coreboot-libre-fam15h-rdimm/3rdparty/chromeec/baseboard/zork/baseboard.c

785 lines
18 KiB
C
Raw Normal View History

2024-03-04 11:14:53 +01:00
/* Copyright 2019 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Zork family-specific configuration */
#include "adc.h"
#include "adc_chip.h"
#include "button.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "charge_state_v2.h"
#include "common.h"
#include "compile_time_macros.h"
#include "console.h"
#include "cros_board_info.h"
#include "driver/accel_kionix.h"
#include "driver/accel_kx022.h"
#include "driver/accelgyro_bmi160.h"
#include "driver/bc12/pi3usb9201.h"
#include "driver/ppc/nx20p348x.h"
#include "driver/ppc/sn5s330.h"
#include "driver/tcpm/ps8xxx.h"
#include "driver/tcpm/nct38xx.h"
#include "driver/temp_sensor/sb_tsi.h"
#include "ec_commands.h"
#include "extpower.h"
#include "fan.h"
#include "fan_chip.h"
#include "gpio.h"
#include "hooks.h"
#include "ioexpander.h"
#include "ioexpander_nct38xx.h"
#include "i2c.h"
#include "keyboard_scan.h"
#include "lid_switch.h"
#include "motion_sense.h"
#include "power.h"
#include "power_button.h"
#include "pwm.h"
#include "pwm_chip.h"
#include "registers.h"
#include "switch.h"
#include "system.h"
#include "task.h"
#include "tcpci.h"
#include "temp_sensor.h"
#include "thermistor.h"
#include "usb_mux.h"
#include "usb_pd.h"
#include "usb_pd_tcpm.h"
#include "usbc_ppc.h"
#include "util.h"
#define CPRINTSUSB(format, args...) cprints(CC_USBCHARGE, format, ## args)
#define CPRINTFUSB(format, args...) cprintf(CC_USBCHARGE, format, ## args)
const enum gpio_signal hibernate_wake_pins[] = {
GPIO_LID_OPEN,
GPIO_AC_PRESENT,
GPIO_POWER_BUTTON_L,
GPIO_EC_RST_ODL,
};
const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins);
const struct adc_t adc_channels[] = {
[ADC_TEMP_SENSOR_CHARGER] = {
.name = "CHARGER",
.input_ch = NPCX_ADC_CH2,
.factor_mul = ADC_MAX_VOLT,
.factor_div = ADC_READ_MAX + 1,
.shift = 0,
},
[ADC_TEMP_SENSOR_SOC] = {
.name = "SOC",
.input_ch = NPCX_ADC_CH3,
.factor_mul = ADC_MAX_VOLT,
.factor_div = ADC_READ_MAX + 1,
.shift = 0,
},
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
const struct power_signal_info power_signal_list[] = {
[X86_SLP_S3_N] = {
.gpio = GPIO_PCH_SLP_S3_L,
.flags = POWER_SIGNAL_ACTIVE_HIGH,
.name = "SLP_S3_DEASSERTED",
},
[X86_SLP_S5_N] = {
.gpio = GPIO_PCH_SLP_S5_L,
.flags = POWER_SIGNAL_ACTIVE_HIGH,
.name = "SLP_S5_DEASSERTED",
},
[X86_S0_PGOOD] = {
.gpio = GPIO_S0_PGOOD,
.flags = POWER_SIGNAL_ACTIVE_HIGH,
.name = "S0_PGOOD",
},
[X86_S5_PGOOD] = {
.gpio = GPIO_S5_PGOOD,
.flags = POWER_SIGNAL_ACTIVE_HIGH,
.name = "S5_PGOOD",
},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
const struct i2c_port_t i2c_ports[] = {
{
.name = "tcpc0",
.port = I2C_PORT_TCPC0,
.kbps = 400,
.scl = GPIO_EC_I2C_USB_A0_C0_SCL,
.sda = GPIO_EC_I2C_USB_A0_C0_SDA,
},
{
.name = "tcpc1",
.port = I2C_PORT_TCPC1,
.kbps = 400,
.scl = GPIO_EC_I2C_USB_A1_C1_SCL,
.sda = GPIO_EC_I2C_USB_A1_C1_SDA,
},
{
.name = "power",
.port = I2C_PORT_BATTERY,
.kbps = 100,
.scl = GPIO_EC_I2C_POWER_CBI_SCL,
.sda = GPIO_EC_I2C_POWER_CBI_SDA,
},
{
.name = "mux",
.port = I2C_PORT_MUX,
.kbps = 400,
.scl = GPIO_EC_I2C_USBC_AP_MUX_SCL,
.sda = GPIO_EC_I2C_USBC_AP_MUX_SDA,
},
{
.name = "thermal",
.port = I2C_PORT_THERMAL,
.kbps = 400,
.scl = GPIO_FCH_SIC,
.sda = GPIO_FCH_SID,
},
{
.name = "sensor",
.port = I2C_PORT_SENSOR,
.kbps = 400,
.scl = GPIO_EC_I2C_SENSOR_SCL,
.sda = GPIO_EC_I2C_SENSOR_SDA,
},
{
.name = "ap_audio",
.port = I2C_PORT_AP_AUDIO,
.kbps = 400,
.scl = GPIO_FCH_I2C_AUDIO_SCL,
.sda = GPIO_FCH_I2C_AUDIO_SDA,
},
{
.name = "ap_hdmi",
.port = I2C_PORT_AP_HDMI,
.kbps = 400,
.scl = GPIO_FCH_I2C_HDMI_HUB_3V3_SCL,
.sda = GPIO_FCH_I2C_HDMI_HUB_3V3_SDA,
},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
const struct pwm_t pwm_channels[] = {
[PWM_CH_KBLIGHT] = {
.channel = 3,
.flags = PWM_CONFIG_DSLEEP,
.freq = 100,
},
[PWM_CH_FAN] = {
.channel = 2,
.flags = PWM_CONFIG_OPEN_DRAIN,
.freq = 25000,
},
};
BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT);
/* Physical fans. These are logically separate from pwm_channels. */
const struct fan_conf fan_conf_0 = {
.flags = FAN_USE_RPM_MODE,
.ch = MFT_CH_0, /* Use MFT id to control fan */
.pgood_gpio = -1,
.enable_gpio = -1,
};
const struct fan_rpm fan_rpm_0 = {
.rpm_min = 3100,
.rpm_start = 3100,
.rpm_max = 6900,
};
struct fan_t fans[] = {
[FAN_CH_0] = {
.conf = &fan_conf_0,
.rpm = &fan_rpm_0,
},
};
BUILD_ASSERT(ARRAY_SIZE(fans) == FAN_CH_COUNT);
/* MFT channels. These are logically separate from pwm_channels. */
const struct mft_t mft_channels[] = {
[MFT_CH_0] = {
.module = NPCX_MFT_MODULE_1,
.clk_src = TCKC_LFCLK,
.pwm_id = PWM_CH_FAN,
},
};
BUILD_ASSERT(ARRAY_SIZE(mft_channels) == MFT_CH_COUNT);
struct ppc_config_t ppc_chips[] = {
[USBC_PORT_C0] = {
.i2c_port = I2C_PORT_TCPC0,
.i2c_addr_flags = SN5S330_ADDR0_FLAGS,
.drv = &sn5s330_drv
},
[USBC_PORT_C1] = {
.i2c_port = I2C_PORT_TCPC1,
.i2c_addr_flags = NX20P3483_ADDR1_FLAGS,
.drv = &nx20p348x_drv
},
};
BUILD_ASSERT(ARRAY_SIZE(ppc_chips) == USBC_PORT_COUNT);
unsigned int ppc_cnt = ARRAY_SIZE(ppc_chips);
void ppc_interrupt(enum gpio_signal signal)
{
switch (signal) {
case GPIO_USB_C0_PPC_INT_ODL:
sn5s330_interrupt(USBC_PORT_C0);
break;
case GPIO_USB_C1_PPC_INT_ODL:
nx20p348x_interrupt(USBC_PORT_C1);
break;
default:
break;
}
}
int ppc_get_alert_status(int port)
{
switch (port) {
case USBC_PORT_C0:
return gpio_get_level(GPIO_USB_C0_PPC_INT_ODL) == 0;
case USBC_PORT_C1:
return gpio_get_level(GPIO_USB_C1_PPC_INT_ODL) == 0;
default:
return 0;
}
}
int board_set_active_charge_port(int port)
{
int is_valid_port = (port >= 0 &&
port < CONFIG_USB_PD_PORT_COUNT);
int i;
if (port == CHARGE_PORT_NONE) {
CPRINTSUSB("Disabling all charger ports");
/* Disable all ports. */
for (i = 0; i < ppc_cnt; i++) {
/*
* Do not return early if one fails otherwise we can
* get into a boot loop assertion failure.
*/
if (ppc_vbus_sink_enable(i, 0))
CPRINTSUSB("Disabling C%d as sink failed.", i);
}
return EC_SUCCESS;
} else if (!is_valid_port) {
return EC_ERROR_INVAL;
}
/* Check if the port is sourcing VBUS. */
if (ppc_is_sourcing_vbus(port)) {
CPRINTFUSB("Skip enable C%d", port);
return EC_ERROR_INVAL;
}
CPRINTSUSB("New charge port: C%d", port);
/*
* Turn off the other ports' sink path FETs, before enabling the
* requested charge port.
*/
for (i = 0; i < ppc_cnt; i++) {
if (i == port)
continue;
if (ppc_vbus_sink_enable(i, 0))
CPRINTSUSB("C%d: sink path disable failed.", i);
}
/* Enable requested charge port. */
if (ppc_vbus_sink_enable(port, 1)) {
CPRINTSUSB("C%d: sink path enable failed.", port);
return EC_ERROR_UNKNOWN;
}
return EC_SUCCESS;
}
const struct tcpc_config_t tcpc_config[] = {
[USBC_PORT_C0] = {
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = I2C_PORT_TCPC0,
.addr_flags = NCT38XX_I2C_ADDR1_1_FLAGS,
},
.drv = &nct38xx_tcpm_drv,
},
[USBC_PORT_C1] = {
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = I2C_PORT_TCPC1,
.addr_flags = NCT38XX_I2C_ADDR1_1_FLAGS,
},
.drv = &nct38xx_tcpm_drv,
},
};
BUILD_ASSERT(ARRAY_SIZE(tcpc_config) == USBC_PORT_COUNT);
BUILD_ASSERT(CONFIG_USB_PD_PORT_COUNT == USBC_PORT_COUNT);
const struct pi3usb9201_config_t pi3usb9201_bc12_chips[] = {
[USBC_PORT_C0] = {
.i2c_port = I2C_PORT_TCPC0,
.i2c_addr_flags = PI3USB9201_I2C_ADDR_3_FLAGS,
},
[USBC_PORT_C1] = {
.i2c_port = I2C_PORT_TCPC1,
.i2c_addr_flags = PI3USB9201_I2C_ADDR_3_FLAGS,
},
};
BUILD_ASSERT(ARRAY_SIZE(pi3usb9201_bc12_chips) == USBC_PORT_COUNT);
void baseboard_tcpc_init(void)
{
/* Enable PPC interrupts. */
gpio_enable_interrupt(GPIO_USB_C0_PPC_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_PPC_INT_ODL);
/* Enable TCPC interrupts. */
gpio_enable_interrupt(GPIO_USB_C0_TCPC_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_TCPC_INT_ODL);
/* Enable BC 1.2 interrupts */
gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_ODL);
}
DECLARE_HOOK(HOOK_INIT, baseboard_tcpc_init, HOOK_PRIO_INIT_I2C + 1);
static void reset_pd_port(int port, enum gpio_signal reset_gpio_l,
int hold_delay, int finish_delay)
{
gpio_set_level(reset_gpio_l, 0);
msleep(hold_delay);
gpio_set_level(reset_gpio_l, 1);
if (finish_delay)
msleep(finish_delay);
}
void board_reset_pd_mcu(void)
{
/* Reset TCPC0 */
reset_pd_port(USBC_PORT_C0, GPIO_USB_C0_TCPC_RST_L,
NCT38XX_RESET_HOLD_DELAY_MS,
NCT38XX_RESET_POST_DELAY_MS);
/* Reset TCPC1 */
reset_pd_port(USBC_PORT_C1, GPIO_USB_C1_TCPC_RST_L,
NCT38XX_RESET_HOLD_DELAY_MS,
NCT38XX_RESET_POST_DELAY_MS);
}
uint16_t tcpc_get_alert_status(void)
{
uint16_t status = 0;
/*
* Check which port has the ALERT line set and ignore if that TCPC has
* its reset line active.
*/
if (!gpio_get_level(GPIO_USB_C0_TCPC_INT_ODL)) {
if (gpio_get_level(GPIO_USB_C0_TCPC_RST_L) != 0)
status |= PD_STATUS_TCPC_ALERT_0;
}
if (!gpio_get_level(GPIO_USB_C1_TCPC_INT_ODL)) {
if (gpio_get_level(GPIO_USB_C1_TCPC_RST_L) != 0)
status |= PD_STATUS_TCPC_ALERT_1;
}
return status;
}
void tcpc_alert_event(enum gpio_signal signal)
{
int port = -1;
switch (signal) {
case GPIO_USB_C0_TCPC_INT_ODL:
port = 0;
break;
case GPIO_USB_C1_TCPC_INT_ODL:
port = 1;
break;
default:
return;
}
schedule_deferred_pd_interrupt(port);
}
void bc12_interrupt(enum gpio_signal signal)
{
switch (signal) {
case GPIO_USB_C0_BC12_INT_ODL:
task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0);
break;
case GPIO_USB_C1_BC12_INT_ODL:
task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12, 0);
break;
default:
break;
}
}
struct usb_mux usb_muxes[] = {
[USBC_PORT_C0] = {
.driver = &tcpci_tcpm_usb_mux_driver,
.hpd_update = &ps8xxx_tcpc_update_hpd_status,
},
[USBC_PORT_C1] = {
.driver = &tcpci_tcpm_usb_mux_driver,
.hpd_update = &ps8xxx_tcpc_update_hpd_status,
},
};
BUILD_ASSERT(ARRAY_SIZE(usb_muxes) == USBC_PORT_COUNT);
struct ioexpander_config_t ioex_config[] = {
[USBC_PORT_C0] = {
.i2c_host_port = I2C_PORT_TCPC0,
.i2c_slave_addr = NCT38XX_I2C_ADDR1_1_FLAGS,
.drv = &nct38xx_ioexpander_drv,
},
[USBC_PORT_C1] = {
.i2c_host_port = I2C_PORT_TCPC1,
.i2c_slave_addr = NCT38XX_I2C_ADDR1_1_FLAGS,
.drv = &nct38xx_ioexpander_drv,
},
};
BUILD_ASSERT(ARRAY_SIZE(ioex_config) == USBC_PORT_COUNT);
BUILD_ASSERT(CONFIG_IO_EXPANDER_PORT_COUNT == USBC_PORT_COUNT);
static void baseboard_chipset_suspend(void)
{
/* Disable display and keyboard backlights. */
gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 1);
ioex_set_level(IOEX_KB_BL_EN, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, baseboard_chipset_suspend,
HOOK_PRIO_DEFAULT);
static void baseboard_chipset_resume(void)
{
/* Enable display and keyboard backlights. */
gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 0);
ioex_set_level(IOEX_KB_BL_EN, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, baseboard_chipset_resume, HOOK_PRIO_DEFAULT);
void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
charge_set_input_current_limit(MAX(charge_ma,
CONFIG_CHARGER_INPUT_CURRENT),
charge_mv);
}
/* Keyboard scan setting */
struct keyboard_scan_config keyscan_config = {
/* Extra delay when KSO2 is tied to Cr50. */
.output_settle_us = 60,
.debounce_down_us = 6 * MSEC,
.debounce_up_us = 30 * MSEC,
.scan_period_us = 1500,
.min_post_scan_delay_us = 1000,
.poll_timeout_us = SECOND,
.actual_key_mask = {
0x3c, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff,
0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */
},
};
/*
* We use 11 as the scaling factor so that the maximum mV value below (2761)
* can be compressed to fit in a uint8_t.
*/
#define THERMISTOR_SCALING_FACTOR 11
/*
* Values are calculated from the "Resistance VS. Temperature" table on the
* Murata page for part NCP15WB473F03RC. Vdd=3.3V, R=30.9Kohm.
*/
static const struct thermistor_data_pair thermistor_data[] = {
{ 2761 / THERMISTOR_SCALING_FACTOR, 0},
{ 2492 / THERMISTOR_SCALING_FACTOR, 10},
{ 2167 / THERMISTOR_SCALING_FACTOR, 20},
{ 1812 / THERMISTOR_SCALING_FACTOR, 30},
{ 1462 / THERMISTOR_SCALING_FACTOR, 40},
{ 1146 / THERMISTOR_SCALING_FACTOR, 50},
{ 878 / THERMISTOR_SCALING_FACTOR, 60},
{ 665 / THERMISTOR_SCALING_FACTOR, 70},
{ 500 / THERMISTOR_SCALING_FACTOR, 80},
{ 434 / THERMISTOR_SCALING_FACTOR, 85},
{ 376 / THERMISTOR_SCALING_FACTOR, 90},
{ 326 / THERMISTOR_SCALING_FACTOR, 95},
{ 283 / THERMISTOR_SCALING_FACTOR, 100}
};
static const struct thermistor_info thermistor_info = {
.scaling_factor = THERMISTOR_SCALING_FACTOR,
.num_pairs = ARRAY_SIZE(thermistor_data),
.data = thermistor_data,
};
static int board_get_temp(int idx, int *temp_k)
{
/* idx is the sensor index set below in temp_sensors[] */
int mv = adc_read_channel(
idx ? ADC_TEMP_SENSOR_SOC : ADC_TEMP_SENSOR_CHARGER);
int temp_c;
if (mv < 0)
return -1;
temp_c = thermistor_linear_interpolate(mv, &thermistor_info);
*temp_k = C_TO_K(temp_c);
return 0;
}
const struct temp_sensor_t temp_sensors[] = {
[TEMP_SENSOR_CHARGER] = {
.name = "Charger",
.type = TEMP_SENSOR_TYPE_BOARD,
.read = board_get_temp,
.idx = 0,
.action_delay_sec = 1,
},
[TEMP_SENSOR_SOC] = {
.name = "SOC",
.type = TEMP_SENSOR_TYPE_BOARD,
.read = board_get_temp,
.idx = 1,
.action_delay_sec = 5,
},
[TEMP_SENSOR_CPU] = {
.name = "CPU",
.type = TEMP_SENSOR_TYPE_CPU,
.read = sb_tsi_get_val,
.idx = 0,
.action_delay_sec = 4,
},
};
BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT);
const static struct ec_thermal_config thermal_a = {
.temp_host = {
[EC_TEMP_THRESH_HIGH] = C_TO_K(75),
[EC_TEMP_THRESH_HALT] = C_TO_K(80),
},
.temp_host_release = {
[EC_TEMP_THRESH_HIGH] = C_TO_K(65),
},
.temp_fan_off = C_TO_K(25),
.temp_fan_max = C_TO_K(50),
};
struct ec_thermal_config thermal_params[TEMP_SENSOR_COUNT];
static void setup_fans(void)
{
thermal_params[TEMP_SENSOR_CHARGER] = thermal_a;
thermal_params[TEMP_SENSOR_SOC] = thermal_a;
thermal_params[TEMP_SENSOR_CPU] = thermal_a;
}
#ifdef HAS_TASK_MOTIONSENSE
/* Motion sensors */
static struct mutex g_lid_mutex;
static struct mutex g_base_mutex;
mat33_fp_t zork_base_standard_ref = {
{ FLOAT_TO_FP(1), 0, 0},
{ 0, FLOAT_TO_FP(1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
mat33_fp_t lid_standard_ref = {
{ FLOAT_TO_FP(1), 0, 0},
{ 0, FLOAT_TO_FP(1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
/* sensor private data */
static struct kionix_accel_data g_kx022_data;
static struct bmi160_drv_data_t g_bmi160_data;
/* TODO(gcc >= 5.0) Remove the casts to const pointer at rot_standard_ref */
struct motion_sensor_t motion_sensors[] = {
[LID_ACCEL] = {
.name = "Lid Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_KX022,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &kionix_accel_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_kx022_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = KX022_ADDR1_FLAGS,
.rot_standard_ref = (const mat33_fp_t *)&lid_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = KX022_ACCEL_MIN_FREQ,
.max_frequency = KX022_ACCEL_MAX_FREQ,
.config = {
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 100,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
},
},
},
[BASE_ACCEL] = {
.name = "Base Accel",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.default_range = 2, /* g, enough for laptop */
.rot_standard_ref = (const mat33_fp_t *)&zork_base_standard_ref,
.min_frequency = BMI160_ACCEL_MIN_FREQ,
.max_frequency = BMI160_ACCEL_MAX_FREQ,
.config = {
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 100,
},
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S3] = {
.odr = 10000 | ROUND_UP_FLAG,
},
},
},
[BASE_GYRO] = {
.name = "Base Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_BASE,
.drv = &bmi160_drv,
.mutex = &g_base_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.default_range = 1000, /* dps */
.rot_standard_ref = (const mat33_fp_t *)&zork_base_standard_ref,
.min_frequency = BMI160_GYRO_MIN_FREQ,
.max_frequency = BMI160_GYRO_MAX_FREQ,
},
};
unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
#endif /* HAS_TASK_MOTIONSENSE */
#ifndef TEST_BUILD
void lid_angle_peripheral_enable(int enable)
{
if (board_is_convertible())
keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE);
}
#endif
static uint32_t sku_id;
static void cbi_init(void)
{
uint32_t board_version = 0;
uint32_t val;
if (cbi_get_board_version(&val) == EC_SUCCESS)
board_version = val;
ccprints("Board Version: %d (0x%x)", board_version, board_version);
if (cbi_get_sku_id(&val) == EC_SUCCESS)
sku_id = val;
ccprints("SKU: %d (0x%x)", sku_id, sku_id);
#ifdef HAS_TASK_MOTIONSENSE
board_update_sensor_config_from_sku();
#endif
}
DECLARE_HOOK(HOOK_INIT, cbi_init, HOOK_PRIO_INIT_I2C + 1);
uint32_t system_get_sku_id(void)
{
return sku_id;
}
/*
* Returns 1 for boards that are convertible into tablet mode, and zero for
* clamshells.
*/
int board_is_convertible(void)
{
/* TODO: Add convertible SKU values */
return 0;
}
int board_is_lid_angle_tablet_mode(void)
{
return board_is_convertible();
}
uint32_t board_override_feature_flags0(uint32_t flags0)
{
return flags0;
}
uint32_t board_override_feature_flags1(uint32_t flags1)
{
return flags1;
}
void board_overcurrent_event(int port, int is_overcurrented)
{
switch (port) {
case USBC_PORT_C0:
ioex_set_level(IOEX_USB_C0_FAULT_ODL, !is_overcurrented);
break;
case USBC_PORT_C1:
ioex_set_level(IOEX_USB_C1_FAULT_ODL, !is_overcurrented);
break;
default:
break;
}
}
static void baseboard_init(void)
{
/* Initialize Fans */
setup_fans();
}
DECLARE_HOOK(HOOK_INIT, baseboard_init, HOOK_PRIO_DEFAULT);