coreboot-kgpe-d16/payloads/libpayload/libcbfs/cbfs.c
Julius Werner 2296479dfd libpayload: cbfs: Add cbfs_handle API for more fine-grained accesses
The libpayload CBFS APIs are pretty old and clunky, primarily because of
the way the cbfs_media struct may or may not be passed in and may be
initialized inside the API calls in a way that cannot be passed back out
again. Due to this, the only real CBFS access function we have always
reads a whole file with all metadata, and everything else has to build
on top of that. This makes certain tasks like reading just a file
attribute very inefficient on non-memory-mapped platforms (because you
always have to map the whole file).

This patch isn't going to fix the world, but will allow a bit more
flexibility by bolting a new API on top which uses a struct cbfs_handle
to represent a found but not yet read file. A cbfs_handle contains a
copy of the cbfs_media needed to read the file, so it can be kept and
passed around to read individual parts of it after the initial lookup.
The existing (non-media) legacy API is retained for backwards
compatibility, as is cbfs_file_get_contents() (which is most likely what
more recent payloads would have used, and also a good convenience
wrapper for the most simple use case), but they are now implemented on
top of the new API.

TEST=Booted Oak, made sure that firmware screens and software sync
worked okay.

Change-Id: I269f3979e77ae691ee9d4e1ab564eff6d45b7cbe
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/14810
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2016-05-17 22:48:28 +02:00

240 lines
6.7 KiB
C

/*
* This file is part of the libpayload project.
*
* Copyright (C) 2011 secunet Security Networks AG
* Copyright (C) 2013 Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define LIBPAYLOAD
#ifdef LIBPAYLOAD
# include <libpayload-config.h>
# if IS_ENABLED(CONFIG_LP_LZMA)
# include <lzma.h>
# define CBFS_CORE_WITH_LZMA
# endif
# if IS_ENABLED(CONFIG_LP_LZ4)
# include <lz4.h>
# define CBFS_CORE_WITH_LZ4
# endif
# define CBFS_MINI_BUILD
#elif defined(__SMM__)
# define CBFS_MINI_BUILD
#else
# define CBFS_CORE_WITH_LZMA
# define CBFS_CORE_WITH_LZ4
# include <lib.h>
#endif
#include <cbfs.h>
#include <string.h>
#ifdef LIBPAYLOAD
# include <stdio.h>
# define DEBUG(x...)
# define LOG(x...)
# define ERROR(x...) printf(x)
#else
# include <console/console.h>
# define ERROR(x...) printk(BIOS_ERR, "CBFS: " x)
# define LOG(x...) printk(BIOS_INFO, "CBFS: " x)
# if CONFIG_LP_DEBUG_CBFS
# define DEBUG(x...) printk(BIOS_SPEW, "CBFS: " x)
# else
# define DEBUG(x...)
# endif
#endif
#include "cbfs_core.c"
#ifndef __SMM__
static inline int tohex4(unsigned int c)
{
return (c <= 9) ? (c + '0') : (c - 10 + 'a');
}
static void tohex16(unsigned int val, char* dest)
{
dest[0] = tohex4(val>>12);
dest[1] = tohex4((val>>8) & 0xf);
dest[2] = tohex4((val>>4) & 0xf);
dest[3] = tohex4(val & 0xf);
}
void *cbfs_load_optionrom(struct cbfs_media *media, uint16_t vendor,
uint16_t device)
{
char name[17] = "pciXXXX,XXXX.rom";
tohex16(vendor, name+3);
tohex16(device, name+8);
return cbfs_get_file_content(media, name, CBFS_TYPE_OPTIONROM, NULL);
}
void * cbfs_load_stage(struct cbfs_media *media, const char *name)
{
struct cbfs_stage *stage = (struct cbfs_stage *)
cbfs_get_file_content(media, name, CBFS_TYPE_STAGE, NULL);
/* this is a mess. There is no ntohll. */
/* for now, assume compatible byte order until we solve this. */
uintptr_t entry;
uint32_t final_size;
if (stage == NULL)
return (void *) -1;
LOG("loading stage %s @ 0x%p (%d bytes), entry @ 0x%llx\n",
name,
(void*)(uintptr_t) stage->load, stage->memlen,
stage->entry);
final_size = cbfs_decompress(stage->compression,
((unsigned char *) stage) +
sizeof(struct cbfs_stage),
(void *) (uintptr_t) stage->load,
stage->len);
if (!final_size)
return (void *) -1;
memset((void *)((uintptr_t)stage->load + final_size), 0,
stage->memlen - final_size);
DEBUG("stage loaded.\n");
entry = stage->entry;
// entry = ntohll(stage->entry);
free(stage);
return (void *) entry;
}
int cbfs_execute_stage(struct cbfs_media *media, const char *name)
{
struct cbfs_stage *stage = (struct cbfs_stage *)
cbfs_get_file_content(media, name, CBFS_TYPE_STAGE, NULL);
if (stage == NULL)
return 1;
if (ntohl(stage->compression) != CBFS_COMPRESS_NONE) {
LOG("Unable to run %s: Compressed file"
"Not supported for in-place execution\n", name);
free(stage);
return 1;
}
LOG("run @ %p\n", (void *) (uintptr_t)ntohll(stage->entry));
int result = run_address((void *)(uintptr_t)ntohll(stage->entry));
free(stage);
return result;
}
void *cbfs_load_payload(struct cbfs_media *media, const char *name)
{
return (struct cbfs_payload *)cbfs_get_file_content(
media, name, CBFS_TYPE_PAYLOAD, NULL);
}
struct cbfs_file *cbfs_find(const char *name) {
struct cbfs_handle *handle = cbfs_get_handle(CBFS_DEFAULT_MEDIA, name);
struct cbfs_media *m = &handle->media;
void *ret;
if (!handle)
return NULL;
ret = m->map(m, handle->media_offset,
handle->content_offset + handle->content_size);
if (ret == CBFS_MEDIA_INVALID_MAP_ADDRESS) {
free(handle);
return NULL;
}
free(handle);
return ret;
}
void *cbfs_find_file(const char *name, int type) {
return cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type, NULL);
}
const struct cbfs_header *get_cbfs_header(void) {
return cbfs_get_header(CBFS_DEFAULT_MEDIA);
}
/* Simple buffer */
void *cbfs_simple_buffer_map(struct cbfs_simple_buffer *buffer,
struct cbfs_media *media,
size_t offset, size_t count) {
void *address = buffer->buffer + buffer->allocated;;
DEBUG("simple_buffer_map(offset=%zu, count=%zu): "
"allocated=%zu, size=%zu, last_allocate=%zu\n",
offset, count, buffer->allocated, buffer->size,
buffer->last_allocate);
if (buffer->allocated + count >= buffer->size)
return CBFS_MEDIA_INVALID_MAP_ADDRESS;
if (media->read(media, address, offset, count) != count) {
ERROR("simple_buffer: fail to read %zd bytes from 0x%zx\n",
count, offset);
return CBFS_MEDIA_INVALID_MAP_ADDRESS;
}
buffer->allocated += count;
buffer->last_allocate = count;
return address;
}
void *cbfs_simple_buffer_unmap(struct cbfs_simple_buffer *buffer,
const void *address) {
// TODO Add simple buffer management so we can free more than last
// allocated one.
DEBUG("simple_buffer_unmap(address=0x%p): "
"allocated=%zu, size=%zu, last_allocate=%zu\n",
address, buffer->allocated, buffer->size,
buffer->last_allocate);
if ((buffer->buffer + buffer->allocated - buffer->last_allocate) ==
address) {
buffer->allocated -= buffer->last_allocate;
buffer->last_allocate = 0;
}
return NULL;
}
/**
* run_address is passed the address of a function taking no parameters and
* jumps to it, returning the result.
* @param f the address to call as a function.
* @return value returned by the function.
*/
int run_address(void *f)
{
int (*v) (void);
v = f;
return v();
}
#endif