure */
dev = pci_scan_get_dev(&old_devices, devfn);
/* Detect if a device is present */
if (!dev) {
struct device dummy;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* some broken boards return 0 if a slot is empty: */
if ( (id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000))
{
printk_spew("PCI: devfn 0x%x, bad id 0x%x\n", devfn, id);
if (PCI_FUNC(devfn) == 0x00) {
/* if this is a function 0 device and it is not present,
skip to next device */
devfn += 0x07;
}
/* multi function device, skip to next function */
continue;
}
dev = alloc_dev(bus, &dummy.path);
}
else {
/* Run the magic enable/disable sequence for the device */
if (dev->ops && dev->ops->enable) {
dev->ops->enable(dev);
}
/* Now read the vendor and device id */
id = pci_read_config32(dev, PCI_VENDOR_ID);
}
/* Read the rest of the pci configuration information */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
/* Store the interesting information in the device structure */
dev->vendor = id & 0xffff;
dev->device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* class code, the upper 3 bytes of PCI_CLASS_REVISION */
dev->class = class >> 8;
/* Look at the vendor and device id, or at least the
* header type and class and figure out which set of configuration
* methods to use.
*/
if (!dev->ops) {
set_pci_ops(dev);
/* Error if we don't have some pci operations for it */
if (!dev->ops) {
printk_err("%s No device operations\n",
dev_path(dev));
continue;
}
/* Now run the magic enable/disable sequence for the device */
if (dev->ops && dev->ops->enable) {
dev->ops->enable(dev);
}
}
printk_debug("%s [%04x/%04x] %s\n",
dev_path(dev),
dev->vendor, dev->device,
dev->enable?"enabled": "disabled");
if (PCI_FUNC(devfn) == 0x00 && (hdr_type & 0x80) != 0x80) {
/* if this is not a multi function device, don't waste time probe
another function. Skip to next device. */
devfn += 0x07;
}
}
post_code(0x25);
for(child = bus->children; child; child = child->sibling) {
if (!child->ops->scan_bus) {
continue;
}
max = child->ops->scan_bus(child, max);
}
/*
* We've scanned the bus and so we know all about what's on
* the other side of any bridges that may be on this bus plus
* any devices.
*
* Return how far we've got finding sub-buses.
*/
printk_debug("PCI: pci_scan_bus returning with max=%02x\n", max);
post_code(0x55);
return max;
}
/** Scan the bus, first for bridges and next for devices.
* @param pci_bus pointer to the bus structure
* @return The maximum bus number found, after scanning all subordinate busses
*/
unsigned int pci_scan_bridge(struct device *dev, unsigned int max)
{
struct bus *bus;
uint32_t buses;
uint16_t cr;
bus = &dev->link[0];
dev->links = 1;
/* Set up the primary, secondary and subordinate bus numbers. We have
* no idea how many buses are behind this bridge yet, so we set the
* subordinate bus number to 0xff for the moment
*/
bus->secondary = ++max;
bus->subordinate = 0xff;
/* Clear all status bits and turn off memory, I/O and master enables. */
cr = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, 0x0000);
pci_write_config16(dev, PCI_STATUS, 0xffff);
/*
* Read the existing primary/secondary/subordinate bus
* number configuration.
*/
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
/* Configure the bus numbers for this bridge: the configuration
* transactions will not be propagated by the bridge if it is not
* correctly configured
*/
buses &= 0xff000000;
buses |= (((unsigned int) (dev->bus->secondary) << 0) |
((unsigned int) (bus->secondary) << 8) |
((unsigned int) (bus->subordinate) << 16));
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
/* Now we can scan all subordinate buses i.e. the bus hehind the bridge */
max = pci_scan_bus(bus, 0x00, 0xff, max);
/* We know the number of buses behind this bridge. Set the subordinate
* bus number to its real value
*/
bus->subordinate = max;
buses = (buses & 0xff00ffff) |
((unsigned int) (bus->subordinate) << 16);
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
pci_write_config16(dev, PCI_COMMAND, cr);
return max;
}