01ce601bdb
Convert all DEBUG_SMBUS, DEBUG_SMI, and DEBUG_RAM_SETUP custom and local #defines into globally configurable kconfig options (and Options.lb options for as long as newconfig still exists) which can be enabled by the user in the "Debugging" menu. The respective menu items only appear if a board is selected where the chipset code actually provides such additional DEBUG output. All three variables default to 0 / off for now. Also, drop a small chunk of dead/useless code in the src/northbridge/via/cn700/raminit.c file, which would otherwise break compilation. Signed-off-by: Uwe Hermann <uwe@hermann-uwe.de> Reworked to still apply to trunk, added X86EMU_DEBUG (and make the x86emu/yabel code only work printf instead of a redefined version of printk and Acked-by: Stefan Reinauer <stepan@coresystems.de> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5185 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
677 lines
20 KiB
C
677 lines
20 KiB
C
/******************************************************************************
|
|
* Copyright (c) 2004, 2008 IBM Corporation
|
|
* Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
|
|
* All rights reserved.
|
|
* This program and the accompanying materials
|
|
* are made available under the terms of the BSD License
|
|
* which accompanies this distribution, and is available at
|
|
* http://www.opensource.org/licenses/bsd-license.php
|
|
*
|
|
* Contributors:
|
|
* IBM Corporation - initial implementation
|
|
*****************************************************************************/
|
|
|
|
#include <types.h>
|
|
#include "compat/rtas.h"
|
|
|
|
#include "biosemu.h"
|
|
#include "mem.h"
|
|
#include "device.h"
|
|
#include "debug.h"
|
|
#include "pmm.h"
|
|
#include "interrupt.h"
|
|
|
|
#include <x86emu/x86emu.h>
|
|
#include "../x86emu/prim_ops.h"
|
|
|
|
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
|
|
#include <device/pci.h>
|
|
#include <device/pci_ops.h>
|
|
#endif
|
|
|
|
|
|
//setup to run the code at the address, that the Interrupt Vector points to...
|
|
void
|
|
setupInt(int intNum)
|
|
{
|
|
DEBUG_PRINTF_INTR("%s(%x): executing interrupt handler @%08x\n",
|
|
__func__, intNum, my_rdl(intNum * 4));
|
|
// push current R_FLG... will be popped by IRET
|
|
push_word((u16) M.x86.R_FLG);
|
|
CLEAR_FLAG(F_IF);
|
|
CLEAR_FLAG(F_TF);
|
|
// push current CS:IP to the stack, will be popped by IRET
|
|
push_word(M.x86.R_CS);
|
|
push_word(M.x86.R_IP);
|
|
// set CS:IP to the interrupt handler address... so the next executed instruction will
|
|
// be the interrupt handler
|
|
M.x86.R_CS = my_rdw(intNum * 4 + 2);
|
|
M.x86.R_IP = my_rdw(intNum * 4);
|
|
}
|
|
|
|
// handle int10 (VGA BIOS Interrupt)
|
|
void
|
|
handleInt10(void)
|
|
{
|
|
// the data for INT10 is stored in BDA (0000:0400h) offset 49h-66h
|
|
// function number in AH
|
|
//DEBUG_PRINTF_CS_IP("%s:\n", __func__);
|
|
//x86emu_dump_xregs();
|
|
//if ((M.x86.R_IP == 0x32c2) && (M.x86.R_SI == 0x1ce2)){
|
|
//X86EMU_trace_on();
|
|
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
|
|
//}
|
|
switch (M.x86.R_AH) {
|
|
case 0x00:
|
|
// set video mode
|
|
// BDA offset 49h is current video mode
|
|
my_wrb(0x449, M.x86.R_AL);
|
|
if (M.x86.R_AL > 7)
|
|
M.x86.R_AL = 0x20;
|
|
else if (M.x86.R_AL == 6)
|
|
M.x86.R_AL = 0x3f;
|
|
else
|
|
M.x86.R_AL = 0x30;
|
|
break;
|
|
case 0x01:
|
|
// set cursor shape
|
|
// ignore
|
|
break;
|
|
case 0x02:
|
|
// set cursor position
|
|
// BH: pagenumber, DX: cursor_pos (DH:row, DL:col)
|
|
// BDA offset 50h-60h are 8 cursor position words for
|
|
// eight possible video pages
|
|
my_wrw(0x450 + (M.x86.R_BH * 2), M.x86.R_DX);
|
|
break;
|
|
case 0x03:
|
|
//get cursor position
|
|
// BH: pagenumber
|
|
// BDA offset 50h-60h are 8 cursor position words for
|
|
// eight possible video pages
|
|
M.x86.R_AX = 0;
|
|
M.x86.R_CH = 0; // start scan line ???
|
|
M.x86.R_CL = 0; // end scan line ???
|
|
M.x86.R_DX = my_rdw(0x450 + (M.x86.R_BH * 2));
|
|
break;
|
|
case 0x05:
|
|
// set active page
|
|
// BDA offset 62h is current page number
|
|
my_wrb(0x462, M.x86.R_AL);
|
|
break;
|
|
case 0x06:
|
|
//scroll up windows
|
|
break;
|
|
case 0x07:
|
|
//scroll down windows
|
|
break;
|
|
case 0x08:
|
|
//read character and attribute at position
|
|
M.x86.R_AH = 0x07; // white-on-black
|
|
M.x86.R_AL = 0x20; // a space...
|
|
break;
|
|
case 0x09:
|
|
// write character and attribute
|
|
//AL: char, BH: page number, BL: attribute, CX: number of times to write
|
|
//BDA offset 62h is current page number
|
|
CHECK_DBG(DEBUG_PRINT_INT10) {
|
|
u32 i = 0;
|
|
if (M.x86.R_BH == my_rdb(0x462)) {
|
|
for (i = 0; i < M.x86.R_CX; i++)
|
|
printf("%c", M.x86.R_AL);
|
|
}
|
|
}
|
|
break;
|
|
case 0x0a:
|
|
// write character
|
|
//AL: char, BH: page number, BL: attribute, CX: number of times to write
|
|
//BDA offset 62h is current page number
|
|
CHECK_DBG(DEBUG_PRINT_INT10) {
|
|
u32 i = 0;
|
|
if (M.x86.R_BH == my_rdb(0x462)) {
|
|
for (i = 0; i < M.x86.R_CX; i++)
|
|
printf("%c", M.x86.R_AL);
|
|
}
|
|
}
|
|
break;
|
|
case 0x0e:
|
|
// teletype output: write character and advance cursor...
|
|
//AL: char, BH: page number, BL: attribute
|
|
//BDA offset 62h is current page number
|
|
CHECK_DBG(DEBUG_PRINT_INT10) {
|
|
// we ignore the pagenumber on this call...
|
|
//if (M.x86.R_BH == my_rdb(0x462))
|
|
{
|
|
printf("%c", M.x86.R_AL);
|
|
// for debugging, to read all lines
|
|
//if (M.x86.R_AL == 0xd) // carriage return
|
|
// printf("\n");
|
|
}
|
|
}
|
|
break;
|
|
case 0x0f:
|
|
// get video mode
|
|
// BDA offset 49h is current video mode
|
|
// BDA offset 62h is current page number
|
|
// BDA offset 4ah is columns on screen
|
|
M.x86.R_AH = 80; //number of character columns... we hardcode it to 80
|
|
M.x86.R_AL = my_rdb(0x449);
|
|
M.x86.R_BH = my_rdb(0x462);
|
|
break;
|
|
default:
|
|
printf("%s(): unknown function (%x) for int10 handler.\n",
|
|
__func__, M.x86.R_AH);
|
|
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
|
|
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
|
|
M.x86.R_DX);
|
|
HALT_SYS();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// this table translates ASCII chars into their XT scan codes:
|
|
static u8 keycode_table[256] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 - 7
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 8 - 15
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 16 - 23
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 24 - 31
|
|
0x39, 0x02, 0x28, 0x04, 0x05, 0x06, 0x08, 0x28, // 32 - 39
|
|
0x0a, 0x0b, 0x09, 0x2b, 0x33, 0x0d, 0x34, 0x35, // 40 - 47
|
|
0x0b, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, // 48 - 55
|
|
0x09, 0x0a, 0x27, 0x27, 0x33, 0x2b, 0x34, 0x35, // 56 - 63
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 64 - 71
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 72 - 79
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 80 - 87
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 88 - 95
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 96 - 103
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 104 - 111
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 112 - 119
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 120 - 127
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ...
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
}
|
|
|
|
;
|
|
|
|
void
|
|
translate_keycode(u64 * keycode)
|
|
{
|
|
u8 scan_code = 0;
|
|
u8 char_code = 0;
|
|
if (*keycode < 256) {
|
|
scan_code = keycode_table[*keycode];
|
|
char_code = (u8) * keycode & 0xff;
|
|
} else {
|
|
switch (*keycode) {
|
|
case 0x1b50:
|
|
// F1
|
|
scan_code = 0x3b;
|
|
char_code = 0x0;
|
|
break;
|
|
default:
|
|
printf("%s(): unknown multibyte keycode: %llx\n",
|
|
__func__, *keycode);
|
|
break;
|
|
}
|
|
}
|
|
//assemble scan/char code in keycode
|
|
*keycode = (u64) ((((u16) scan_code) << 8) | char_code);
|
|
}
|
|
|
|
// handle int16 (Keyboard BIOS Interrupt)
|
|
void
|
|
handleInt16(void)
|
|
{
|
|
// keyboard buffer is in BIOS Memory Area:
|
|
// offset 0x1a (WORD) pointer to next char in keybuffer
|
|
// offset 0x1c (WORD) pointer to next insert slot in keybuffer
|
|
// offset 0x1e-0x3e: 16 WORD Ring Buffer
|
|
// since we currently always read the char from the FW buffer,
|
|
// we misuse the ring buffer, we use it as pointer to a u64 that stores
|
|
// multi-byte keys (e.g. special keys in VT100 terminal)
|
|
// and as long as a key is available (not 0) we dont read further keys
|
|
u64 *keycode = (u64 *) (M.mem_base + 0x41e);
|
|
s8 c;
|
|
// function number in AH
|
|
DEBUG_PRINTF_INTR("%s(): Keyboard Interrupt: function: %x.\n",
|
|
__func__, M.x86.R_AH);
|
|
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n", M.x86.R_AX,
|
|
M.x86.R_BX, M.x86.R_CX, M.x86.R_DX);
|
|
switch (M.x86.R_AH) {
|
|
case 0x00:
|
|
// get keystroke
|
|
if (*keycode) {
|
|
M.x86.R_AX = (u16) * keycode;
|
|
// clear keycode
|
|
*keycode = 0;
|
|
} else {
|
|
M.x86.R_AH = 0x61; // scancode for space key
|
|
M.x86.R_AL = 0x20; // a space
|
|
}
|
|
break;
|
|
case 0x01:
|
|
// check keystroke
|
|
// ZF set = no keystroke
|
|
// read first byte of key code
|
|
if (*keycode) {
|
|
// already read, but not yet taken
|
|
CLEAR_FLAG(F_ZF);
|
|
M.x86.R_AX = (u16) * keycode;
|
|
} else {
|
|
/* TODO: we need getchar... */
|
|
c = -1; //getchar();
|
|
if (c == -1) {
|
|
// no key available
|
|
SET_FLAG(F_ZF);
|
|
} else {
|
|
*keycode = c;
|
|
|
|
// since after an ESC it may take a while to receive the next char,
|
|
// we send something that is not shown on the screen, and then try to get
|
|
// the next char
|
|
// TODO: only after ESC?? what about other multibyte keys
|
|
printf("tt%c%c", 0x08, 0x08); // 0x08 == Backspace
|
|
|
|
/* TODO: we need getchar... */
|
|
while ((c = -1 /*getchar()*/) != -1) {
|
|
*keycode = (*keycode << 8) | c;
|
|
DEBUG_PRINTF(" key read: %0llx\n",
|
|
*keycode);
|
|
}
|
|
translate_keycode(keycode);
|
|
DEBUG_PRINTF(" translated key: %0llx\n",
|
|
*keycode);
|
|
if (*keycode == 0) {
|
|
//not found
|
|
SET_FLAG(F_ZF);
|
|
} else {
|
|
CLEAR_FLAG(F_ZF);
|
|
M.x86.R_AX = (u16) * keycode;
|
|
//X86EMU_trace_on();
|
|
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
printf("%s(): unknown function (%x) for int16 handler.\n",
|
|
__func__, M.x86.R_AH);
|
|
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
|
|
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
|
|
M.x86.R_DX);
|
|
HALT_SYS();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// handle int1a (PCI BIOS Interrupt)
|
|
void
|
|
handleInt1a(void)
|
|
{
|
|
// function number in AX
|
|
u8 bus, devfn, offs;
|
|
struct device* dev;
|
|
switch (M.x86.R_AX) {
|
|
case 0xb101:
|
|
// Installation check
|
|
CLEAR_FLAG(F_CF); // clear CF
|
|
M.x86.R_EDX = 0x20494350; // " ICP" endian swapped "PCI "
|
|
M.x86.R_AL = 0x1; // Config Space Mechanism 1 supported
|
|
M.x86.R_BX = 0x0210; // PCI Interface Level Version 2.10
|
|
M.x86.R_CL = 0xff; // number of last PCI Bus in system TODO: check!
|
|
break;
|
|
case 0xb102:
|
|
// Find PCI Device
|
|
// device_id in CX, vendor_id in DX
|
|
// device index in SI (i.e. if multiple devices with same vendor/device id
|
|
// are connected). We currently only support device index 0
|
|
//
|
|
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Find Device\n",
|
|
__func__, M.x86.R_AX);
|
|
/* FixME: support SI != 0 */
|
|
#if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1
|
|
dev = dev_find_device(M.x86.R_DX, M.x86.R_CX, 0);
|
|
if (dev != 0) {
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: PCI Find Device --> 0x%04x\n",
|
|
__func__, M.x86.R_AX, M.x86.R_BX);
|
|
|
|
M.x86.R_BH = dev->bus->secondary;
|
|
M.x86.R_BL = dev->path.pci.devfn;
|
|
M.x86.R_AH = 0x00; // return code: success
|
|
CLEAR_FLAG(F_CF);
|
|
#else
|
|
// only allow the device to find itself...
|
|
if ((M.x86.R_CX == bios_device.pci_device_id)
|
|
&& (M.x86.R_DX == bios_device.pci_vendor_id)
|
|
// device index must be 0
|
|
&& (M.x86.R_SI == 0)) {
|
|
CLEAR_FLAG(F_CF);
|
|
M.x86.R_AH = 0x00; // return code: success
|
|
M.x86.R_BH = bios_device.bus;
|
|
M.x86.R_BL = bios_device.devfn;
|
|
#endif
|
|
} else {
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: invalid device/vendor/device index! (%04x/%04x/%02x expected: %04x/%04x/00) \n",
|
|
__func__, M.x86.R_AX, M.x86.R_CX, M.x86.R_DX,
|
|
M.x86.R_SI, bios_device.pci_device_id,
|
|
bios_device.pci_vendor_id);
|
|
|
|
SET_FLAG(F_CF);
|
|
M.x86.R_AH = 0x86; // return code: device not found
|
|
}
|
|
break;
|
|
case 0xb108: //read configuration byte
|
|
case 0xb109: //read configuration word
|
|
case 0xb10a: //read configuration dword
|
|
bus = M.x86.R_BH;
|
|
devfn = M.x86.R_BL;
|
|
offs = M.x86.R_DI;
|
|
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Config Read from device: bus: %02x, devfn: %02x, offset: %02x\n",
|
|
__func__, M.x86.R_AX, bus, devfn, offs);
|
|
#if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1
|
|
dev = dev_find_slot(bus, devfn);
|
|
DEBUG_PRINTF_INTR("%s(): function: %x: dev_find_slot() returned: %s\n",
|
|
__func__, M.x86.R_AX, dev_path(dev));
|
|
if (dev == 0) {
|
|
// fail accesses to non-existent devices...
|
|
#else
|
|
dev = bios_device.dev;
|
|
if ((bus != bios_device.bus)
|
|
|| (devfn != bios_device.devfn)) {
|
|
// fail accesses to any device but ours...
|
|
#endif
|
|
printf
|
|
("%s(): Config read access invalid device! bus: %02x (%02x), devfn: %02x (%02x), offs: %02x\n",
|
|
__func__, bus, bios_device.bus, devfn,
|
|
bios_device.devfn, offs);
|
|
SET_FLAG(F_CF);
|
|
M.x86.R_AH = 0x87; //return code: bad pci register
|
|
HALT_SYS();
|
|
return;
|
|
} else {
|
|
switch (M.x86.R_AX) {
|
|
case 0xb108:
|
|
M.x86.R_CL =
|
|
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
|
|
pci_read_config8(dev, offs);
|
|
#else
|
|
(u8) rtas_pci_config_read(bios_device.
|
|
puid, 1,
|
|
bus, devfn,
|
|
offs);
|
|
#endif
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: PCI Config Read @%02x --> 0x%02x\n",
|
|
__func__, M.x86.R_AX, offs,
|
|
M.x86.R_CL);
|
|
break;
|
|
case 0xb109:
|
|
M.x86.R_CX =
|
|
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
|
|
pci_read_config16(dev, offs);
|
|
#else
|
|
(u16) rtas_pci_config_read(bios_device.
|
|
puid, 2,
|
|
bus, devfn,
|
|
offs);
|
|
#endif
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: PCI Config Read @%02x --> 0x%04x\n",
|
|
__func__, M.x86.R_AX, offs,
|
|
M.x86.R_CX);
|
|
break;
|
|
case 0xb10a:
|
|
M.x86.R_ECX =
|
|
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
|
|
pci_read_config32(dev, offs);
|
|
#else
|
|
(u32) rtas_pci_config_read(bios_device.
|
|
puid, 4,
|
|
bus, devfn,
|
|
offs);
|
|
#endif
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: PCI Config Read @%02x --> 0x%08x\n",
|
|
__func__, M.x86.R_AX, offs,
|
|
M.x86.R_ECX);
|
|
break;
|
|
}
|
|
CLEAR_FLAG(F_CF);
|
|
M.x86.R_AH = 0x0; // return code: success
|
|
}
|
|
break;
|
|
case 0xb10b: //write configuration byte
|
|
case 0xb10c: //write configuration word
|
|
case 0xb10d: //write configuration dword
|
|
bus = M.x86.R_BH;
|
|
devfn = M.x86.R_BL;
|
|
offs = M.x86.R_DI;
|
|
if ((bus != bios_device.bus)
|
|
|| (devfn != bios_device.devfn)) {
|
|
// fail accesses to any device but ours...
|
|
printf
|
|
("%s(): Config read access invalid! bus: %x (%x), devfn: %x (%x), offs: %x\n",
|
|
__func__, bus, bios_device.bus, devfn,
|
|
bios_device.devfn, offs);
|
|
SET_FLAG(F_CF);
|
|
M.x86.R_AH = 0x87; //return code: bad pci register
|
|
HALT_SYS();
|
|
return;
|
|
} else {
|
|
switch (M.x86.R_AX) {
|
|
case 0xb10b:
|
|
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
|
|
pci_write_config8(bios_device.dev, offs, M.x86.R_CL);
|
|
#else
|
|
rtas_pci_config_write(bios_device.puid, 1, bus,
|
|
devfn, offs, M.x86.R_CL);
|
|
#endif
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: PCI Config Write @%02x <-- 0x%02x\n",
|
|
__func__, M.x86.R_AX, offs,
|
|
M.x86.R_CL);
|
|
break;
|
|
case 0xb10c:
|
|
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
|
|
pci_write_config16(bios_device.dev, offs, M.x86.R_CX);
|
|
#else
|
|
rtas_pci_config_write(bios_device.puid, 2, bus,
|
|
devfn, offs, M.x86.R_CX);
|
|
#endif
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: PCI Config Write @%02x <-- 0x%04x\n",
|
|
__func__, M.x86.R_AX, offs,
|
|
M.x86.R_CX);
|
|
break;
|
|
case 0xb10d:
|
|
#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
|
|
pci_write_config32(bios_device.dev, offs, M.x86.R_ECX);
|
|
#else
|
|
rtas_pci_config_write(bios_device.puid, 4, bus,
|
|
devfn, offs, M.x86.R_ECX);
|
|
#endif
|
|
DEBUG_PRINTF_INTR
|
|
("%s(): function %x: PCI Config Write @%02x <-- 0x%08x\n",
|
|
__func__, M.x86.R_AX, offs,
|
|
M.x86.R_ECX);
|
|
break;
|
|
}
|
|
CLEAR_FLAG(F_CF);
|
|
M.x86.R_AH = 0x0; // return code: success
|
|
}
|
|
break;
|
|
default:
|
|
printf("%s(): unknown function (%x) for int1a handler.\n",
|
|
__func__, M.x86.R_AX);
|
|
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
|
|
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
|
|
M.x86.R_DX);
|
|
HALT_SYS();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// main Interrupt Handler routine, should be registered as x86emu interrupt handler
|
|
void
|
|
handleInterrupt(int intNum)
|
|
{
|
|
u8 int_handled = 0;
|
|
#ifndef DEBUG_PRINT_INT10
|
|
// this printf makes output by int 10 unreadable...
|
|
// so we only enable it, if int10 print is disabled
|
|
DEBUG_PRINTF_INTR("%s(%x)\n", __func__, intNum);
|
|
#endif
|
|
|
|
/* check wether this interrupt has a function pointer set in yabel_intFuncArray and run that */
|
|
if (yabel_intFuncArray[intNum]) {
|
|
DEBUG_PRINTF_INTR("%s(%x) intHandler overridden, calling it...\n", __func__, intNum);
|
|
int_handled = (*yabel_intFuncArray[intNum])();
|
|
} else {
|
|
switch (intNum) {
|
|
case 0x10: //BIOS video interrupt
|
|
case 0x42: // INT 10h relocated by EGA/VGA BIOS
|
|
case 0x6d: // INT 10h relocated by VGA BIOS
|
|
// get interrupt vector from IDT (4 bytes per Interrupt starting at address 0
|
|
if ((my_rdl(intNum * 4) == 0xF000F065) || //F000:F065 is default BIOS interrupt handler address
|
|
(my_rdl(intNum * 4) == 0xF4F4F4F4)) //invalid
|
|
{
|
|
#if 0
|
|
// ignore interrupt...
|
|
DEBUG_PRINTF_INTR
|
|
("%s(%x): invalid interrupt Vector (%08x) found, interrupt ignored...\n",
|
|
__func__, intNum, my_rdl(intNum * 4));
|
|
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
|
|
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
|
|
M.x86.R_DX);
|
|
//HALT_SYS();
|
|
#endif
|
|
handleInt10();
|
|
int_handled = 1;
|
|
}
|
|
break;
|
|
case 0x16:
|
|
// Keyboard BIOS Interrupt
|
|
handleInt16();
|
|
int_handled = 1;
|
|
break;
|
|
case 0x1a:
|
|
// PCI BIOS Interrupt
|
|
handleInt1a();
|
|
int_handled = 1;
|
|
break;
|
|
case PMM_INT_NUM:
|
|
/* the selfdefined PMM INT number, this is called by the code in PMM struct, it
|
|
* is handled by pmm_handleInt()
|
|
*/
|
|
pmm_handleInt();
|
|
int_handled = 1;
|
|
break;
|
|
default:
|
|
printf("Interrupt %#x (Vector: %x) not implemented\n", intNum,
|
|
my_rdl(intNum * 4));
|
|
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
|
|
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
|
|
M.x86.R_DX);
|
|
int_handled = 1;
|
|
HALT_SYS();
|
|
break;
|
|
}
|
|
}
|
|
// if we did not handle the interrupt, jump to the interrupt vector...
|
|
if (!int_handled) {
|
|
setupInt(intNum);
|
|
}
|
|
}
|
|
|
|
// prepare and execute Interrupt 10 (VGA Interrupt)
|
|
void
|
|
runInt10(void)
|
|
{
|
|
// Initialize stack and data segment
|
|
M.x86.R_SS = STACK_SEGMENT;
|
|
M.x86.R_DS = DATA_SEGMENT;
|
|
M.x86.R_SP = STACK_START_OFFSET;
|
|
|
|
// push a HLT instruction and a pointer to it onto the stack
|
|
// any return will pop the pointer and jump to the HLT, thus
|
|
// exiting (more or less) cleanly
|
|
push_word(0xf4f4); //F4=HLT
|
|
//push_word(M.x86.R_SS);
|
|
//push_word(M.x86.R_SP + 2);
|
|
|
|
// setupInt will push the current CS and IP to the stack to return to it,
|
|
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
|
|
// to the stack
|
|
M.x86.R_CS = M.x86.R_SS;
|
|
M.x86.R_IP = M.x86.R_SP; // + 4;
|
|
|
|
CHECK_DBG(DEBUG_TRACE_X86EMU) {
|
|
X86EMU_trace_on();
|
|
}
|
|
CHECK_DBG(DEBUG_JMP) {
|
|
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
|
|
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
|
|
M.x86.debug |= DEBUG_TRACECALL_F;
|
|
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
|
|
}
|
|
setupInt(0x10);
|
|
DEBUG_PRINTF_INTR("%s(): starting execution of INT10...\n",
|
|
__func__);
|
|
X86EMU_exec();
|
|
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
|
|
}
|
|
|
|
// prepare and execute Interrupt 13 (Disk Interrupt)
|
|
void
|
|
runInt13(void)
|
|
{
|
|
// Initialize stack and data segment
|
|
M.x86.R_SS = STACK_SEGMENT;
|
|
M.x86.R_DS = DATA_SEGMENT;
|
|
M.x86.R_SP = STACK_START_OFFSET;
|
|
|
|
// push a HLT instruction and a pointer to it onto the stack
|
|
// any return will pop the pointer and jump to the HLT, thus
|
|
// exiting (more or less) cleanly
|
|
push_word(0xf4f4); //F4=HLT
|
|
//push_word(M.x86.R_SS);
|
|
//push_word(M.x86.R_SP + 2);
|
|
|
|
// setupInt will push the current CS and IP to the stack to return to it,
|
|
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
|
|
// to the stack
|
|
M.x86.R_CS = M.x86.R_SS;
|
|
M.x86.R_IP = M.x86.R_SP;
|
|
|
|
CHECK_DBG(DEBUG_TRACE_X86EMU) {
|
|
X86EMU_trace_on();
|
|
}
|
|
CHECK_DBG(DEBUG_JMP) {
|
|
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
|
|
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
|
|
M.x86.debug |= DEBUG_TRACECALL_F;
|
|
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
|
|
}
|
|
|
|
setupInt(0x13);
|
|
DEBUG_PRINTF_INTR("%s(): starting execution of INT13...\n",
|
|
__func__);
|
|
X86EMU_exec();
|
|
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
|
|
}
|