514 lines
12 KiB
C
514 lines
12 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
|
|
/*
|
|
* C Bootstrap code for the coreboot
|
|
*/
|
|
|
|
#include <adainit.h>
|
|
#include <acpi/acpi.h>
|
|
#include <arch/exception.h>
|
|
#include <bootstate.h>
|
|
#include <console/console.h>
|
|
#include <console/post_codes.h>
|
|
#include <commonlib/helpers.h>
|
|
#include <cbmem.h>
|
|
#include <version.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <delay.h>
|
|
#include <stdlib.h>
|
|
#include <boot/tables.h>
|
|
#include <program_loading.h>
|
|
#include <timer.h>
|
|
#include <timestamp.h>
|
|
#include <thread.h>
|
|
|
|
static boot_state_t bs_pre_device(void *arg);
|
|
static boot_state_t bs_dev_init_chips(void *arg);
|
|
static boot_state_t bs_dev_enumerate(void *arg);
|
|
static boot_state_t bs_dev_resources(void *arg);
|
|
static boot_state_t bs_dev_enable(void *arg);
|
|
static boot_state_t bs_dev_init(void *arg);
|
|
static boot_state_t bs_post_device(void *arg);
|
|
static boot_state_t bs_os_resume_check(void *arg);
|
|
static boot_state_t bs_os_resume(void *arg);
|
|
static boot_state_t bs_write_tables(void *arg);
|
|
static boot_state_t bs_payload_load(void *arg);
|
|
static boot_state_t bs_payload_boot(void *arg);
|
|
|
|
/* The prologue (BS_ON_ENTRY) and epilogue (BS_ON_EXIT) of a state can be
|
|
* blocked from transitioning to the next (state,seq) pair. When the blockers
|
|
* field is 0 a transition may occur. */
|
|
struct boot_phase {
|
|
struct boot_state_callback *callbacks;
|
|
int blockers;
|
|
};
|
|
|
|
struct boot_state {
|
|
const char *name;
|
|
boot_state_t id;
|
|
u8 post_code;
|
|
struct boot_phase phases[2];
|
|
boot_state_t (*run_state)(void *arg);
|
|
void *arg;
|
|
int num_samples;
|
|
int complete : 1;
|
|
};
|
|
|
|
#define BS_INIT(state_, run_func_) \
|
|
{ \
|
|
.name = #state_, \
|
|
.id = state_, \
|
|
.post_code = POST_ ## state_, \
|
|
.phases = { { NULL, 0 }, { NULL, 0 } }, \
|
|
.run_state = run_func_, \
|
|
.arg = NULL, \
|
|
.complete = 0, \
|
|
}
|
|
#define BS_INIT_ENTRY(state_, run_func_) \
|
|
[state_] = BS_INIT(state_, run_func_)
|
|
|
|
static struct boot_state boot_states[] = {
|
|
BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device),
|
|
BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips),
|
|
BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate),
|
|
BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources),
|
|
BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_enable),
|
|
BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
|
|
BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
|
|
BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
|
|
BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
|
|
BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables),
|
|
BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
|
|
BS_INIT_ENTRY(BS_PAYLOAD_BOOT, bs_payload_boot),
|
|
};
|
|
|
|
void __weak arch_bootstate_coreboot_exit(void) { }
|
|
|
|
static boot_state_t bs_pre_device(void *arg)
|
|
{
|
|
return BS_DEV_INIT_CHIPS;
|
|
}
|
|
|
|
static boot_state_t bs_dev_init_chips(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_ENUMERATE);
|
|
|
|
/* Initialize chips early, they might disable unused devices. */
|
|
dev_initialize_chips();
|
|
|
|
return BS_DEV_ENUMERATE;
|
|
}
|
|
|
|
static boot_state_t bs_dev_enumerate(void *arg)
|
|
{
|
|
/* Find the devices we don't have hard coded knowledge about. */
|
|
dev_enumerate();
|
|
|
|
return BS_DEV_RESOURCES;
|
|
}
|
|
|
|
static boot_state_t bs_dev_resources(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_CONFIGURE);
|
|
|
|
/* Now compute and assign the bus resources. */
|
|
dev_configure();
|
|
|
|
return BS_DEV_ENABLE;
|
|
}
|
|
|
|
static boot_state_t bs_dev_enable(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_ENABLE);
|
|
|
|
/* Now actually enable devices on the bus */
|
|
dev_enable();
|
|
|
|
return BS_DEV_INIT;
|
|
}
|
|
|
|
static boot_state_t bs_dev_init(void *arg)
|
|
{
|
|
timestamp_add_now(TS_DEVICE_INITIALIZE);
|
|
|
|
/* And of course initialize devices on the bus */
|
|
dev_initialize();
|
|
|
|
return BS_POST_DEVICE;
|
|
}
|
|
|
|
static boot_state_t bs_post_device(void *arg)
|
|
{
|
|
dev_finalize();
|
|
timestamp_add_now(TS_DEVICE_DONE);
|
|
|
|
return BS_OS_RESUME_CHECK;
|
|
}
|
|
|
|
static boot_state_t bs_os_resume_check(void *arg)
|
|
{
|
|
void *wake_vector = NULL;
|
|
|
|
if (CONFIG(HAVE_ACPI_RESUME))
|
|
wake_vector = acpi_find_wakeup_vector();
|
|
|
|
if (wake_vector != NULL) {
|
|
boot_states[BS_OS_RESUME].arg = wake_vector;
|
|
return BS_OS_RESUME;
|
|
}
|
|
|
|
timestamp_add_now(TS_CBMEM_POST);
|
|
|
|
return BS_WRITE_TABLES;
|
|
}
|
|
|
|
static boot_state_t bs_os_resume(void *wake_vector)
|
|
{
|
|
if (CONFIG(HAVE_ACPI_RESUME)) {
|
|
arch_bootstate_coreboot_exit();
|
|
acpi_resume(wake_vector);
|
|
/* We will not come back. */
|
|
}
|
|
die("Failed OS resume\n");
|
|
}
|
|
|
|
static boot_state_t bs_write_tables(void *arg)
|
|
{
|
|
timestamp_add_now(TS_WRITE_TABLES);
|
|
|
|
/* Now that we have collected all of our information
|
|
* write our configuration tables.
|
|
*/
|
|
write_tables();
|
|
|
|
timestamp_add_now(TS_FINALIZE_CHIPS);
|
|
dev_finalize_chips();
|
|
|
|
return BS_PAYLOAD_LOAD;
|
|
}
|
|
|
|
static boot_state_t bs_payload_load(void *arg)
|
|
{
|
|
payload_load();
|
|
|
|
return BS_PAYLOAD_BOOT;
|
|
}
|
|
|
|
static boot_state_t bs_payload_boot(void *arg)
|
|
{
|
|
arch_bootstate_coreboot_exit();
|
|
payload_run();
|
|
|
|
printk(BIOS_EMERG, "Boot failed\n");
|
|
/* Returning from this state will fail because the following signals
|
|
* return to a completed state. */
|
|
return BS_PAYLOAD_BOOT;
|
|
}
|
|
|
|
/*
|
|
* Typically a state will take 4 time samples:
|
|
* 1. Before state entry callbacks
|
|
* 2. After state entry callbacks / Before state function.
|
|
* 3. After state function / Before state exit callbacks.
|
|
* 4. After state exit callbacks.
|
|
*/
|
|
static void bs_sample_time(struct boot_state *state)
|
|
{
|
|
static const char *const sample_id[] = { "entry", "run", "exit" };
|
|
static struct mono_time previous_sample;
|
|
struct mono_time this_sample;
|
|
long console;
|
|
|
|
if (!CONFIG(HAVE_MONOTONIC_TIMER))
|
|
return;
|
|
|
|
console = console_time_get_and_reset();
|
|
timer_monotonic_get(&this_sample);
|
|
state->num_samples++;
|
|
|
|
int i = state->num_samples - 2;
|
|
if ((i >= 0) && (i < ARRAY_SIZE(sample_id))) {
|
|
long execution = mono_time_diff_microseconds(&previous_sample, &this_sample);
|
|
|
|
/* Report with millisecond precision to reduce log diffs. */
|
|
execution = DIV_ROUND_CLOSEST(execution, USECS_PER_MSEC);
|
|
console = DIV_ROUND_CLOSEST(console, USECS_PER_MSEC);
|
|
if (execution) {
|
|
printk(BIOS_DEBUG, "BS: %s %s times (exec / console): %ld / %ld ms\n",
|
|
state->name, sample_id[i], execution - console, console);
|
|
/* Reset again to ignore printk() time above. */
|
|
console_time_get_and_reset();
|
|
}
|
|
}
|
|
timer_monotonic_get(&previous_sample);
|
|
}
|
|
|
|
#if CONFIG(TIMER_QUEUE)
|
|
static void bs_run_timers(int drain)
|
|
{
|
|
/* Drain all timer callbacks until none are left, if directed.
|
|
* Otherwise run the timers only once. */
|
|
do {
|
|
if (!timers_run())
|
|
break;
|
|
} while (drain);
|
|
}
|
|
#else
|
|
static void bs_run_timers(int drain) {}
|
|
#endif
|
|
|
|
static void bs_call_callbacks(struct boot_state *state,
|
|
boot_state_sequence_t seq)
|
|
{
|
|
struct boot_phase *phase = &state->phases[seq];
|
|
|
|
while (1) {
|
|
if (phase->callbacks != NULL) {
|
|
struct boot_state_callback *bscb;
|
|
|
|
/* Remove the first callback. */
|
|
bscb = phase->callbacks;
|
|
phase->callbacks = bscb->next;
|
|
bscb->next = NULL;
|
|
|
|
#if CONFIG(DEBUG_BOOT_STATE)
|
|
printk(BIOS_DEBUG, "BS: callback (%p) @ %s.\n",
|
|
bscb, bscb->location);
|
|
#endif
|
|
bscb->callback(bscb->arg);
|
|
continue;
|
|
}
|
|
|
|
/* All callbacks are complete and there are no blockers for
|
|
* this state. Therefore, this part of the state is complete. */
|
|
if (!phase->blockers)
|
|
break;
|
|
|
|
/* Something is blocking this state from transitioning. As
|
|
* there are no more callbacks a pending timer needs to be
|
|
* ran to unblock the state. */
|
|
bs_run_timers(0);
|
|
}
|
|
}
|
|
|
|
/* Keep track of the current state. */
|
|
static struct state_tracker {
|
|
boot_state_t state_id;
|
|
boot_state_sequence_t seq;
|
|
} current_phase = {
|
|
.state_id = BS_PRE_DEVICE,
|
|
.seq = BS_ON_ENTRY,
|
|
};
|
|
|
|
static void bs_walk_state_machine(void)
|
|
{
|
|
|
|
while (1) {
|
|
struct boot_state *state;
|
|
boot_state_t next_id;
|
|
|
|
state = &boot_states[current_phase.state_id];
|
|
|
|
if (state->complete) {
|
|
printk(BIOS_EMERG, "BS: %s state already executed.\n",
|
|
state->name);
|
|
break;
|
|
}
|
|
|
|
if (CONFIG(DEBUG_BOOT_STATE))
|
|
printk(BIOS_DEBUG, "BS: Entering %s state.\n",
|
|
state->name);
|
|
|
|
bs_run_timers(0);
|
|
|
|
bs_sample_time(state);
|
|
|
|
bs_call_callbacks(state, current_phase.seq);
|
|
/* Update the current sequence so that any calls to block the
|
|
* current state from the run_state() function will place a
|
|
* block on the correct phase. */
|
|
current_phase.seq = BS_ON_EXIT;
|
|
|
|
bs_sample_time(state);
|
|
|
|
post_code(state->post_code);
|
|
|
|
next_id = state->run_state(state->arg);
|
|
|
|
if (CONFIG(DEBUG_BOOT_STATE))
|
|
printk(BIOS_DEBUG, "BS: Exiting %s state.\n",
|
|
state->name);
|
|
|
|
bs_sample_time(state);
|
|
|
|
bs_call_callbacks(state, current_phase.seq);
|
|
|
|
if (CONFIG(DEBUG_BOOT_STATE))
|
|
printk(BIOS_DEBUG,
|
|
"----------------------------------------\n");
|
|
|
|
/* Update the current phase with new state id and sequence. */
|
|
current_phase.state_id = next_id;
|
|
current_phase.seq = BS_ON_ENTRY;
|
|
|
|
bs_sample_time(state);
|
|
|
|
state->complete = 1;
|
|
}
|
|
}
|
|
|
|
static int boot_state_sched_callback(struct boot_state *state,
|
|
struct boot_state_callback *bscb,
|
|
boot_state_sequence_t seq)
|
|
{
|
|
if (state->complete) {
|
|
printk(BIOS_WARNING,
|
|
"Tried to schedule callback on completed state %s.\n",
|
|
state->name);
|
|
|
|
return -1;
|
|
}
|
|
|
|
bscb->next = state->phases[seq].callbacks;
|
|
state->phases[seq].callbacks = bscb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int boot_state_sched_on_entry(struct boot_state_callback *bscb,
|
|
boot_state_t state_id)
|
|
{
|
|
struct boot_state *state = &boot_states[state_id];
|
|
|
|
return boot_state_sched_callback(state, bscb, BS_ON_ENTRY);
|
|
}
|
|
|
|
int boot_state_sched_on_exit(struct boot_state_callback *bscb,
|
|
boot_state_t state_id)
|
|
{
|
|
struct boot_state *state = &boot_states[state_id];
|
|
|
|
return boot_state_sched_callback(state, bscb, BS_ON_EXIT);
|
|
}
|
|
|
|
static void boot_state_schedule_static_entries(void)
|
|
{
|
|
extern struct boot_state_init_entry *_bs_init_begin[];
|
|
struct boot_state_init_entry **slot;
|
|
|
|
for (slot = &_bs_init_begin[0]; *slot != NULL; slot++) {
|
|
struct boot_state_init_entry *cur = *slot;
|
|
|
|
if (cur->when == BS_ON_ENTRY)
|
|
boot_state_sched_on_entry(&cur->bscb, cur->state);
|
|
else
|
|
boot_state_sched_on_exit(&cur->bscb, cur->state);
|
|
}
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
/*
|
|
* We can generally jump between C and Ada code back and forth
|
|
* without trouble. But since we don't have an Ada main() we
|
|
* have to do some Ada package initializations that GNAT would
|
|
* do there. This has to be done before calling any Ada code.
|
|
*
|
|
* The package initializations should not have any dependen-
|
|
* cies on C code. So we can call them here early, and don't
|
|
* have to worry at which point we can start to use Ada.
|
|
*/
|
|
ramstage_adainit();
|
|
|
|
/* TODO: Understand why this is here and move to arch/platform code. */
|
|
/* For MMIO UART this needs to be called before any other printk. */
|
|
if (ENV_X86)
|
|
init_timer();
|
|
|
|
/* console_init() MUST PRECEDE ALL printk()! Additionally, ensure
|
|
* it is the very first thing done in ramstage.*/
|
|
console_init();
|
|
post_code(POST_CONSOLE_READY);
|
|
|
|
exception_init();
|
|
|
|
/*
|
|
* CBMEM needs to be recovered because timestamps, ACPI, etc rely on
|
|
* the cbmem infrastructure being around. Explicitly recover it.
|
|
*/
|
|
cbmem_initialize();
|
|
|
|
timestamp_add_now(TS_START_RAMSTAGE);
|
|
post_code(POST_ENTRY_RAMSTAGE);
|
|
|
|
/* Handoff sleep type from romstage. */
|
|
acpi_is_wakeup();
|
|
threads_initialize();
|
|
|
|
/* Schedule the static boot state entries. */
|
|
boot_state_schedule_static_entries();
|
|
|
|
bs_walk_state_machine();
|
|
|
|
die("Boot state machine failure.\n");
|
|
}
|
|
|
|
|
|
int boot_state_block(boot_state_t state, boot_state_sequence_t seq)
|
|
{
|
|
struct boot_phase *bp;
|
|
|
|
/* Blocking a previously ran state is not appropriate. */
|
|
if (current_phase.state_id > state ||
|
|
(current_phase.state_id == state && current_phase.seq > seq)) {
|
|
printk(BIOS_WARNING,
|
|
"BS: Completed state (%d, %d) block attempted.\n",
|
|
state, seq);
|
|
return -1;
|
|
}
|
|
|
|
bp = &boot_states[state].phases[seq];
|
|
bp->blockers++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int boot_state_unblock(boot_state_t state, boot_state_sequence_t seq)
|
|
{
|
|
struct boot_phase *bp;
|
|
|
|
/* Blocking a previously ran state is not appropriate. */
|
|
if (current_phase.state_id > state ||
|
|
(current_phase.state_id == state && current_phase.seq > seq)) {
|
|
printk(BIOS_WARNING,
|
|
"BS: Completed state (%d, %d) unblock attempted.\n",
|
|
state, seq);
|
|
return -1;
|
|
}
|
|
|
|
bp = &boot_states[state].phases[seq];
|
|
|
|
if (bp->blockers == 0) {
|
|
printk(BIOS_WARNING,
|
|
"BS: Unblock attempted on non-blocked state (%d, %d).\n",
|
|
state, seq);
|
|
return -1;
|
|
}
|
|
|
|
bp->blockers--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void boot_state_current_block(void)
|
|
{
|
|
boot_state_block(current_phase.state_id, current_phase.seq);
|
|
}
|
|
|
|
void boot_state_current_unblock(void)
|
|
{
|
|
boot_state_unblock(current_phase.state_id, current_phase.seq);
|
|
}
|