coreboot-kgpe-d16/util/x86emu/yabel/interrupt.c
Stefan Reinauer 38cd29ebd7 Don't pull in x86emu from a foreign directory anymore. This
produced numerous problems in the past, including the fact that
x86emu doesn't work in v3 anymore even though it lives in the v3
repository.

Since this is a cross-repository move, keeping the history in the v2 tree 
would make life hard for everone. So check the v3 repository for x86emu history
since the merger. The his commit is based on an svn export of r1175 of the
coreboot-v3 repository.

Signed-off-by: Stefan Reinauer <stepan@coresystems.de>
Acked-by: Patrick Georgi <patrick.georgi@coresystems.de>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@4532 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2009-08-11 21:28:25 +00:00

687 lines
20 KiB
C

/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#ifdef CONFIG_COREBOOT_V2
#include "compat/rtas.h"
#else
#include <rtas.h>
#endif
#include "biosemu.h"
#include "mem.h"
#include "device.h"
#include "debug.h"
#include "pmm.h"
#include <x86emu/x86emu.h>
#ifdef CONFIG_COREBOOT_V2
#include "../x86emu/prim_ops.h"
#else
#include <x86emu/prim_ops.h>
#endif
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
#include <device/pci.h>
#include <device/pci_ops.h>
#endif
//setup to run the code at the address, that the Interrupt Vector points to...
void
setupInt(int intNum)
{
DEBUG_PRINTF_INTR("%s(%x): executing interrupt handler @%08x\n",
__func__, intNum, my_rdl(intNum * 4));
// push current R_FLG... will be popped by IRET
push_word((u16) M.x86.R_FLG);
CLEAR_FLAG(F_IF);
CLEAR_FLAG(F_TF);
// push current CS:IP to the stack, will be popped by IRET
push_word(M.x86.R_CS);
push_word(M.x86.R_IP);
// set CS:IP to the interrupt handler address... so the next executed instruction will
// be the interrupt handler
M.x86.R_CS = my_rdw(intNum * 4 + 2);
M.x86.R_IP = my_rdw(intNum * 4);
}
// handle int10 (VGA BIOS Interrupt)
void
handleInt10(void)
{
// the data for INT10 is stored in BDA (0000:0400h) offset 49h-66h
// function number in AH
//DEBUG_PRINTF_CS_IP("%s:\n", __func__);
//x86emu_dump_xregs();
//if ((M.x86.R_IP == 0x32c2) && (M.x86.R_SI == 0x1ce2)){
//X86EMU_trace_on();
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
//}
switch (M.x86.R_AH) {
case 0x00:
// set video mode
// BDA offset 49h is current video mode
my_wrb(0x449, M.x86.R_AL);
if (M.x86.R_AL > 7)
M.x86.R_AL = 0x20;
else if (M.x86.R_AL == 6)
M.x86.R_AL = 0x3f;
else
M.x86.R_AL = 0x30;
break;
case 0x01:
// set cursor shape
// ignore
break;
case 0x02:
// set cursor position
// BH: pagenumber, DX: cursor_pos (DH:row, DL:col)
// BDA offset 50h-60h are 8 cursor position words for
// eight possible video pages
my_wrw(0x450 + (M.x86.R_BH * 2), M.x86.R_DX);
break;
case 0x03:
//get cursor position
// BH: pagenumber
// BDA offset 50h-60h are 8 cursor position words for
// eight possible video pages
M.x86.R_AX = 0;
M.x86.R_CH = 0; // start scan line ???
M.x86.R_CL = 0; // end scan line ???
M.x86.R_DX = my_rdw(0x450 + (M.x86.R_BH * 2));
break;
case 0x05:
// set active page
// BDA offset 62h is current page number
my_wrb(0x462, M.x86.R_AL);
break;
case 0x06:
//scroll up windows
break;
case 0x07:
//scroll down windows
break;
case 0x08:
//read character and attribute at position
M.x86.R_AH = 0x07; // white-on-black
M.x86.R_AL = 0x20; // a space...
break;
case 0x09:
// write character and attribute
//AL: char, BH: page number, BL: attribute, CX: number of times to write
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
u32 i = 0;
if (M.x86.R_BH == my_rdb(0x462)) {
for (i = 0; i < M.x86.R_CX; i++)
printf("%c", M.x86.R_AL);
}
}
break;
case 0x0a:
// write character
//AL: char, BH: page number, BL: attribute, CX: number of times to write
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
u32 i = 0;
if (M.x86.R_BH == my_rdb(0x462)) {
for (i = 0; i < M.x86.R_CX; i++)
printf("%c", M.x86.R_AL);
}
}
break;
case 0x0e:
// teletype output: write character and advance cursor...
//AL: char, BH: page number, BL: attribute
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
// we ignore the pagenumber on this call...
//if (M.x86.R_BH == my_rdb(0x462))
{
printf("%c", M.x86.R_AL);
// for debugging, to read all lines
//if (M.x86.R_AL == 0xd) // carriage return
// printf("\n");
}
}
break;
case 0x0f:
// get video mode
// BDA offset 49h is current video mode
// BDA offset 62h is current page number
// BDA offset 4ah is columns on screen
M.x86.R_AH = 80; //number of character columns... we hardcode it to 80
M.x86.R_AL = my_rdb(0x449);
M.x86.R_BH = my_rdb(0x462);
break;
default:
printf("%s(): unknown function (%x) for int10 handler.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// this table translates ASCII chars into their XT scan codes:
static u8 keycode_table[256] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 - 7
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 8 - 15
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 16 - 23
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 24 - 31
0x39, 0x02, 0x28, 0x04, 0x05, 0x06, 0x08, 0x28, // 32 - 39
0x0a, 0x0b, 0x09, 0x2b, 0x33, 0x0d, 0x34, 0x35, // 40 - 47
0x0b, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, // 48 - 55
0x09, 0x0a, 0x27, 0x27, 0x33, 0x2b, 0x34, 0x35, // 56 - 63
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 64 - 71
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 72 - 79
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 80 - 87
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 88 - 95
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 96 - 103
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 104 - 111
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 112 - 119
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 120 - 127
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}
;
void
translate_keycode(u64 * keycode)
{
u8 scan_code = 0;
u8 char_code = 0;
if (*keycode < 256) {
scan_code = keycode_table[*keycode];
char_code = (u8) * keycode & 0xff;
} else {
switch (*keycode) {
case 0x1b50:
// F1
scan_code = 0x3b;
char_code = 0x0;
break;
default:
printf("%s(): unknown multibyte keycode: %llx\n",
__func__, *keycode);
break;
}
}
//assemble scan/char code in keycode
*keycode = (u64) ((((u16) scan_code) << 8) | char_code);
}
// handle int16 (Keyboard BIOS Interrupt)
void
handleInt16(void)
{
// keyboard buffer is in BIOS Memory Area:
// offset 0x1a (WORD) pointer to next char in keybuffer
// offset 0x1c (WORD) pointer to next insert slot in keybuffer
// offset 0x1e-0x3e: 16 WORD Ring Buffer
// since we currently always read the char from the FW buffer,
// we misuse the ring buffer, we use it as pointer to a u64 that stores
// multi-byte keys (e.g. special keys in VT100 terminal)
// and as long as a key is available (not 0) we dont read further keys
u64 *keycode = (u64 *) (M.mem_base + 0x41e);
s8 c;
// function number in AH
DEBUG_PRINTF_INTR("%s(): Keyboard Interrupt: function: %x.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n", M.x86.R_AX,
M.x86.R_BX, M.x86.R_CX, M.x86.R_DX);
switch (M.x86.R_AH) {
case 0x00:
// get keystroke
if (*keycode) {
M.x86.R_AX = (u16) * keycode;
// clear keycode
*keycode = 0;
} else {
M.x86.R_AH = 0x61; // scancode for space key
M.x86.R_AL = 0x20; // a space
}
break;
case 0x01:
// check keystroke
// ZF set = no keystroke
// read first byte of key code
if (*keycode) {
// already read, but not yet taken
CLEAR_FLAG(F_ZF);
M.x86.R_AX = (u16) * keycode;
} else {
/* TODO: we need getchar... */
c = -1; //getchar();
if (c == -1) {
// no key available
SET_FLAG(F_ZF);
} else {
*keycode = c;
// since after an ESC it may take a while to receive the next char,
// we send something that is not shown on the screen, and then try to get
// the next char
// TODO: only after ESC?? what about other multibyte keys
printf("tt%c%c", 0x08, 0x08); // 0x08 == Backspace
/* TODO: we need getchar... */
while ((c = -1 /*getchar()*/) != -1) {
*keycode = (*keycode << 8) | c;
DEBUG_PRINTF(" key read: %0llx\n",
*keycode);
}
translate_keycode(keycode);
DEBUG_PRINTF(" translated key: %0llx\n",
*keycode);
if (*keycode == 0) {
//not found
SET_FLAG(F_ZF);
} else {
CLEAR_FLAG(F_ZF);
M.x86.R_AX = (u16) * keycode;
//X86EMU_trace_on();
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
}
}
}
break;
default:
printf("%s(): unknown function (%x) for int16 handler.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// handle int1a (PCI BIOS Interrupt)
void
handleInt1a(void)
{
// function number in AX
u8 bus, devfn, offs;
struct device* dev;
switch (M.x86.R_AX) {
case 0xb101:
// Installation check
CLEAR_FLAG(F_CF); // clear CF
M.x86.R_EDX = 0x20494350; // " ICP" endian swapped "PCI "
M.x86.R_AL = 0x1; // Config Space Mechanism 1 supported
M.x86.R_BX = 0x0210; // PCI Interface Level Version 2.10
M.x86.R_CL = 0xff; // number of last PCI Bus in system TODO: check!
break;
case 0xb102:
// Find PCI Device
// device_id in CX, vendor_id in DX
// device index in SI (i.e. if multiple devices with same vendor/device id
// are connected). We currently only support device index 0
//
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Find Device\n",
__func__, M.x86.R_AX);
/* FixME: support SI != 0 */
#if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1
#ifdef CONFIG_COREBOOT_V2
dev = dev_find_device(M.x86.R_DX, M.x86.R_CX, 0);
#else
dev = dev_find_pci_device(M.x86.R_DX, M.x86.R_CX, 0);
#endif
if (dev != 0) {
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Find Device --> 0x%04x\n",
__func__, M.x86.R_AX, M.x86.R_BX);
M.x86.R_BH = dev->bus->secondary;
M.x86.R_BL = dev->path.pci.devfn;
M.x86.R_AH = 0x00; // return code: success
CLEAR_FLAG(F_CF);
#else
// only allow the device to find itself...
if ((M.x86.R_CX == bios_device.pci_device_id)
&& (M.x86.R_DX == bios_device.pci_vendor_id)
// device index must be 0
&& (M.x86.R_SI == 0)) {
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x00; // return code: success
M.x86.R_BH = bios_device.bus;
M.x86.R_BL = bios_device.devfn;
#endif
} else {
DEBUG_PRINTF_INTR
("%s(): function %x: invalid device/vendor/device index! (%04x/%04x/%02x expected: %04x/%04x/00) \n",
__func__, M.x86.R_AX, M.x86.R_CX, M.x86.R_DX,
M.x86.R_SI, bios_device.pci_device_id,
bios_device.pci_vendor_id);
SET_FLAG(F_CF);
M.x86.R_AH = 0x86; // return code: device not found
}
break;
case 0xb108: //read configuration byte
case 0xb109: //read configuration word
case 0xb10a: //read configuration dword
bus = M.x86.R_BH;
devfn = M.x86.R_BL;
offs = M.x86.R_DI;
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Config Read from device: bus: %02x, devfn: %02x, offset: %02x\n",
__func__, M.x86.R_AX, bus, devfn, offs);
#if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1
dev = dev_find_slot(bus, devfn);
DEBUG_PRINTF_INTR("%s(): function: %x: dev_find_slot() returned: %s\n",
__func__, M.x86.R_AX, dev_path(dev));
if (dev == 0) {
// fail accesses to non-existent devices...
#else
dev = bios_device.dev;
if ((bus != bios_device.bus)
|| (devfn != bios_device.devfn)) {
// fail accesses to any device but ours...
#endif
printf
("%s(): Config read access invalid device! bus: %02x (%02x), devfn: %02x (%02x), offs: %02x\n",
__func__, bus, bios_device.bus, devfn,
bios_device.devfn, offs);
SET_FLAG(F_CF);
M.x86.R_AH = 0x87; //return code: bad pci register
HALT_SYS();
return;
} else {
switch (M.x86.R_AX) {
case 0xb108:
M.x86.R_CL =
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
pci_read_config8(dev, offs);
#else
(u8) rtas_pci_config_read(bios_device.
puid, 1,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%02x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CL);
break;
case 0xb109:
M.x86.R_CX =
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
pci_read_config16(dev, offs);
#else
(u16) rtas_pci_config_read(bios_device.
puid, 2,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%04x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CX);
break;
case 0xb10a:
M.x86.R_ECX =
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
pci_read_config32(dev, offs);
#else
(u32) rtas_pci_config_read(bios_device.
puid, 4,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%08x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_ECX);
break;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x0; // return code: success
}
break;
case 0xb10b: //write configuration byte
case 0xb10c: //write configuration word
case 0xb10d: //write configuration dword
bus = M.x86.R_BH;
devfn = M.x86.R_BL;
offs = M.x86.R_DI;
if ((bus != bios_device.bus)
|| (devfn != bios_device.devfn)) {
// fail accesses to any device but ours...
printf
("%s(): Config read access invalid! bus: %x (%x), devfn: %x (%x), offs: %x\n",
__func__, bus, bios_device.bus, devfn,
bios_device.devfn, offs);
SET_FLAG(F_CF);
M.x86.R_AH = 0x87; //return code: bad pci register
HALT_SYS();
return;
} else {
switch (M.x86.R_AX) {
case 0xb10b:
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
pci_write_config8(bios_device.dev, offs, M.x86.R_CL);
#else
rtas_pci_config_write(bios_device.puid, 1, bus,
devfn, offs, M.x86.R_CL);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%02x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CL);
break;
case 0xb10c:
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
pci_write_config16(bios_device.dev, offs, M.x86.R_CX);
#else
rtas_pci_config_write(bios_device.puid, 2, bus,
devfn, offs, M.x86.R_CX);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%04x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CX);
break;
case 0xb10d:
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
pci_write_config32(bios_device.dev, offs, M.x86.R_ECX);
#else
rtas_pci_config_write(bios_device.puid, 4, bus,
devfn, offs, M.x86.R_ECX);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%08x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_ECX);
break;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x0; // return code: success
}
break;
default:
printf("%s(): unknown function (%x) for int1a handler.\n",
__func__, M.x86.R_AX);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// main Interrupt Handler routine, should be registered as x86emu interrupt handler
void
handleInterrupt(int intNum)
{
u8 int_handled = 0;
#ifndef DEBUG_PRINT_INT10
// this printf makes output by int 10 unreadable...
// so we only enable it, if int10 print is disabled
DEBUG_PRINTF_INTR("%s(%x)\n", __func__, intNum);
#endif
/* check wether this interrupt has a function pointer set in yabel_intFuncArray and run that */
if (yabel_intFuncArray[intNum]) {
DEBUG_PRINTF_INTR("%s(%x) intHandler overridden, calling it...\n", __func__, intNum);
int_handled = (*yabel_intFuncArray[intNum])();
} else {
switch (intNum) {
case 0x10: //BIOS video interrupt
case 0x42: // INT 10h relocated by EGA/VGA BIOS
case 0x6d: // INT 10h relocated by VGA BIOS
// get interrupt vector from IDT (4 bytes per Interrupt starting at address 0
if ((my_rdl(intNum * 4) == 0xF000F065) || //F000:F065 is default BIOS interrupt handler address
(my_rdl(intNum * 4) == 0xF4F4F4F4)) //invalid
{
#if 0
// ignore interrupt...
DEBUG_PRINTF_INTR
("%s(%x): invalid interrupt Vector (%08x) found, interrupt ignored...\n",
__func__, intNum, my_rdl(intNum * 4));
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
//HALT_SYS();
#endif
handleInt10();
int_handled = 1;
}
break;
case 0x16:
// Keyboard BIOS Interrupt
handleInt16();
int_handled = 1;
break;
case 0x1a:
// PCI BIOS Interrupt
handleInt1a();
int_handled = 1;
break;
case PMM_INT_NUM:
/* the selfdefined PMM INT number, this is called by the code in PMM struct, it
* is handled by pmm_handleInt()
*/
pmm_handleInt();
int_handled = 1;
break;
default:
printf("Interrupt %#x (Vector: %x) not implemented\n", intNum,
my_rdl(intNum * 4));
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
int_handled = 1;
HALT_SYS();
break;
}
}
// if we did not handle the interrupt, jump to the interrupt vector...
if (!int_handled) {
setupInt(intNum);
}
}
// prepare and execute Interrupt 10 (VGA Interrupt)
void
runInt10(void)
{
// Initialize stack and data segment
M.x86.R_SS = STACK_SEGMENT;
M.x86.R_DS = DATA_SEGMENT;
M.x86.R_SP = STACK_START_OFFSET;
// push a HLT instruction and a pointer to it onto the stack
// any return will pop the pointer and jump to the HLT, thus
// exiting (more or less) cleanly
push_word(0xf4f4); //F4=HLT
//push_word(M.x86.R_SS);
//push_word(M.x86.R_SP + 2);
// setupInt will push the current CS and IP to the stack to return to it,
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
// to the stack
M.x86.R_CS = M.x86.R_SS;
M.x86.R_IP = M.x86.R_SP; // + 4;
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
CHECK_DBG(DEBUG_JMP) {
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACECALL_F;
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
}
setupInt(0x10);
DEBUG_PRINTF_INTR("%s(): starting execution of INT10...\n",
__func__);
X86EMU_exec();
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
}
// prepare and execute Interrupt 13 (Disk Interrupt)
void
runInt13(void)
{
// Initialize stack and data segment
M.x86.R_SS = STACK_SEGMENT;
M.x86.R_DS = DATA_SEGMENT;
M.x86.R_SP = STACK_START_OFFSET;
// push a HLT instruction and a pointer to it onto the stack
// any return will pop the pointer and jump to the HLT, thus
// exiting (more or less) cleanly
push_word(0xf4f4); //F4=HLT
//push_word(M.x86.R_SS);
//push_word(M.x86.R_SP + 2);
// setupInt will push the current CS and IP to the stack to return to it,
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
// to the stack
M.x86.R_CS = M.x86.R_SS;
M.x86.R_IP = M.x86.R_SP;
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
CHECK_DBG(DEBUG_JMP) {
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACECALL_F;
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
}
setupInt(0x13);
DEBUG_PRINTF_INTR("%s(): starting execution of INT13...\n",
__func__);
X86EMU_exec();
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
}