37799b3439
The VT-d architecture specification (Doc. D51397-011, Rev. 3.1) says: BIOS implementations must report these remapping structure types in numerical order. i.e., All remapping structures of type 0 (DRHD) enumerated before remapping structures of type 1 (RMRR), and so forth. So, update the corresponding code to adhere to the specification. Change-Id: Ib5ef5e006e590d72bec52e057e9b72150e0e636f Signed-off-by: Angel Pons <th3fanbus@gmail.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/44111 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Patrick Rudolph <siro@das-labor.org>
520 lines
13 KiB
C
520 lines
13 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
#include <acpi/acpi.h>
|
|
#include <acpi/acpi_gnvs.h>
|
|
#include <acpi/acpigen.h>
|
|
#include <arch/smp/mpspec.h>
|
|
#include <cbmem.h>
|
|
#include <device/pci_ops.h>
|
|
#include <cpu/x86/smm.h>
|
|
#include <console/console.h>
|
|
#include <types.h>
|
|
#include <string.h>
|
|
#include <arch/cpu.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/intel/turbo.h>
|
|
#include <ec/google/chromeec/ec.h>
|
|
#include <vendorcode/google/chromeos/gnvs.h>
|
|
#include <soc/acpi.h>
|
|
#include <soc/cpu.h>
|
|
#include <soc/iomap.h>
|
|
#include <soc/lpc.h>
|
|
#include <soc/msr.h>
|
|
#include <soc/pci_devs.h>
|
|
#include <soc/pm.h>
|
|
#include <soc/systemagent.h>
|
|
#include <soc/intel/broadwell/chip.h>
|
|
#include <intelblocks/cpulib.h>
|
|
|
|
/*
|
|
* List of supported C-states in this processor. Only the ULT parts support C8,
|
|
* C9, and C10.
|
|
*/
|
|
enum {
|
|
C_STATE_C0, /* 0 */
|
|
C_STATE_C1, /* 1 */
|
|
C_STATE_C1E, /* 2 */
|
|
C_STATE_C3, /* 3 */
|
|
C_STATE_C6_SHORT_LAT, /* 4 */
|
|
C_STATE_C6_LONG_LAT, /* 5 */
|
|
C_STATE_C7_SHORT_LAT, /* 6 */
|
|
C_STATE_C7_LONG_LAT, /* 7 */
|
|
C_STATE_C7S_SHORT_LAT, /* 8 */
|
|
C_STATE_C7S_LONG_LAT, /* 9 */
|
|
C_STATE_C8, /* 10 */
|
|
C_STATE_C9, /* 11 */
|
|
C_STATE_C10, /* 12 */
|
|
NUM_C_STATES
|
|
};
|
|
|
|
#define MWAIT_RES(state, sub_state) \
|
|
{ \
|
|
.addrl = (((state) << 4) | (sub_state)), \
|
|
.space_id = ACPI_ADDRESS_SPACE_FIXED, \
|
|
.bit_width = ACPI_FFIXEDHW_VENDOR_INTEL, \
|
|
.bit_offset = ACPI_FFIXEDHW_CLASS_MWAIT, \
|
|
.access_size = ACPI_FFIXEDHW_FLAG_HW_COORD, \
|
|
}
|
|
|
|
static acpi_cstate_t cstate_map[NUM_C_STATES] = {
|
|
[C_STATE_C0] = { },
|
|
[C_STATE_C1] = {
|
|
.latency = 0,
|
|
.power = 1000,
|
|
.resource = MWAIT_RES(0, 0),
|
|
},
|
|
[C_STATE_C1E] = {
|
|
.latency = 0,
|
|
.power = 1000,
|
|
.resource = MWAIT_RES(0, 1),
|
|
},
|
|
[C_STATE_C3] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
|
|
.power = 900,
|
|
.resource = MWAIT_RES(1, 0),
|
|
},
|
|
[C_STATE_C6_SHORT_LAT] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(1),
|
|
.power = 800,
|
|
.resource = MWAIT_RES(2, 0),
|
|
},
|
|
[C_STATE_C6_LONG_LAT] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(2),
|
|
.power = 800,
|
|
.resource = MWAIT_RES(2, 1),
|
|
},
|
|
[C_STATE_C7_SHORT_LAT] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(1),
|
|
.power = 700,
|
|
.resource = MWAIT_RES(3, 0),
|
|
},
|
|
[C_STATE_C7_LONG_LAT] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(2),
|
|
.power = 700,
|
|
.resource = MWAIT_RES(3, 1),
|
|
},
|
|
[C_STATE_C7S_SHORT_LAT] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(1),
|
|
.power = 700,
|
|
.resource = MWAIT_RES(3, 2),
|
|
},
|
|
[C_STATE_C7S_LONG_LAT] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(2),
|
|
.power = 700,
|
|
.resource = MWAIT_RES(3, 3),
|
|
},
|
|
[C_STATE_C8] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(3),
|
|
.power = 600,
|
|
.resource = MWAIT_RES(4, 0),
|
|
},
|
|
[C_STATE_C9] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(4),
|
|
.power = 500,
|
|
.resource = MWAIT_RES(5, 0),
|
|
},
|
|
[C_STATE_C10] = {
|
|
.latency = C_STATE_LATENCY_FROM_LAT_REG(5),
|
|
.power = 400,
|
|
.resource = MWAIT_RES(6, 0),
|
|
},
|
|
};
|
|
|
|
static int cstate_set_s0ix[3] = {
|
|
C_STATE_C1E,
|
|
C_STATE_C7S_LONG_LAT,
|
|
C_STATE_C10
|
|
};
|
|
|
|
static int cstate_set_non_s0ix[3] = {
|
|
C_STATE_C1E,
|
|
C_STATE_C3,
|
|
C_STATE_C7S_LONG_LAT
|
|
};
|
|
|
|
static int get_cores_per_package(void)
|
|
{
|
|
struct cpuinfo_x86 c;
|
|
struct cpuid_result result;
|
|
int cores = 1;
|
|
|
|
get_fms(&c, cpuid_eax(1));
|
|
if (c.x86 != 6)
|
|
return 1;
|
|
|
|
result = cpuid_ext(0xb, 1);
|
|
cores = result.ebx & 0xff;
|
|
|
|
return cores;
|
|
}
|
|
|
|
void acpi_init_gnvs(struct global_nvs *gnvs)
|
|
{
|
|
/* Set unknown wake source */
|
|
gnvs->pm1i = -1;
|
|
|
|
/* CPU core count */
|
|
gnvs->pcnt = dev_count_cpu();
|
|
|
|
#if CONFIG(CONSOLE_CBMEM)
|
|
/* Update the mem console pointer. */
|
|
gnvs->cbmc = (u32)cbmem_find(CBMEM_ID_CONSOLE);
|
|
#endif
|
|
|
|
if (CONFIG(CHROMEOS)) {
|
|
/* Initialize Verified Boot data */
|
|
chromeos_init_chromeos_acpi(&(gnvs->chromeos));
|
|
if (CONFIG(EC_GOOGLE_CHROMEEC)) {
|
|
gnvs->chromeos.vbt2 = google_ec_running_ro() ?
|
|
ACTIVE_ECFW_RO : ACTIVE_ECFW_RW;
|
|
} else {
|
|
gnvs->chromeos.vbt2 = ACTIVE_ECFW_RO;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned long acpi_fill_mcfg(unsigned long current)
|
|
{
|
|
current += acpi_create_mcfg_mmconfig((acpi_mcfg_mmconfig_t *)current,
|
|
MCFG_BASE_ADDRESS, 0, 0, 255);
|
|
return current;
|
|
}
|
|
|
|
static acpi_tstate_t tss_table_fine[] = {
|
|
{ 100, 1000, 0, 0x00, 0 },
|
|
{ 94, 940, 0, 0x1f, 0 },
|
|
{ 88, 880, 0, 0x1e, 0 },
|
|
{ 82, 820, 0, 0x1d, 0 },
|
|
{ 75, 760, 0, 0x1c, 0 },
|
|
{ 69, 700, 0, 0x1b, 0 },
|
|
{ 63, 640, 0, 0x1a, 0 },
|
|
{ 57, 580, 0, 0x19, 0 },
|
|
{ 50, 520, 0, 0x18, 0 },
|
|
{ 44, 460, 0, 0x17, 0 },
|
|
{ 38, 400, 0, 0x16, 0 },
|
|
{ 32, 340, 0, 0x15, 0 },
|
|
{ 25, 280, 0, 0x14, 0 },
|
|
{ 19, 220, 0, 0x13, 0 },
|
|
{ 13, 160, 0, 0x12, 0 },
|
|
};
|
|
|
|
static acpi_tstate_t tss_table_coarse[] = {
|
|
{ 100, 1000, 0, 0x00, 0 },
|
|
{ 88, 875, 0, 0x1f, 0 },
|
|
{ 75, 750, 0, 0x1e, 0 },
|
|
{ 63, 625, 0, 0x1d, 0 },
|
|
{ 50, 500, 0, 0x1c, 0 },
|
|
{ 38, 375, 0, 0x1b, 0 },
|
|
{ 25, 250, 0, 0x1a, 0 },
|
|
{ 13, 125, 0, 0x19, 0 },
|
|
};
|
|
|
|
static void generate_T_state_entries(int core, int cores_per_package)
|
|
{
|
|
/* Indicate SW_ALL coordination for T-states */
|
|
acpigen_write_TSD_package(core, cores_per_package, SW_ALL);
|
|
|
|
/* Indicate FFixedHW so OS will use MSR */
|
|
acpigen_write_empty_PTC();
|
|
|
|
/* Set a T-state limit that can be modified in NVS */
|
|
acpigen_write_TPC("\\TLVL");
|
|
|
|
/*
|
|
* CPUID.(EAX=6):EAX[5] indicates support
|
|
* for extended throttle levels.
|
|
*/
|
|
if (cpuid_eax(6) & (1 << 5))
|
|
acpigen_write_TSS_package(
|
|
ARRAY_SIZE(tss_table_fine), tss_table_fine);
|
|
else
|
|
acpigen_write_TSS_package(
|
|
ARRAY_SIZE(tss_table_coarse), tss_table_coarse);
|
|
}
|
|
|
|
static void generate_C_state_entries(void)
|
|
{
|
|
acpi_cstate_t map[3];
|
|
int *set;
|
|
int i;
|
|
|
|
config_t *config = config_of_soc();
|
|
|
|
if (config->s0ix_enable)
|
|
set = cstate_set_s0ix;
|
|
else
|
|
set = cstate_set_non_s0ix;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
memcpy(&map[i], &cstate_map[set[i]], sizeof(acpi_cstate_t));
|
|
map[i].ctype = i + 1;
|
|
}
|
|
|
|
/* Generate C-state tables */
|
|
acpigen_write_CST_package(map, ARRAY_SIZE(map));
|
|
}
|
|
|
|
static int calculate_power(int tdp, int p1_ratio, int ratio)
|
|
{
|
|
u32 m;
|
|
u32 power;
|
|
|
|
/*
|
|
* M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2
|
|
*
|
|
* Power = (ratio / p1_ratio) * m * tdp
|
|
*/
|
|
|
|
m = (110000 - ((p1_ratio - ratio) * 625)) / 11;
|
|
m = (m * m) / 1000;
|
|
|
|
power = ((ratio * 100000 / p1_ratio) / 100);
|
|
power *= (m / 100) * (tdp / 1000);
|
|
power /= 1000;
|
|
|
|
return (int)power;
|
|
}
|
|
|
|
static void generate_P_state_entries(int core, int cores_per_package)
|
|
{
|
|
int ratio_min, ratio_max, ratio_turbo, ratio_step;
|
|
int coord_type, power_max, power_unit, num_entries;
|
|
int ratio, power, clock, clock_max;
|
|
msr_t msr;
|
|
|
|
/* Determine P-state coordination type from MISC_PWR_MGMT[0] */
|
|
msr = rdmsr(MSR_MISC_PWR_MGMT);
|
|
if (msr.lo & MISC_PWR_MGMT_EIST_HW_DIS)
|
|
coord_type = SW_ANY;
|
|
else
|
|
coord_type = HW_ALL;
|
|
|
|
/* Get bus ratio limits and calculate clock speeds */
|
|
msr = rdmsr(MSR_PLATFORM_INFO);
|
|
ratio_min = (msr.hi >> (40-32)) & 0xff; /* Max Efficiency Ratio */
|
|
|
|
/* Determine if this CPU has configurable TDP */
|
|
if (cpu_config_tdp_levels()) {
|
|
/* Set max ratio to nominal TDP ratio */
|
|
msr = rdmsr(MSR_CONFIG_TDP_NOMINAL);
|
|
ratio_max = msr.lo & 0xff;
|
|
} else {
|
|
/* Max Non-Turbo Ratio */
|
|
ratio_max = (msr.lo >> 8) & 0xff;
|
|
}
|
|
clock_max = ratio_max * CPU_BCLK;
|
|
|
|
/* Calculate CPU TDP in mW */
|
|
msr = rdmsr(MSR_PKG_POWER_SKU_UNIT);
|
|
power_unit = 2 << ((msr.lo & 0xf) - 1);
|
|
msr = rdmsr(MSR_PKG_POWER_SKU);
|
|
power_max = ((msr.lo & 0x7fff) / power_unit) * 1000;
|
|
|
|
/* Write _PCT indicating use of FFixedHW */
|
|
acpigen_write_empty_PCT();
|
|
|
|
/* Write _PPC with no limit on supported P-state */
|
|
acpigen_write_PPC_NVS();
|
|
|
|
/* Write PSD indicating configured coordination type */
|
|
acpigen_write_PSD_package(core, 1, coord_type);
|
|
|
|
/* Add P-state entries in _PSS table */
|
|
acpigen_write_name("_PSS");
|
|
|
|
/* Determine ratio points */
|
|
ratio_step = PSS_RATIO_STEP;
|
|
num_entries = (ratio_max - ratio_min) / ratio_step;
|
|
while (num_entries > PSS_MAX_ENTRIES-1) {
|
|
ratio_step <<= 1;
|
|
num_entries >>= 1;
|
|
}
|
|
|
|
/* P[T] is Turbo state if enabled */
|
|
if (get_turbo_state() == TURBO_ENABLED) {
|
|
/* _PSS package count including Turbo */
|
|
acpigen_write_package(num_entries + 2);
|
|
|
|
msr = rdmsr(MSR_TURBO_RATIO_LIMIT);
|
|
ratio_turbo = msr.lo & 0xff;
|
|
|
|
/* Add entry for Turbo ratio */
|
|
acpigen_write_PSS_package(
|
|
clock_max + 1, /*MHz*/
|
|
power_max, /*mW*/
|
|
PSS_LATENCY_TRANSITION, /*lat1*/
|
|
PSS_LATENCY_BUSMASTER, /*lat2*/
|
|
ratio_turbo << 8, /*control*/
|
|
ratio_turbo << 8); /*status*/
|
|
} else {
|
|
/* _PSS package count without Turbo */
|
|
acpigen_write_package(num_entries + 1);
|
|
}
|
|
|
|
/* First regular entry is max non-turbo ratio */
|
|
acpigen_write_PSS_package(
|
|
clock_max, /*MHz*/
|
|
power_max, /*mW*/
|
|
PSS_LATENCY_TRANSITION, /*lat1*/
|
|
PSS_LATENCY_BUSMASTER, /*lat2*/
|
|
ratio_max << 8, /*control*/
|
|
ratio_max << 8); /*status*/
|
|
|
|
/* Generate the remaining entries */
|
|
for (ratio = ratio_min + ((num_entries - 1) * ratio_step);
|
|
ratio >= ratio_min; ratio -= ratio_step) {
|
|
|
|
/* Calculate power at this ratio */
|
|
power = calculate_power(power_max, ratio_max, ratio);
|
|
clock = ratio * CPU_BCLK;
|
|
|
|
acpigen_write_PSS_package(
|
|
clock, /*MHz*/
|
|
power, /*mW*/
|
|
PSS_LATENCY_TRANSITION, /*lat1*/
|
|
PSS_LATENCY_BUSMASTER, /*lat2*/
|
|
ratio << 8, /*control*/
|
|
ratio << 8); /*status*/
|
|
}
|
|
|
|
/* Fix package length */
|
|
acpigen_pop_len();
|
|
}
|
|
|
|
void generate_cpu_entries(const struct device *device)
|
|
{
|
|
int coreID, cpuID, pcontrol_blk = ACPI_BASE_ADDRESS, plen = 6;
|
|
int totalcores = dev_count_cpu();
|
|
int cores_per_package = get_cores_per_package();
|
|
int numcpus = totalcores/cores_per_package;
|
|
|
|
printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each.\n",
|
|
numcpus, cores_per_package);
|
|
|
|
for (cpuID = 1; cpuID <= numcpus; cpuID++) {
|
|
for (coreID = 1; coreID <= cores_per_package; coreID++) {
|
|
if (coreID > 1) {
|
|
pcontrol_blk = 0;
|
|
plen = 0;
|
|
}
|
|
|
|
/* Generate processor \_SB.CPUx */
|
|
acpigen_write_processor(
|
|
(cpuID - 1) * cores_per_package+coreID - 1,
|
|
pcontrol_blk, plen);
|
|
|
|
/* Generate P-state tables */
|
|
generate_P_state_entries(
|
|
coreID - 1, cores_per_package);
|
|
|
|
/* Generate C-state tables */
|
|
generate_C_state_entries();
|
|
|
|
/* Generate T-state tables */
|
|
generate_T_state_entries(
|
|
cpuID - 1, cores_per_package);
|
|
|
|
acpigen_pop_len();
|
|
}
|
|
}
|
|
|
|
/* PPKG is usually used for thermal management
|
|
of the first and only package. */
|
|
acpigen_write_processor_package("PPKG", 0, cores_per_package);
|
|
|
|
/* Add a method to notify processor nodes */
|
|
acpigen_write_processor_cnot(cores_per_package);
|
|
}
|
|
|
|
static unsigned long acpi_fill_dmar(unsigned long current)
|
|
{
|
|
struct device *const igfx_dev = pcidev_path_on_root(SA_DEVFN_IGD);
|
|
const u32 gfxvtbar = MCHBAR32(GFXVTBAR) & ~0xfff;
|
|
const u32 vtvc0bar = MCHBAR32(VTVC0BAR) & ~0xfff;
|
|
const bool gfxvten = MCHBAR32(GFXVTBAR) & 0x1;
|
|
const bool vtvc0en = MCHBAR32(VTVC0BAR) & 0x1;
|
|
|
|
/* iGFX has to be enabled; GFXVTBAR set, enabled, in 32-bit space */
|
|
const bool emit_igd =
|
|
igfx_dev && igfx_dev->enabled &&
|
|
gfxvtbar && gfxvten &&
|
|
!MCHBAR32(GFXVTBAR + 4);
|
|
|
|
/* First, add DRHD entries */
|
|
if (emit_igd) {
|
|
const unsigned long tmp = current;
|
|
|
|
current += acpi_create_dmar_drhd(current, 0, 0, gfxvtbar);
|
|
current += acpi_create_dmar_ds_pci(current, 0, 2, 0);
|
|
|
|
acpi_dmar_drhd_fixup(tmp, current);
|
|
}
|
|
|
|
/* VTVC0BAR has to be set, enabled, and in 32-bit space */
|
|
if (vtvc0bar && vtvc0en && !MCHBAR32(VTVC0BAR + 4)) {
|
|
const unsigned long tmp = current;
|
|
current += acpi_create_dmar_drhd(current,
|
|
DRHD_INCLUDE_PCI_ALL, 0, vtvc0bar);
|
|
current += acpi_create_dmar_ds_ioapic(current,
|
|
2, PCH_IOAPIC_PCI_BUS, PCH_IOAPIC_PCI_SLOT, 0);
|
|
size_t i;
|
|
for (i = 0; i < 8; ++i)
|
|
current += acpi_create_dmar_ds_msi_hpet(current,
|
|
0, PCH_HPET_PCI_BUS,
|
|
PCH_HPET_PCI_SLOT, i);
|
|
acpi_dmar_drhd_fixup(tmp, current);
|
|
}
|
|
|
|
/* Then, add RMRR entries after all DRHD entries */
|
|
if (emit_igd) {
|
|
const unsigned long tmp = current;
|
|
|
|
current += acpi_create_dmar_rmrr(current, 0,
|
|
sa_get_gsm_base(), sa_get_tolud_base() - 1);
|
|
current += acpi_create_dmar_ds_pci(current, 0, 2, 0);
|
|
acpi_dmar_rmrr_fixup(tmp, current);
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
unsigned long northbridge_write_acpi_tables(const struct device *const dev,
|
|
unsigned long current,
|
|
struct acpi_rsdp *const rsdp)
|
|
{
|
|
/* Create DMAR table only if we have VT-d capability. */
|
|
const u32 capid0_a = pci_read_config32(dev, CAPID0_A);
|
|
if (capid0_a & VTD_DISABLE)
|
|
return current;
|
|
|
|
acpi_dmar_t *const dmar = (acpi_dmar_t *)current;
|
|
printk(BIOS_DEBUG, "ACPI: * DMAR\n");
|
|
acpi_create_dmar(dmar, DMAR_INTR_REMAP, acpi_fill_dmar);
|
|
current += dmar->header.length;
|
|
current = acpi_align_current(current);
|
|
acpi_add_table(rsdp, dmar);
|
|
|
|
return current;
|
|
}
|
|
|
|
unsigned long acpi_madt_irq_overrides(unsigned long current)
|
|
{
|
|
int sci = acpi_sci_irq();
|
|
acpi_madt_irqoverride_t *irqovr;
|
|
uint16_t flags = MP_IRQ_TRIGGER_LEVEL;
|
|
|
|
/* INT_SRC_OVR */
|
|
irqovr = (void *)current;
|
|
current += acpi_create_madt_irqoverride(irqovr, 0, 0, 2, 0);
|
|
|
|
if (sci >= 20)
|
|
flags |= MP_IRQ_POLARITY_LOW;
|
|
else
|
|
flags |= MP_IRQ_POLARITY_HIGH;
|
|
|
|
/* SCI */
|
|
irqovr = (void *)current;
|
|
current += acpi_create_madt_irqoverride(irqovr, 0, sci, sci, flags);
|
|
|
|
return current;
|
|
}
|