coreboot-kgpe-d16/src/lib/hardwaremain.c

514 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* C Bootstrap code for the coreboot
*/
#include <adainit.h>
#include <acpi/acpi.h>
#include <arch/exception.h>
#include <bootstate.h>
#include <console/console.h>
#include <console/post_codes.h>
#include <commonlib/helpers.h>
#include <cbmem.h>
#include <version.h>
#include <device/device.h>
#include <device/pci.h>
#include <delay.h>
#include <stdlib.h>
#include <boot/tables.h>
#include <program_loading.h>
#include <timer.h>
#include <timestamp.h>
#include <thread.h>
static boot_state_t bs_pre_device(void *arg);
static boot_state_t bs_dev_init_chips(void *arg);
static boot_state_t bs_dev_enumerate(void *arg);
static boot_state_t bs_dev_resources(void *arg);
static boot_state_t bs_dev_enable(void *arg);
static boot_state_t bs_dev_init(void *arg);
static boot_state_t bs_post_device(void *arg);
static boot_state_t bs_os_resume_check(void *arg);
static boot_state_t bs_os_resume(void *arg);
static boot_state_t bs_write_tables(void *arg);
static boot_state_t bs_payload_load(void *arg);
static boot_state_t bs_payload_boot(void *arg);
/* The prologue (BS_ON_ENTRY) and epilogue (BS_ON_EXIT) of a state can be
* blocked from transitioning to the next (state,seq) pair. When the blockers
* field is 0 a transition may occur. */
struct boot_phase {
struct boot_state_callback *callbacks;
int blockers;
};
struct boot_state {
const char *name;
boot_state_t id;
u8 post_code;
struct boot_phase phases[2];
boot_state_t (*run_state)(void *arg);
void *arg;
int num_samples;
int complete : 1;
};
#define BS_INIT(state_, run_func_) \
{ \
.name = #state_, \
.id = state_, \
.post_code = POST_ ## state_, \
.phases = { { NULL, 0 }, { NULL, 0 } }, \
.run_state = run_func_, \
.arg = NULL, \
.complete = 0, \
}
#define BS_INIT_ENTRY(state_, run_func_) \
[state_] = BS_INIT(state_, run_func_)
static struct boot_state boot_states[] = {
BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device),
BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips),
BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate),
BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources),
BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_enable),
BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables),
BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
BS_INIT_ENTRY(BS_PAYLOAD_BOOT, bs_payload_boot),
};
void __weak arch_bootstate_coreboot_exit(void) { }
static boot_state_t bs_pre_device(void *arg)
{
return BS_DEV_INIT_CHIPS;
}
static boot_state_t bs_dev_init_chips(void *arg)
{
timestamp_add_now(TS_DEVICE_ENUMERATE);
/* Initialize chips early, they might disable unused devices. */
dev_initialize_chips();
return BS_DEV_ENUMERATE;
}
static boot_state_t bs_dev_enumerate(void *arg)
{
/* Find the devices we don't have hard coded knowledge about. */
dev_enumerate();
return BS_DEV_RESOURCES;
}
static boot_state_t bs_dev_resources(void *arg)
{
timestamp_add_now(TS_DEVICE_CONFIGURE);
/* Now compute and assign the bus resources. */
dev_configure();
return BS_DEV_ENABLE;
}
static boot_state_t bs_dev_enable(void *arg)
{
timestamp_add_now(TS_DEVICE_ENABLE);
/* Now actually enable devices on the bus */
dev_enable();
return BS_DEV_INIT;
}
static boot_state_t bs_dev_init(void *arg)
{
timestamp_add_now(TS_DEVICE_INITIALIZE);
/* And of course initialize devices on the bus */
dev_initialize();
return BS_POST_DEVICE;
}
static boot_state_t bs_post_device(void *arg)
{
dev_finalize();
timestamp_add_now(TS_DEVICE_DONE);
return BS_OS_RESUME_CHECK;
}
static boot_state_t bs_os_resume_check(void *arg)
{
void *wake_vector = NULL;
if (CONFIG(HAVE_ACPI_RESUME))
wake_vector = acpi_find_wakeup_vector();
if (wake_vector != NULL) {
boot_states[BS_OS_RESUME].arg = wake_vector;
return BS_OS_RESUME;
}
timestamp_add_now(TS_CBMEM_POST);
return BS_WRITE_TABLES;
}
static boot_state_t bs_os_resume(void *wake_vector)
{
if (CONFIG(HAVE_ACPI_RESUME)) {
arch_bootstate_coreboot_exit();
acpi_resume(wake_vector);
/* We will not come back. */
}
die("Failed OS resume\n");
}
static boot_state_t bs_write_tables(void *arg)
{
timestamp_add_now(TS_WRITE_TABLES);
/* Now that we have collected all of our information
* write our configuration tables.
*/
write_tables();
timestamp_add_now(TS_FINALIZE_CHIPS);
dev_finalize_chips();
return BS_PAYLOAD_LOAD;
}
static boot_state_t bs_payload_load(void *arg)
{
payload_load();
return BS_PAYLOAD_BOOT;
}
static boot_state_t bs_payload_boot(void *arg)
{
arch_bootstate_coreboot_exit();
payload_run();
printk(BIOS_EMERG, "Boot failed\n");
/* Returning from this state will fail because the following signals
* return to a completed state. */
return BS_PAYLOAD_BOOT;
}
/*
* Typically a state will take 4 time samples:
* 1. Before state entry callbacks
* 2. After state entry callbacks / Before state function.
* 3. After state function / Before state exit callbacks.
* 4. After state exit callbacks.
*/
static void bs_sample_time(struct boot_state *state)
{
static const char *const sample_id[] = { "entry", "run", "exit" };
static struct mono_time previous_sample;
struct mono_time this_sample;
long console;
if (!CONFIG(HAVE_MONOTONIC_TIMER))
return;
console = console_time_get_and_reset();
timer_monotonic_get(&this_sample);
state->num_samples++;
int i = state->num_samples - 2;
if ((i >= 0) && (i < ARRAY_SIZE(sample_id))) {
long execution = mono_time_diff_microseconds(&previous_sample, &this_sample);
/* Report with millisecond precision to reduce log diffs. */
execution = DIV_ROUND_CLOSEST(execution, USECS_PER_MSEC);
console = DIV_ROUND_CLOSEST(console, USECS_PER_MSEC);
if (execution) {
printk(BIOS_DEBUG, "BS: %s %s times (exec / console): %ld / %ld ms\n",
state->name, sample_id[i], execution - console, console);
/* Reset again to ignore printk() time above. */
console_time_get_and_reset();
}
}
timer_monotonic_get(&previous_sample);
}
#if CONFIG(TIMER_QUEUE)
static void bs_run_timers(int drain)
{
/* Drain all timer callbacks until none are left, if directed.
* Otherwise run the timers only once. */
do {
if (!timers_run())
break;
} while (drain);
}
#else
static void bs_run_timers(int drain) {}
#endif
static void bs_call_callbacks(struct boot_state *state,
boot_state_sequence_t seq)
{
struct boot_phase *phase = &state->phases[seq];
while (1) {
if (phase->callbacks != NULL) {
struct boot_state_callback *bscb;
/* Remove the first callback. */
bscb = phase->callbacks;
phase->callbacks = bscb->next;
bscb->next = NULL;
#if CONFIG(DEBUG_BOOT_STATE)
printk(BIOS_DEBUG, "BS: callback (%p) @ %s.\n",
bscb, bscb->location);
#endif
bscb->callback(bscb->arg);
continue;
}
/* All callbacks are complete and there are no blockers for
* this state. Therefore, this part of the state is complete. */
if (!phase->blockers)
break;
/* Something is blocking this state from transitioning. As
* there are no more callbacks a pending timer needs to be
* ran to unblock the state. */
bs_run_timers(0);
}
}
/* Keep track of the current state. */
static struct state_tracker {
boot_state_t state_id;
boot_state_sequence_t seq;
} current_phase = {
.state_id = BS_PRE_DEVICE,
.seq = BS_ON_ENTRY,
};
static void bs_walk_state_machine(void)
{
while (1) {
struct boot_state *state;
boot_state_t next_id;
state = &boot_states[current_phase.state_id];
if (state->complete) {
printk(BIOS_EMERG, "BS: %s state already executed.\n",
state->name);
break;
}
if (CONFIG(DEBUG_BOOT_STATE))
printk(BIOS_DEBUG, "BS: Entering %s state.\n",
state->name);
bs_run_timers(0);
bs_sample_time(state);
bs_call_callbacks(state, current_phase.seq);
/* Update the current sequence so that any calls to block the
* current state from the run_state() function will place a
* block on the correct phase. */
current_phase.seq = BS_ON_EXIT;
bs_sample_time(state);
post_code(state->post_code);
next_id = state->run_state(state->arg);
if (CONFIG(DEBUG_BOOT_STATE))
printk(BIOS_DEBUG, "BS: Exiting %s state.\n",
state->name);
bs_sample_time(state);
bs_call_callbacks(state, current_phase.seq);
if (CONFIG(DEBUG_BOOT_STATE))
printk(BIOS_DEBUG,
"----------------------------------------\n");
/* Update the current phase with new state id and sequence. */
current_phase.state_id = next_id;
current_phase.seq = BS_ON_ENTRY;
bs_sample_time(state);
state->complete = 1;
}
}
static int boot_state_sched_callback(struct boot_state *state,
struct boot_state_callback *bscb,
boot_state_sequence_t seq)
{
if (state->complete) {
printk(BIOS_WARNING,
"Tried to schedule callback on completed state %s.\n",
state->name);
return -1;
}
bscb->next = state->phases[seq].callbacks;
state->phases[seq].callbacks = bscb;
return 0;
}
int boot_state_sched_on_entry(struct boot_state_callback *bscb,
boot_state_t state_id)
{
struct boot_state *state = &boot_states[state_id];
return boot_state_sched_callback(state, bscb, BS_ON_ENTRY);
}
int boot_state_sched_on_exit(struct boot_state_callback *bscb,
boot_state_t state_id)
{
struct boot_state *state = &boot_states[state_id];
return boot_state_sched_callback(state, bscb, BS_ON_EXIT);
}
static void boot_state_schedule_static_entries(void)
{
extern struct boot_state_init_entry *_bs_init_begin[];
struct boot_state_init_entry **slot;
for (slot = &_bs_init_begin[0]; *slot != NULL; slot++) {
struct boot_state_init_entry *cur = *slot;
if (cur->when == BS_ON_ENTRY)
boot_state_sched_on_entry(&cur->bscb, cur->state);
else
boot_state_sched_on_exit(&cur->bscb, cur->state);
}
}
void main(void)
{
/*
* We can generally jump between C and Ada code back and forth
* without trouble. But since we don't have an Ada main() we
* have to do some Ada package initializations that GNAT would
* do there. This has to be done before calling any Ada code.
*
* The package initializations should not have any dependen-
* cies on C code. So we can call them here early, and don't
* have to worry at which point we can start to use Ada.
*/
ramstage_adainit();
/* TODO: Understand why this is here and move to arch/platform code. */
/* For MMIO UART this needs to be called before any other printk. */
if (ENV_X86)
init_timer();
/* console_init() MUST PRECEDE ALL printk()! Additionally, ensure
* it is the very first thing done in ramstage.*/
console_init();
post_code(POST_CONSOLE_READY);
exception_init();
/*
* CBMEM needs to be recovered because timestamps, ACPI, etc rely on
* the cbmem infrastructure being around. Explicitly recover it.
*/
cbmem_initialize();
timestamp_add_now(TS_START_RAMSTAGE);
post_code(POST_ENTRY_RAMSTAGE);
/* Handoff sleep type from romstage. */
acpi_is_wakeup();
threads_initialize();
/* Schedule the static boot state entries. */
boot_state_schedule_static_entries();
bs_walk_state_machine();
die("Boot state machine failure.\n");
}
int boot_state_block(boot_state_t state, boot_state_sequence_t seq)
{
struct boot_phase *bp;
/* Blocking a previously ran state is not appropriate. */
if (current_phase.state_id > state ||
(current_phase.state_id == state && current_phase.seq > seq)) {
printk(BIOS_WARNING,
"BS: Completed state (%d, %d) block attempted.\n",
state, seq);
return -1;
}
bp = &boot_states[state].phases[seq];
bp->blockers++;
return 0;
}
int boot_state_unblock(boot_state_t state, boot_state_sequence_t seq)
{
struct boot_phase *bp;
/* Blocking a previously ran state is not appropriate. */
if (current_phase.state_id > state ||
(current_phase.state_id == state && current_phase.seq > seq)) {
printk(BIOS_WARNING,
"BS: Completed state (%d, %d) unblock attempted.\n",
state, seq);
return -1;
}
bp = &boot_states[state].phases[seq];
if (bp->blockers == 0) {
printk(BIOS_WARNING,
"BS: Unblock attempted on non-blocked state (%d, %d).\n",
state, seq);
return -1;
}
bp->blockers--;
return 0;
}
void boot_state_current_block(void)
{
boot_state_block(current_phase.state_id, current_phase.seq);
}
void boot_state_current_unblock(void)
{
boot_state_unblock(current_phase.state_id, current_phase.seq);
}